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Abstract

Correlated data frequently arise in contexts such as, for example, repeated measures
and meta-analysis. The amount of information in such data depends not only on the
sample size, but also on the structure and strength of the correlations among observa-
tions from the same independent block. A general concept is discussed, the effective
sample size, as a way of quantifying the amount of information in such data. It is defined
as the sample size one would need in an independent sample to equal the amount of
information in the actual correlated sample. This concept is widely applicable, for Gaus-
sian data and beyond, and provides important insight. For example, it helps explaining
why fixed-effects and random-effects inferences of meta-analytic data can be so radically
divergent. Further, we show that in some cases the amount of information is bounded,
even when the number of measures per independent block approaches infinity. We use
the method to devise a new denominator degrees-of-freedom method for fixed-effects
testing. It is compared to the classical Satterthwaite and Kenward-Roger methods for
performance and, more importantly, to enhance insight. A key feature of the proposed
degrees-of-freedom method is that it, unlike the others, can be used for non-Gaussian
data too.

Keywords: Amount of Information, Correlated Data, Information Limit, Mixed Mod-
els, Small-Sample Inference
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1. INTRODUCTION

Information is an important concept in statistics, whether for parameter estimation, hypothesis

testing, or other modes of inferences. It is well-known (Cox and Hinkley 1974; Welsh 1996)

that, in the context of a univariate Gaussian sample, the amount of information is represented

by the sample size. The same is true for binary data, up to a variance-related factor. For

time-to-event data, events rather than sample size is the central concept. However, as soon

as one ventures away from independence, there is considerable uncertainty as to how to define

the sample size, except in a number of well understood cases, mostly in a multivariate normal

setting (Johnson and Wichern 1992). At first sight, if several measurements are taken for each

independent unit, one could take the number of individuals or the number of measurements

as the sample size. While the first approach underestimates the amount of information,

the second one leads to overstatement. The reason is that the amount of information also

depends on the correlation among the observations, not only in strength, but also in terms

of the structure such correlations assume. We will see that there are important differences

between, for example, compound-symmetric and first-order auto-regressive structures.

Such considerations are important to assess the amount of information available. We argue

that the concept of effective sample size (e.s.s.), which will be reviewed, revisited, and amplified

in this paper, can be seen as key to such understanding. For example, it aids understanding

as to why there can be such large differences when, say, testing for treatment effect in a

meta-analysis using a fixed-effects approach on the one hand and a random-effects approach

on the other hand. Further, it is crucial to assess the amount of information available when

conducting hypothesis testing in a finite sample context. In a number of correlated contexts,

especially with normally distributed outcomes, exact test statistics are known (Johnson and

Wichern 1992). These include the well known t, F , and U tests. They are useful, but

limited to such contexts as full multivariate normal with unstructured or compound-symmetry

correlation structure. More complex settings abound, even when data are Gaussian, in repeated

measures or otherwise hierarchical studies, when data are unbalanced in the sense of differential

4



numbers of measures per subjects, perhaps not taken at a common set of time points, and/or

with alternative covariance structures. It is for such contexts that Satterthwaite (1941) and

Kenward and Roger (1997) numerator degrees-of-freedom methods have been considered. Also

the work by Fay and Graubard (2001) for generalized estimating equations, covering, among

others, the binary and count data cases, is noteworthy. Parallel work for non-Gaussian settings,

such as the commonly encountered binary and count data settings, is virtually non-existent

and one often falls back on crudely using the residual number of degrees of freedom, defined as

the number of measurements minus the number of parameters to be estimated. Alternatively,

one then switches to an asymptotic method. The effective sample size (e.s.s.) also leads to

a degrees-of-freedom method, applicable in both Gaussian and non-Gaussian settings. We

consider this a worthwhile contribution in addition to what is available in the literature.

The context for our illustrations will be correlated data, in particular mixed-effects models.

Obviously, the ideas are also applicable to other contexts, such as stratified versus unstratified

analysis, analysis of covariance versus t-tests with a baseline covariate, and cross-over trials

(Jones and Kenward 2003) versus parallel-group design. In such contexts, the e.s.s. provides

a way to contrast the information obtained under a more elaborate design with the simpler

one. This underscores that the concept’s appeal goes well beyond its use as an alternative

small-sample degrees-of-freedom device.

This paper is organized as follows. Notation and key models are introduced in Section 2. In

Section 4 and 5, the concept of the effective sample size and the information limit is explained.

The use of the effective sample size in the degrees-of-freedom context is discussed in Section 6,

and the behavior of the various degrees-of-freedom methods is scrutinized and compared in

Section 7. The case studies, introduced in Section 3, are analyzed in Section 8.
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2. NOTATION AND MODELS

Assume an outcome Yij is measured on independent units i = 1, . . . , N with j = 1, . . . , ni

replications. Examples include ni repeated measures on patient i in a clinical trial, or ni

patients in trial i of a meta-analysis. Group the outcomes in the ni-dimensional vector Yi. A

general linear mixed model decomposes Yi as:

Yi = Xiβ + Zibi + εi, (1)

(Verbeke and Molenberghs 2000) in which β is a vector of population-average regression coef-

ficients called fixed effects, and where bi is a vector of subject-specific regression coefficients.

The bi describe how the evolution of the ith subject deviates from the average evolution in

the population. The matrices Xi and Zi are (ni × p) and (ni × q) matrices of known covari-

ates. The random effects bi and residual components εi are assumed to be independent with

distributions N(0, D), and N(0,Σi), respectively. Thus, in summary,

Yi|bi ∼ N(Xiβ + Zibi,Σi), bi ∼ N(0, D). (2)

The corresponding marginal model is Yi ∼ N(Xiβ, Vi = ZiDZ
′
i +Σi). For occasion j, Model

(1) takes the form: Yij = x′ijβ+ z′ijbi + εij, in an obvious notation. We will frequently make

use of the so-called random-intercepts version:

Yij = x′ijβ + bi + εij, (3)

with bi ∼ N(0, τ 2) and εij ∼ N(0, σ2). The corresponding marginal model is Yi ∼ N(Xiβ, Vi =

σ2Ini
+ τ 2Jni×ni

), where Ini
and Jni×ni

is an ni × ni identity matrix and matrix of ones, re-

spectively.

