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Abstract

In this article we lay the algebraic foundations to establish the existence of trace functions

on infinite-dimensional (multiplier) Hopf algebras. We solve the problem within the frame-

work of multiplier Hopf algebra with integrals. By applying this theory to group-cograded

multiplier Hopf algebras, we prove the existence of group-traces on group-cograded mul-

tiplier Hopf algebras with possibly infinite-dimensional components. We generalize the

results as obtained by A. Virelizier in the case of finite-type Hopf group-coalgebras.

Introduction

Quasitriangular ribbon Hopf algebras have a typical element with special properties in

connection with the topology of knots and links. In the finite-dimensional case, the no-

tion of a ribbon Hopf algebra is formulated in terms of grouplike elements, see e.g. [K-R].

Moreover, in the ”unimodular” finite-dimensional case, the ribbon structure determines

all traces which are invariant for the antipode, see [H].

In [Vir], the results are generalized to the framework of the so-called finite-type Hopf

group-coalgebras. In this approach, one can consider an infinite-dimensional algebra, but

all components have to be unital finite-dimensional. The proofs as given in [Vir] are

based on known results for finite-dimensional Hopf algebras. In the present paper we gen-

eralize these algebraic structures to infinite-dimensional (multiplier) Hopf algebras. We

solve the problem within the framework of multiplier Hopf algebras with integrals, the
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so-called algebraic quantum groups. These multiplier Hopf algebras are introduced and

studied in [VD]. An important feature of this setting is the extension of the duality of

finite-dimensional Hopf algebras, within one category. E.g. if A is the group algebra of

a group G, finite or not, then the dual exists in this framework and it is the multiplier

Hopf algebra K(G) of all functions with finite support and with the coproduct, properly

defined, and dual to the product in G (and the product in A). But this category of

multiplier Hopf algebras also includes the duality between discrete quantum groups and

compact quantum groups.

In the papers using multiplier Hopf algebras, we not only extend the results for finite-

dimensional Hopf algebras. On the contrary, we use different techniques. Essentially, we

use integrals, both on the algebra and its dual. So it is not possible to have identities in

both cases, except when each algebra is finite-dimensional. The use of non-unitial alge-

bras is common in the field of operator algebra theory.

The underlying article is organised as follows. In Section 1 we work with multiplier Hopf

algebras with integrals. We calculate the so-called modular functions, see Theorem 1.3.

In the margin of these calculations, we recover Radford’s formula for the fourth power

of the antipode, see [R1]. The main consequence of Theorem 1.3 is given in Proposition

1.6. When we further restrict to the multiplier Hopf algebras of discrete type (which

still contain all finite-dimensional Hopf algebras), we prove that all possible traces are

included into the considered construction, see Proposition 1.9.

In Section 2 we realize multiplier Hopf algebras which satisfy the sufficient conditions as

given in Proposition 1.6. We also allow a group-cograding on the multiplier Hopf algebra.

The concept of a trace is adapted to this cograding, see Definition 2.1. However, when

we take the group equal to the trivial group, we recover the usual concept of a trace

which is commonly used in knot theory. By solving the problem into the group-cograding

framework, our results can also be used in the sense of [Vir]. The main result is given in

Theorem 2.6. When we restrict to the framework of discrete group-cograded multiplier

Hopf algebras, the conditions of Theorem 2.6 can be reduced to only one condition, see
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Proposition 2.11. Recall that this class of multiplier Hopf algebras still contains the class

of finite-type Hopf group-coalgebras.

In the Appendix we give an example of an infinite-dimensional discrete multiplier Hopf al-

gebra which is ribbon quasitriangular. This multiplier Hopf algebra, denoted as Dq(sl2),

is of interest because its multiplier algebra M(Dq(sl2)) contains the well-known quan-

tum group Uq(sl2). Finally, we recall that the Drinfel’d double construction as obtained

in [D-VD] leads to examples of group-cograded multiplier Hopf algebras with possibly

infinite-dimensional components but which are still quasitriangular into the framework of

group-cogradings.

Notations and conventions

Throughout the paper, we work with (associative) algebras over the complex numbers C.