3. APPLICATION

We motivate and illustrate this work using two different, generic settings. A third application

is given in the Appendix.
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3.1 Cancer of the Ovaries

Consider data from a meta-analysis of two large multi-center trials in advanced ovarian cancer

(Ovarian Cancer Meta-Analysis Project 1991). The trials contain 411 and 382 patients, re-

spectively. The survival time (in years) of individual patients are available in these trials. The

endpoint of interest is the logarithm of survival, defined as time (in years) from randomization

to death from any cause.

We consider a random-intercepts model (3) for Yij, the log-survival time of individual j in trial

i. Our focus is on assessing the impact of the within-trial correlation; for this, we consider a

simple model with the fixed-effects structure reduced to the overall mean log survival time.

It should be noted that this example is different in nature from a typical longitudinal study,

since here only two trials contribute independent information. It will be shown that different

estimation methods for the degrees of freedom may lead to major differences in the resulting

p-values.

3.2 Rats Data

The data from this example resulted from a randomized longitudinal experiment (Verdonck et

al. 1998), in which 50 male Wistar rats were randomized to either a control group or one of

the two treatment groups, where treatment consisted of a low or high dose of the testosterone

inhibitor Decapeptyl. The treatment started at the age of 45 days, and measurements were

taken every 10 days, starting at the age of 50 days. Of interest was skull height, measured

as the distance (in pixels) between two well-defined points on X-ray pictures taken under

anesthesia. Some rats have incomplete follow-up because they did not survive anesthesia.

Let Yij denote the response taken at time tj, for rat i. Similar as in Verbeke and Molenberghs

(2000), we model subject-specific profiles as linear functions of tj = ln(1 + (Agej − 45)/10),

using (3) with x′ijβ = β0+β1 tj. Here, β0 is the average response at the time of randomization,

while β1 is the average slope in the three different treatment groups. We are interested in
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H0 : β1 = 0, assessing the linear trend over time.

4. THE EFFECTIVE SAMPLE SIZE

In this section, the general concept of the effective sample size is reviewed and revisited. The

idea is simple and appealing at the same time, and has been considered in a variety of contexts,

such as by Thiebaux and Zwiers (1984) for climatic applications, Skinner, Holt, and Smith

(1989) in complex survey methods, and Cressie (1991) in a spatial setting.

We will set out by considering the Gaussian case. Assume model (1). The fixed-effects

parameter β can be estimated as (Laird and Ware 1982):

β̂ =

(
N∑
i=1

X ′iV
−1
i Xi

)−1 N∑
i=1

X ′iV
−1
i Y i.

This is an unbiased estimate for β if the mean of the response is correctly specified, even if

the variance Vi is misspecified. The variance of β̂, provided Vi is properly specified, is equal

to

V̂ar
(
β̂
)

=
( N∑
i=1

X ′iV
−1
i Xi

)−1

. (4)

This variance is the inverse of the Fisher information, and thus represents the amount of infor-

mation that the data carries about the parameter β. Under the assumption of independence,

this variance would be determined as

Ṽar
(
β̂
)

=
( N∑
i=1

X ′iW
−1
i Xi

)−1

, (5)

with Wi = diag(Vi) a diagonal matrix with the same values on the diagonal as Vi. The

notation Ṽar(·) is used to indicate the quantity under independence.

We now define the effective sample size Ñ(βk) corresponding to a single fixed-effects parameter

βk ∈ β as the number of independent measurements that one would need to reach the same

amount of information about βk as in the original data. For the special setting of a model with
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only an intercept, i.e., (3) with x′ijβ = β0 and a general homogeneous variance-covariance

matrix Vi, we have that the effective sample size is equal to

Ñ =
N∑
i=1

[
J ′ni×1

(
W
−1/2
i ViW

−1/2
i

)−1
Jni×1

]
=

N∑
i=1

(
J ′ni×1C

−1
i Jni×1

)
, (6)

with Ci the correlation matrix and Jni×1 an ni × 1 vector consisting of ones. The derivation

of this equation is given in the Appendix.

For a general model, the effective sample size for a parameter βk can be derived by estimating

the weight w to be given to each observational unit such that the variance of βk in these

(weighted) data, under the assumption of independence, i.e.,

Ṽar
w(
β̂k
)

=

[( N∑
i=1

wX ′iW
−1
i Xi

)−1
]
kk

,

equals the variance in the original data under the assumption of dependence [V̂ar
(
β̂k
)
]. As

such, the effective sample size is defined as Ñ(βk) = w
∑

i ni with w = Ṽar(β̂k)/V̂ar(β̂k)

where V̂ar(β̂k) and Ṽar(β̂k) are obtained from (4) and (5), respectively.

In the next sections, some special cases of the effective sample size are discussed. First, focus

is on models with only an intercept as fixed effect parameter. Several covariance structures

are considered, the compound symmetry (CS), first-order auto-regressive (AR(1)), and three-

level hierarchical structures. Second, the specific but important setting of a contrast trend is

considered. The various parameters of interest produce important insight.

4.1 Compound-symmetry Structure

We apply the idea of the effective sample size to the simple but important context of a

continuous response Yij on a set of measurements j which are grouped in a cluster i of size n.

Assume the random-intercepts model (3) with x′ijβ = β. Such a model marginalizes to a

so-called compound-symmetry structure, where the covariance between two measurements

Yij and Yik is of the form τ 2, the variance being σ2 + τ 2. The corresponding correlation is

ρ = τ 2/(σ2 + τ 2), with the variance components as in (3).
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The mean parameter β can be estimated as (Laird and Ware 1982):

β̂ =
1

Nn

N∑
i=1

n∑
j=1

Yij

and the variance of β̂ equals

V̂ar
(
β̂
)

=
σ2 + nτ 2

Nn
. (7)

In the special case that measurements are independent, we would have that Wi = (σ2 + τ 2)In

and the variance of β̂ would equal

Ṽar
(
β̂
)

=
σ2 + τ 2

Nn
. (8)

Now, assign a weight w to each observation. The variance under the assumption of indepen-

dence becomes

Ṽar
w(
β̂
)

=
σ2 + τ 2

wNn
. (9)

The effective sample size Ñ can then be calculated by equating (7) and (9):

σ2 + nτ 2

Nn
=
σ2 + τ 2

wNn
,

yielding

Ñ = wnN =
nN

1 + ρ(n− 1)
, (10)

with ρ = τ 2/(τ 2 + σ2). Here, 1 + ρ(n − 1) is the well-known variance inflation factor in

cluster randomized trials. Note that the above equation can also be derived from (6) with

C = ρJn×n + (1− ρ)In.

In general, when cluster sizes are not equal, the effective sample size Ñ for the entire sample

equals
∑

iwini, yielding

Ñ =
N∑
i=1

ni
1 + ρ(ni − 1)

. (11)

In Table 1, the effective sample size ñ(CS) for clusters of size n = 5 is presented for different

correlations ρ. For example, if ρ = 0.2, the information obtained from n = 5 measurements
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on the same cluster is similar to what would be obtained from 2.8 independent measurements.

There are some interesting special cases. When measurements are independent within a cluster,

ρ = 0, the effective sample size equals Ñ =
∑

i ni, the total number of measurements. In

case the measurements within a cluster are perfectly correlated, ρ = 1, the effective sample

size equals the number of clusters, since Ñ =
∑

i
ni

ni
= N. Further, the right-hand side of

Table 1 shows the effective sample size for different cluster sizes (n) and within-correlation

ρ = 0.5. The effective sample size increases very slowly with growing cluster size, towards the

asymptote of ñ = 2. This will be discussed further in Section 5.

Note that above derivations are valid for non-negative correlations. The effective sample size is

positive only, and hence well-defined, for correlations ρ > −1/(n− 1). Practically, this means

that ρ > −1/(ni − 1) for all trials i. Thus, our argument can be used for mildly negative

correlation, down to this bound. Negative correlations are fully acceptable in a marginal

interpretation of (3), although values below this bound do not correspond to valid distributions.

Notwithstanding this, when a fully hierarchical interpretation is adopted, other than confining

attention to the derived marginal model, then negative correlation is not allowable (Verbeke

and Molenberghs 2000, 2003).

4.2 Alternative Covariance Structures

We consider the effective sample size for other frequently used correlation structures, when the

fixed-effects structure is confined to an intercept. We will consider the independence and first-

order stationary auto-regressive structures, as well as the one induced by a variance-component

specification in a three-level hierarchical model.

When the independence correlation structure applies, the effective sample size reduces to

Ñ =
∑

i ni, as would be expected.

A first-order auto-regressive structure assumes that the covariance between two measure-

ments Yij and Yik is of the form σ2ρ|k−j|. For a sample with fixed cluster size n, the effective
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sample size is

Ñ =
n− (n− 2)ρ

1 + ρ
N.

This can be derived from (6) with (C)kj = ρ|k−j|.

In Table 1, the effective sample size for clusters of size n = 5 is presented for various correla-

tions ρ, as well as for a cluster of different size n but fixed correlation ρ = 0.5. For example,

if ρ = 0.2, then the information obtained from n = 5 measurements on the same individual is

similar to what would be obtained from 3.7 independent measurements, which is larger than

the effective sample size when a compound-symmetry structure would apply. When ρ = 0,

the effective sample size reduces to the number of measurements. When ρ = 1, the effective

sample size is equal to the number of clusters. In the special cases that n = 1 or 2 and ρ = 0

or 1, the CS and AR(1) structures cannot be distinguished, and hence also the effective sample

sizes for both settings are identical. Finally, note that the effective sample size increases faster

with growing cluster sizes, as compared with the compound symmetry structure.

Next, assume a variance-component structure in the following three-level model:

Yijk = β0 + ui + vij + εijk,

where β0 is a fixed-effects parameter, ui is a random effect at the first level (i = 1, . . . , N), vij

is a random effect at the second level (j = 1, . . . , J), and εijk is an error term (k = 1, . . . , K).

An example of such a three-level model follows, for example, when measuring paired eyes of

an individual in time. The patient is the first level in the data (i = 1, . . . , N), the second level

is an eye (j = 1, 2) of a patient i, and the third level are the repeated measurements k of eye

j of patient i (k = 1, . . . , K). All random terms in the model are assumed to be mutually

independent and normally distributed: ui ∼ N(0, σ2
u), vij ∼ N(0, σ2

v), and εijk ∼ N(0, σ2
ε).

This model extends (3). In this case, the effective sample size is equal to

Ñ =
N∑
i=1

J∑
j=1

K

(mj − 1)niρ1 + (ni − 1)ρ2 + 1
,
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with ni the number of eyes measured in patient i (ni = 2), mj the number of repeated

measurements in eye j, ρ1 and ρ2 the intra-class correlations between paired eyes and between

repeated measurements, respectively. This, in turn, can be derived from (6).

4.3 Contrast Parameter

So far, the effective sample size has been calculated for the overall mean parameter, under a

variety of covariance structures. We now switch attention to a contrast parameter, represen-

tative of the wide variety of settings where a (treatment) difference is of interest. Assume that

individuals are repeatedly measured. Consider (3) with x′ijβ = β0 + β1 xij. The covariate xij

can be either measurement- or individual-specific. In the first case, it changes with i and j;

in the second case, it changes with i only.

First, consider the setting where there are n measurements for each individual, together with

an individual-specific covariate xi. The effective sample size for both the intercept β0 and the

parameter β1 equals (10), the effective sample size for an overall mean parameter, which is in

line with intuition. Second, consider the setting of a balanced design, with n measurements

for each individual together with measurement-specific covariates xij = xj. Note that this is

a balanced setting with all individuals having the same measurement-specific covariates. The

effective sample size for the intercept β0 then equals

Ñ(β0) =
Nn

1 +
[

(n−1)(
∑

j x
2
j )−(

∑
j xj)2∑

j x
2
j

]
ρ
,

with obvious notation, and for the parameter β1, Ñ(β1) = Nn/(1− ρ). The derivation of

this formula is given in the Appendix.

As a first example, consider the simple setting where there are 2 measurements for each

individual in a pretest-posttest design. Let x1 and x2 denote the covariates at pretest and
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posttest, respectively. Then Ñ(β0) reduces to

Ñ(β0) =
2N

1 +
(

(x1−x2)2

x2
1+x2

2
− 1
)
ρ
.

Simplification for the slope parameter is straightforward: Ñ(β1) = 2N/(1− ρ), showing that

higher positive correlation corresponds to increasing information. Indeed, when the correlation

is ρ = 0, the effective sample size for the contrast parameter is equal to 2N ; ρ = 0.5 yields

an effective sample size of 4N ; when measurements are perfectly correlated, i.e., ρ = 1, the

effective sample size reaches infinity, meaning that one pair of measurements corresponds to

the asymptotic situation of perfect knowledge about the contrast.

As a second example, consider (3) with x′ijβ = β0 + β1 xij and xij = j − 1. This would

correspond to a longitudinal experiment where measurements are taken at regular time points.

Then, Ñ(β0) reduces to

Ñ(β0) =
2Nn(2n− 1)

4n− 2 + ρ(n2 − 3n+ 2)
,

and Ñ(β1) = Nn/(1− ρ), as before.

4.4 Binary Data

An important advantage of the effective sample size is that it can be calculated for any

parameter and any model family. Let us exemplify this for clustered binary data.

Consider an experiment involving N clusters, the ith of which contains ni measurements.

Suppose Yij is a binary indicator for the jth measurement of subject i, and zi =
∑ni

j=1 yij is

the total number of positive outcomes in cluster i. Under independence, observations can be

seen as binomial counts with

E

(
zi
ni

)
= πi, Var

(
zi
ni

)
=
πi(1− πi)

ni
.

When responses within a cluster are correlated, this results in extra-binomial variation. It is
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well-known that the variance of zi/ni then equals

Var

(
zi
ni

)
=
πi(1− πi)

ni
[1 + ρi(ni − 1)],

with ρi the correlation among the observations in cluster i. This correlation can be estimated

using a beta-binomial model. As in the setting of a normally distributed response, the effective

sample size for π = E[πi] takes form (11), as in the normal case. This is because the

calculations require up to second moments only, rather than full distributional assumptions.

5. INFORMATION LIMIT

We observed that, for CS, the effective sample size reaches an asymptote when the actual

sample size approaches infinity. Thus, there appear to be cases where information for a

particular parameter does not grow unboundedly with within-subject sample size. For example,

when CS is adopted and focus is on the overall average, an information limit can be derived:

lim
n→∞

n

1 + ρ(n− 1)
=

1

ρ
. (12)

Thus, under CS, there is a maximum amount of information that can be obtained per subject.

Only when observations are independent (ρ = 0), is this limit infinity. For example, when

ρ = 0.2, the limit is equal to 5; hence, for this correlation, a cluster can never contribute

more information for the overall mean parameters than would be obtained from 5 independent

measurements. Similarly, when ρ = 0.5, a cluster cannot contribute more information than

from 2 independent measurements. This implies that there are no conventional asymptotic

arguments possible for n → ∞ in such cases. Of course, in typical longitudinal studies, ni

would be small anyhow, and having ni → ∞ is less relevant. However, in a meta-analytic

context, where i refers to studies, ni can be quite large, and these considerations become

quite relevant.

In contrast to CS, the information limit is infinite when observations follow an AR(1) covariance

structure, because

lim
n→∞

n− (n− 2)ρ

1 + ρ
=∞. (13)
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Thus, the amount of information, and its behavior as a function of correlation, depends on

the covariance structure parameterization, as well as on the parameter values. The contrast

between (12) and (13) is dramatic in this respect.

The difference between both situations can intuitively be explained as follows. Under CS,

every measurement within a cluster is correlated in the same way with all other measurements.

Therefore, there is a limit to what can be learned from a cluster and the additional information

coming from new cluster members approaches zero with increasing cluster size. In contrast,

under AR(1), the correlation wanes with time lag. So, with time gap between measurements

tending to infinity, their correlation tends to zero and hence the additional information tends

to that of a new, independent observation. Hence, the infinite information limit.

Also for a contrast parameter, the information limit can be calculated. As an example, consider

(3) with x′ijβ = β0 + β1 xij and xij = j. The information limit for β0 then equals 4/ρ. For

example, when ρ = 0.5, the limit is equal to 8. Already after the 6th measurement, the gain

of information about β0 when adding an additional measurement in a longitudinal experiment

is small. In contrast, the information limit about the parameter β1 is infinite.

6. DEGREES OF FREEDOM IN WALD TESTS

We have considered the concept of effective sample size to compare information, available for

a parameter, between correlated and independent situations. Information plays a key role in

hypothesis tests, especially when determining denominator degrees of freedom of finite sample

reference distributions. Such distributions, like the t- and F -distributions, are applied when

the variance components, present in a test statistic, are unknown and need to be estimated

for the data. When data are normally distributed, such reference distributions are exact

in the univariate and a variety of dependent cases, such as full multivariate or CS models.

This no longer holds for general, often unbalanced, repeated-measures designs and a number

of approximate methods are available: Satterthwaite’s approximation (Satterthwaite 1941),
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and the Kenward and Roger (1997) approximation. Note that these methods are only fully

developed for the case of linear mixed models and related multivariate normally based models.

The accuracy of the approximations depends on the amount of replication. In longitudinal

studies, with sufficiently large numbers of patients (large N and small ni), all approximations

typically exhibit similar behavior. However, in a meta-analysis, for example, with merely a few

large trials (small N and large ni), approximations can differ dramatically.

The effective sample size can be used to shed further light on these issues. Our goal for the

context of hypothesis testing is twofold. First, by juxtaposing the Satterthwaite and Kenward-

Roger methods with an effective sample size-based version, understanding of all methods’

operation and performance will be enhanced. Second, the effective sample size-based method,

unlike the others, can be used for non-Gaussian data as well.

Suppose that inferences are to be made about a single fixed-effects parameter β. The Wald

statistic, taking the form

T =
β̂√

V̂ar(β̂)

, (14)

can be used to test the null hypothesis H0 : β = 0. Here, an alternative method to test

whether a significant effect exists, is proposed, using the effective sample size as building

block in the degrees of freedom approximation of a scaled Wald test, thus offering important

insight regarding the existing methods as well, and in their interconnectedness. Assume that

a scaled form T ∗ = λT of the T -statistic follows a t-distribution with ν degrees of freedom,

where λ and ν are unknown quantities. This is similar to the method proposed by Kenward

and Roger (1997), where a scaled form of the F -statistic is used for multivariate tests.

Derivation of the scale factor λ follows from matching the first two moments of T ∗ to the

moments of a t-distribution, leading to

λ2 =
ν

(ν − 2)V (T )
, (15)

with V (T ) the variance of the Wald statistic T and ν/(ν − 2) the variance of a t-distributed
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random variable with ν degrees of freedom. The variance V (T ) can be approximated by use of

the multivariate delta method (see Appendix). In line with the effective sample size concept,

the degrees of freedom are derived from the information arising through the corresponding

independent set of data, i.e., the sample size minus the number of parameters to be estimated

in the fixed-effects structure. This amounts to ν = Ñ − `, with Ñ the effective sample size.

Here, ` is the number of parameters.

For the random-intercepts model with a compound-symmetry structure, this leads to

λ2 =
ν

(ν − 2)V (T )
where ν =

N∑
i=1

ni
1 + (ni − 1)ρ

− `, (16)

which are straightforward to compute.

The major difference between the proposed method, and Satterthwaite’s or Kenward-Roger’s

method, is that in the latter methods the degrees-of-freedom are calculated directly from

approximating the distribution for the Wald tests of the individual parameter estimates. The

proposed method is more general, in the sense that the concept of the effective sample size

is not restricted to a normally distributed response. This is extremely important, because

the Satterthwaite and Kenward-Roger methods do not generalize to binary or otherwise non-

Gaussian setting. We will return to this in Section 7.3.

Note that the scaled Wald test is defined only when the degrees of freedom are larger than or

equal to 2, because the variance of the t-distribution is infinite otherwise. Therefore, in case

the calculated degrees of freedom are less than 2, no scaling is applied to the test statistic. This

is similar to the Kenward-Roger methodology as implemented in the SAS procedure MIXED.

Furthermore, a lower bound of 1 on the degrees of freedom is assumed in the Kenward-Roger

methodology.

7. A SIMULATION STUDY

A simulation study was conducted to explore the behavior of the method as proposed in

previous sections, and to compare the proposed methodology with (i) the unadjusted test,
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which uses the t-distribution with the number of measurements minus the number of estimated

parameters as the degrees of freedom, (ii) the Satterthwaite method, and (iii) the Kenward-

Roger method. Two different normal settings are used. An additional, binary, setting is

considered where, of course, no comparison with Satterthwaite or Kenward-Roger is possible.

We present the results from each of these in turn. Additional simulations can be found in the

supplemental materials.

7.1 The Mean of Compound-symmetry Correlated Data

In a first simulation study, we generate data from a CS model (3) with x′ijβ = β0 and an

unbalanced design. Three simulation settings are defined assuming that β0 = 0, σ2 = (4, 1, 1)

and τ 2 = (1, 1, 4). These settings correspond with an intra-class correlation ρ = τ 2/(σ2 + τ 2)

of 0.2, 0.5, and 0.8, respectively. We study the t-test for the overall mean corresponding to

the null hypothesis β0 = 0. For each simulation setting, we vary the mean cluster size and

number of clusters.

For each setting, 10, 000 sets of data are simulated and for each set the fixed effects are

estimated together with the REML variance estimates of the variance components. Table 2

displays the observed size of a nominal 5% t-test for each of the methods. Additionally, we

show the average effective sample size and the average scale factor used in the proposed scaled

Wald test.

In a typical longitudinal setting, the number of clusters (individuals) is larger than the number

of observations in a cluster (repeated measurements). Simulation results where data are

generated under such a setting are presented in the top part of Table 2. The behavior of the

proposed method is generally quite good, with an observed size close to the nominal level.

The behavior of the e.s.s.-based method is comparable to the Satterthwaite and Kenward-

Roger methods. The effective sample size decreases with increasing intra-class correlation, as

it ought to. The scale parameter is invariably close to 1. When the number of clusters is large,
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all methods perform equally well, in line with expectation.

In a typical random-effects meta-analytic setting, as in the first example, one encounters a

small number of clusters (trials) combined with a large sample size within clusters (number

of patients per trial). The lower part of Table 2 presents results for this setting. In most

settings, the proposed method works well. However, when both the correlation is large and

the number of clusters very small, the e.s.s.-based method tends to deteriorate. Note that

this is the situation where there is very little information in the data. Also, when we have only

2 clusters and each clusters contains 10 to 100 observations, the scale parameter can become

infinite, especially with large correlation. In addition, the cluster variance will be very poorly

estimated, the consequences of which are apparent in Table 2 for N = 2. This is due to the

infinite variance of a t-distribution when the number of degrees of freedom is smaller than 2,

and might occur in situations where there is only a very small amount of information in the

data, for example, with an effective sample size smaller than 3.

7.2 The Mean of AR(1)-Correlated Data

Next, consider a longitudinal study with a balanced design and an AR(1) correlation structure.

Again, interest is in a test for the overall mean of the response. Various settings for cluster

size, number of clusters and correlation are considered, and results summarized in Table 3.

Also in this setting, the proposed method works very well. Note that the effective sample size

under the AR(1) model is much larger when compared to its counterpart under CS, in line with

our theoretical developments, underscoring the importance of the correlation structure. Note

that the scale parameter λ is virtually 1 when the cluster size is large or when the number of

clusters is large.
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7.3 Overall Probability of an CS Correlated Binary Response

We now generate binary data from a beta-binomial model, where the outcomes within a

cluster follow a binomial distribution, and the cluster-specific success probability is assumed

to be drawn from a beta distribution (Molenberghs and Verbeke 2005). In particular, we

assume a constant overall mean (π = 0.5) and constant correlation parameter. Cluster sizes

are fixed per simulation setting, and vary between 5 and 50. Given that the Satterthwaite and

Kenward-Roger methods exist only for normally distributed responses, the residual number of

degrees of freedom is often used as an alternative. We will compare this method with our

e.s.s.-based approach. Results are presented in Table 4. It can be seen that for all settings

considered the e.s.s.-based method outperforms the residual method. When there is sufficient

information in the data, the size of the proposed test is close to 0.05.

8. DATA ANALYSIS

8.1 Cancer of the Ovaries

Consider first a ‘näıve’ analysis, not accounting for correlation. For the purpose of this illus-

trative analysis, the small amount of censoring in the data is ignored. Recall that the sample

sizes are 411 and 382. The mean log-survival time is estimated to be 0.7906 (s.e. 0.1726).

The residual error degrees of freedom, equal to the number of individuals minus the number of

parameters to be estimated, equals 792, resulting in p < 0.0001 for the t-test corresponding

to the null hypotheses of one-year survival. Now, the correlation of individuals within a trial

is estimated to be ρ̂ = 0.038. Though small, this correlation should be accounted for in

this meta-analysis, and has a huge effect on the degrees of freedom. Both Satterthwaite and

Kenward-Roger estimate the degrees of freedom equal to 1, resulting in p = 0.1368. The

effective sample size is estimated as 49. The scaled t-test, with scale parameter λ̂ = 0.30, has

48 degrees of freedom, resulting in p = 0.173.
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Further, it should be noted that, due to the correlation, any given trial cannot obtain more

information to estimate the mean parameter as corresponds to about 26 independent mea-

surement.

8.2 The Rats Data

In the rats data, the effect of time is estimated as β̂1 = 0.1934 (s.e. 0.0059). The residual

degrees of freedom are 250. The Satterthwaite and Kenward-Roger method estimate the

degrees of freedom as 214, while the effective sample size equals 125.47. All methods result

in a significant t-test statistic, with p < 0.0001.

9. CONCLUDING REMARKS

We have revisited the effective sample size which is, broadly speaking, the equivalent sample

size needed when repeated measures would be uncorrelated, to obtain the same amount of

information as in the actual correlated sample.

The use of the e.s.s. is threefold. First, it provides a perspective on the amount of information

in correlated data. For example, it explains why fixed-effects and random-effects analyses can

be so dramatically different in meta-analyses, where the number of trials is typically small,

even though the number of patients per trial is commonly large. This is tied to the existence

of an information limit for the CS case.

Second, in a hypothesis testing context for a mean in Gaussian models, the e.s.s. provides an

approximate degrees-of-freedom method that behaves in a very similar way to the Satterthwaite

and Kenward-Roger methods. Similarities and differences in performance between the three

methods are worth studying in multivariate hypothesis testing contexts as well.

Third, a very practical, and indeed promising use is reserved for testing hypothesis with non-

Gaussian, e.g., binary, correlated data. Here, the e.s.s. can be used, in contrast to Satterthwaite

and Kenward-Roger, to derive an approximate degrees-of-freedom method for this context, too.
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While the focus in this paper has been on the use of the effective sample size in the context of

single degree-of-freedom hypothesis testing, it is a much more general concept, worth further

exploration. For example, the statistical power calculation and sample size determination for

a longitudinal study or study with clustered subjects can be tackled from the perspective of

the effective sample size, and is topic of ongoing research.

Supplemental Materials

Data Example: An additional illustration of the effective sample size used in small sample

inference, testing for a dose effect in a developmental toxicological experiment.

Simulation Results CS Model: Some additional results of the simulation study as described

in Section 7.1, showing the behavior of the proposed effective sample size method.

Simulation Intercept and Dose Effect: Results from a simulation study testing for the

dose effect, using the effective sample size methodology.
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Table 1: Effective sample size for a cluster of size n with correlation ρ, calculated under the

compound-symmetry (CS) model and under the first-order auto-regressive (AR(1)) model.

ρ n ñ(CS) ñ(AR(1)) ρ n ñ(CS) ñ(AR(1))

0 5 5 5 0.5 1 1 1

0.2 5 2.8 3.7 0.5 2 1.33 1.33

0.4 5 1.9 2.7 0.5 5 1.67 2.33

0.6 5 1.5 2.0 0.5 10 1.82 4

0.8 5 1.2 1.4 0.5 100 1.98 34

1 5 1 1 0.5 ∞ 2 ∞

Effective sample size calculated as ñ(CS) = n
1+ρ(n−1) and ñ(AR(1)) = n−(n−2)ρ

1+ρ
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Table 2: Simulation Study. Mean of CS Correlated Data: mean estimated effective sample

size (Ñ), mean of scale parameter (λ), and observed size of nominal 5% Wald t-test from

the simulation study corresponding to different settings having N subjects with on average

ni measurements (Unadj: unadjusted; Satterth: Satterthwaite; KR: Kenward-Roger; e.s.s.:

effective sample size.)

Observed Size

N ni ρ Ñ λ Unadj Satterth KR e.s.s.

10 4 0.2 19.77 1.02 11.0 5.5 5.5 5.0

0.5 10.69 1.09 13.0 5.4 5.4 4.3

0.8 6.07 1.26 11.9 4.7 4.7 3.7

10 2 0.0 18.16 1.05 3.7 3.4 3.4 3.4

0.2 16.72 1.05 5.3 4.6 4.7 4.6

0.5 14.02 1.06 6.6 5.0 5.0 5.2

100 4 0.2 230.13 1.00 4.9 4.6 4.6 4.7

0.5 153.24 1.00 5.0 4.9 4.9 5.0

0.8 115.92 1.01 5.1 4.9 4.9 4.9

100 2 0.2 147.29 1.00 5.5 5.3 5.3 5.3

0.5 122.75 1.01 5.8 5.6 5.6 5.6

0.8 107.39 1.01 5.6 5.4 5.4 5.4

4 100 0.2 42.18 0.96 14.6 5.3 5.3 4.9

0.5 14.83 1.06 14.8 5.1 5.1 4.4

0.8 6.97 1.23 14.8 5.0 5.0 4.2

2 100 0.2 56.53 0.99 27.9 11.0 11.0 11.0

0.5 31.45 1.18 29.5 7.5 7.5 7.5

0.8 16.93 1.09 29.9 5.7 5.7 5.7

4 10 0.2 19.89 1.02 10.7 5.6 5.6 5.3

0.5 10.88 1.10 12.9 5.0 4.9 4.2

0.8 6.21 1.26 12.9 4.7 4.7 3.9

2 10 0.2 12.09 1.20 14.6 10.5 10.5 10.7

0.5 8.65 1.30 22.2 12.2 13.2 12.2

0.8 5.80 1.12 26.2 9.3 9.3 11.1

27



Table 3: Simulation Study. Mean of AR(1)-Correlated Data: mean estimated effective sample

size (Ñ), mean of scale parameter (λ), and observed size of nominal 5% Wald t-test from the

simulation study, corresponding to different settings having N subjects with n measurements.

(Unadj: unadjusted; Satterth: Satterthwaite; KR: Kenward-Roger; e.s.s.: effective sample

size.)

Observed Size

N n ρ Ñ λ Unadj Satterth KR e.s.s.

3 10 0.2 22.98 1.02 7.0 4.7 5.2 4.8

0.5 13.53 1.05 8.4 4.7 5.9 4.8

0.8 7.12 1.13 11.7 4.9 6.4 3.9

10 3 0.2 25.20 1.02 6.7 5.2 5.4 5.5

0.5 17.76 1.04 6.9 5.1 5.5 5.0

0.8 12.68 1.06 7.1 4.9 5.3 4.1

3 100 0.2 203.02 1.00 6.0 5.6 5.7 5.7

0.5 103.35 1.00 6.2 5.4 5.8 5.6

0.8 37.06 1.01 6.7 5.2 5.7 5.2

100 3 0.2 235.07 1.00 6.0 5.8 5.9 5.9

0.5 167.67 1.00 6.0 5.8 5.9 5.9

0.8 122.63 1.00 5.9 5.7 5.7 5.6
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Table 4: Simulation Study. Binary Correlated Data: mean estimated effective sample size

(Ñ), mean of scale parameter (λ), and observed size of nominal 5% Wald t-test from the

simulation study for intercept parameter, corresponding to different settings having N subjects

with n measurements. (Res: Residual method; e.s.s.: effective sample size.)

Observed Size

N n ρ Ñ λ e.s.s. Res

10 5 0.3 25.54 1.02 5.73 7.9

10 5 0.5 18.51 1.03 6.17 9.25

10 5 0.7 14.06 1.04 9.09 12.12

50 5 0.3 116.92 1 5.25 5.73

50 5 0.5 84.87 1.01 4.93 5.45

50 5 0.7 66.43 1.01 4.96 5.48

5 10 0.3 18.82 1.02 8.29 12.97

5 10 0.5 12.39 1.06 8.56 14.52

5 10 0.7 8.84 1.11 5.26 5.26

5 50 0.3 28.05 1 11.00 15.86

5 50 0.5 15.23 1.05 10.88 17.1

5 50 0.7 10.06 1.09 12.86 18.67
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APPENDIX A: DERIVATION OF EFFECTIVE SAMPLE SIZE β0

Assume the special setting of a model with only an intercept, i.e. (2) with x′ijβ = β0 and a

homogeneous variance-covariance matrix Vi. The amount of information on the parameter β0

is represented by the variance

V̂ar
(
β̂0

)
=
( N∑
i=1

X ′iV
−1
i Xi

)−1

, (17)

with Xi = Jni×1 a ni× 1 vector of ones. Under the assumption of independence, the variance

is

Ṽar
(
β̂0

)
=
( N∑
i=1

X ′iW
−1
i Xi

)−1

. (18)

If we assign a weight wi to each observation, the variance of the weighted data set under the

assumption of independence becomes

Ṽar
w(
β̂0

)
=
( N∑
i=1

wiX
′
iW
−1
i Xi

)−1

. (19)

To derive the effective sample size we assume that the variance in the original data under the

assumption of dependence is equal to the weighted data under the assumption of independence,( N∑
i=1

X ′iV
−1
i Xi

)−1

=
( N∑
i=1

wiX
′
iW
−1
i Xi

)−1

, (20)

or

N∑
i=1

X ′iV
−1
i Xi =

N∑
i=1

wiX
′
iW
−1
i Xi. (21)

The weight wi represents the amount of information a single observation within a cluster

contains. The weight wi corresponding to observations in cluster i is derived from

X ′iV
−1
i Xi = wiX

′
iW
−1
i Xi, for all i = 1, . . . , N. (22)

As a result, wi = (X ′iV
−1
i Xi)/(X

′
iW
−1
i Xi). The effective sample size is

Ñ(β0) =
N∑
i=1

wini =
N∑
i=1

J1×ni
V −1
i Jni×1

J1×ni
W−1
i Jni×1

ni. (23)
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When Vi is homogeneous, Vi has a constant value on its diagonal, say the value vi. In this

setting, we can write Wi = viIni
. As a result, the denominator in (23) is J1×ni

W−1
i Jni×1 =

ni/vi, and Ñ(β0) is equal to

Ñ(β0) =
N∑
i=1

vi

(
J1×ni

V −1
i Jni×1

)
=

N∑
i=1

[
J1×ni

(
W
−1/2
i ViW

−1/2
i

)−1
Jni×1

]
=

N∑
i=1

(
J1×ni

C−1
i Jni×1

)
,

with Ci = W
−1/2
i ViW

−1/2
i .
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APPENDIX B: DERIVATION OF EFFECTIVE SAMPLE SIZE β1

Consider the setting where there are n subject-specific observations for each subject. Interest

is in a contrast parameter in the random intercept model (3) with x′ijβ = β0 + β1 xij.

Consider the setting of a balanced design, with n measurements for each individual together

with measurement-specific covariates xij = xj.

The variance of the parameters β0 and β1 can be derived from

V̂ar
(
β̂
)

=
( N∑
i=1

X ′iV
−1
i Xi

)−1

=

∑
i

(
1 . . . 1

x1 . . . xn

)
1

σ2

(
In −

τ 2

σ2 + nτ 2
Jn×n

)
1 x1

...
...

1 xn



−1

=

[∑
i

(
n

σ2+nτ2
1nx

σ2+nτ2

1nx
σ2+nτ2

(1nx2)(σ2+nτ2)−(1nx)2τ2

σ2(σ2+nτ2)

)]−1

=

 (1nx2)σ2+(n(1nx2)−(1nx)2)τ2

N(n(1nx2)−(1nx)2)
− (1nx)σ2

N(n(1nx2)−(1nx)2)

− (1nx)σ2

N(n(1nx2)−(1nx)2)
nσ2

N(n(1nx2)−(1nx)2)

 ,

with 1nx =
∑n

j=1 xj and 1nx
2 =

∑n
j=1 x

2
j . Under the assumption of independence, the

variance of the weighted sample equals

Ṽar
w(
β̂
)

=

[∑
i

(
nw

σ2+τ2
w1nx
σ2+τ2

w1nx
σ2+τ2

w(1nx)2

σ2+τ2

)]−1

=

(
(1nx2)(σ2+τ2)

Nw(n(1nx2)−(1nx)2)
− (1nx)(σ2+τ2)
Nw(n(1nx2)−(1nx)2)

− (1nx)(σ2+τ2)
Nw(n(1nx2)−(1nx)2)

n(σ2+τ2)
Nw(n(1nx2)−(1nx)2)

)

By equating the variance-components corresponding to the intercept, the effective sample size

for the intercept is obtained as

Ñ(β0) =
Nn(1nx

2)(σ2 + τ 2)

(1nx2)σ2 + (n(1nx2)− (1nx)2) τ 2

=
Nn

1 +
(

(n−1)(1nx2)−(1nx)2

1nx2

)
ρ
.
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Similarly, the effective sample size for the contrast parameter is

Ñ(β1) = Nn
σ2 + τ 2

σ2
=

Nn

1− ρ
.
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APPENDIX C: DERIVATION OF V (T )

We are interested in the variance of the test-statistic T :

V (T ) = V̂ar(T̂ ) = V̂ar

 β̂√
V̂ar(β̂)

 .

Let us derive this in the context of a compound-symmetry model. The parameters in this

model are (β, σ2, τ 2). Using the delta method, the estimated variance of T̂ equals:

V̂ar
(
T̂
)

=
(
∂T̂
∂β

∂T̂
∂σ2

∂T̂
∂β

)
V̂ar(β̂, σ̂2, τ̂ 2)


∂T̂
∂β

∂T̂
∂σ2

∂T̂
∂β

 ,

where the parameters are replaced by estimates and with derivatives equal to:

∂T̂

∂β
=

1√
V̂ar(β̂)

,

∂T̂

∂σ2
= − β̂

2
(

V̂ar(β̂)
)3/2

∂V̂ar(β̂)

∂σ2
,

∂T̂

∂τ 2
= − β̂

2
(

V̂ar(β̂)
)3/2

∂V̂ar(β̂)

∂τ 2
.

Because the variance of β̂ in the compound-symmetry model is equal to

V̂ar(β̂) =

(
N∑
i=1

ni
σ̂2 + niτ̂ 2

)−1

,

the derivatives of V̂ar(β̂) equal:

∂V̂ar(β̂)

∂σ2
=

(
V̂ar(β̂)

)2
(

N∑
i=1

ni
(σ̂2 + niτ̂ 2)2

)
, (24)

∂V̂ar(β̂)

∂τ 2
=

(
V̂ar(β̂)

)2
(

N∑
i=1

n2
i

(σ̂2 + niτ̂ 2)2

)
. (25)

Note that, if all samples sizes are equal, i.e., ni ≡ n, (24) and (25) reduce to

∂V̂ar(β̂)

∂σ2
=

1

Nn
,

∂V̂ar(β̂)

∂τ 2
=

1

N
.
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We also obtain

∂T̂

∂β
=

1√
V̂ar(β̂)

,

∂T̂

∂σ2
= −

β̂

√
V̂ar(β̂)

2

(
N∑
i=1

ni
(σ̂2 + niτ̂ 2)2

)
,

∂T̂

∂τ 2
= −

β̂

√
V̂ar(β̂)

2

(
N∑
i=1

n2
i

(σ̂2 + niτ̂ 2)2

)
.

Finally, we assume that β̂ and (σ̂2, τ̂ 2) are uncorrelated, such that the variance of the test

statistic is equal to:

V (T ) = 1 +

(
∂T̂

∂σ2

)2

V̂ar(σ̂2) +

(
∂T̂

∂τ 2

)2

V̂ar(τ̂ 2) + 2

(
∂T̂

∂σ2

)(
∂T̂

∂τ 2

)
Ĉov(σ̂2, τ̂ 2)

= 1 +

(
β̂2V̂ar(β̂)

4

)
(

N∑
i=1

ni
(σ̂2 + niτ̂ 2)2

)2

V̂ar(σ̂2)

+

(
N∑
i=1

n2
i

(σ̂2 + niτ̂ 2)2

)2

V̂ar(τ̂ 2)

+2

(
N∑
i=1

ni
(σ̂2 + niτ̂ 2)2

)(
N∑
i=1

n2
i

(σ̂2 + niτ̂ 2)2

)
Ĉov(σ̂2, τ̂ 2)

}
.

In general, we have that

V (T ) = 1 +

(
β̂2

4V̂ar(β̂)3

)
V̂ar
[

V̂ar(β̂)
]
,

with

V̂ar
[

V̂ar(β̂)
]

=
∑
l

(
∂V̂ar(β̂)

∂σl

)2

V̂ar(σ̂l) +
∑
l

∑
k 6=l

(
∂V̂ar(β̂)

∂σl

)(
∂V̂ar(β̂)

∂σk

)
Ĉov(σ̂l, σ̂k)

and (
∂V̂ar(β̂)

∂σl

)
= V̂ar(β̂)2

(
N∑
i=1

X ′iV̂
−1
i

∂V̂i
∂σl

V̂ −1
i Xi

)
.
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