We do not require the algebras to have an identity, but we do require that the product

is non-degenerate (as a bilinear map). For an algebra A, we use M(A) to denote the

multiplier algebra. It is the largest unital algebra containing A as a dense two-sided ideal.

If both A and B are algebras and if α : A → M(B) is an algebra homomorphism, then

it is called non-degenerate if α(A)B = B and Bα(A) = B. In this case, α has a unique

extension to a unital homomorphism fromM(A) toM(B). This extension is still denoted

by α.

We use 1A for the identidy in M(A) and simply 1 if no confusion is possible. The identity

element in a group is denoted by e. We use ιA for the identity map from A to itself and

again, we simply write ι when appropriate. A multiplier Hopf algebra is an algebra A

with a coproduct ∆ satisfying certain assumptions. The coproduct is a non-degenerate

homomorphism from A to M(A ⊗ A). It is assumed to be coassociative, i.e. we have
(∆⊗ ι)∆ = (ι⊗∆)∆. A multiplier Hopf algebra is called regular if the opposite coprod-
uct ∆op still makes A into a multiplier Hopf algebra.

A regular multiplier Hopf algebra that carries integrals is called an algebraic quantum

group.
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1 Sufficient conditions for traces

In knot theory, one usually considers finite-dimensional ribbon Hopf algebras, see e.g.

[R2]. Virelizier has extended this point of view to finite-type Hopf group-coalgebras, see

[Vir, Section7]. In this article, we construct traces on algebras which do not satisfy these

finiteness conditions. We consider regular multiplier Hopf algebras with integrals, called

algebraic quantum groups in [VD]. We recall the definition of the basic object. Observe

that for any linear functional ϕ on A and any element a ∈ A, we can define the multiplier
(ι⊗ ϕ)∆(a) in M(A) by requiring

((ι⊗ ϕ)∆(a))x = (ι⊗ ϕ)(∆(a)(x⊗ 1)) and
x((ι⊗ ϕ)∆(a)) = (ι⊗ ϕ)((x⊗ 1)∆(a)),

for all x ∈ A. We use ι to denote the identity map on A. By the assumption that (A,∆)
is regular, we have that both (x⊗ 1)∆(a) and ∆(a)(x⊗ 1) are in A⊗A.

1.1 Definition [VD] A linear functional ϕ on a regular multiplier Hopf alge-

bra A is called a left integral if ϕ is non-zero and (ι ⊗ ϕ)∆(a) = ϕ(a)1 in M(A) for all

a ∈ A. Similarly, a non-zero linear functional ψ on A satisfying (ψ ⊗ ι)∆(a) = ψ(a)1 for

all a ∈ A is called a right integral on A.

In [VD], the existence of various relating data is shown. We need some of them. Let

ϕ be a left intergral. Any other left integral is a scalar multiple of ϕ. There is also a

right integral ψ, unique up to a scalar, given by ϕ ◦ S. There is a grouplike multiplier
δ in M(A) (the modular element) such that (ϕ ⊗ ι)∆(a) = ϕ(a)δ for all a ∈ A and

(ι ⊗ ψ)∆(a) = ψ(a)δ−1. The integrals are faithful in the sense that, for any a ∈ A, we
have a = 0 if either ϕ(ab) = 0 for all b ∈ A or ϕ(ba) = 0 for all b ∈ A. Finally, there
are automorphisms σ and σI (the modular automorphisms) satisfying ϕ(ab) = ϕ(bσ(a))

and ψ(ab) = ψ(bσI(a)) for all a, b ∈ A. The modular automorphisms satisfy the relation
δσ(a) = σI(a)δ for all a ∈ A.
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For a multiplier Hopf algebra (A,∆) with a left integral ϕ, one has a natural notation

of duality. Denote by A the space of linear functionals on A of the form, x → ϕ(xa)

where a ∈ A. By the faithfulness of ϕ, the space A separates the points of A (that is,
if a, b ∈ A and a W= b, then there is an element f in A such that f(a) W= f(b)). Fur-

thermore, one can show that A is also the space of functionals of the form x → ϕ(ax),

where a runs through A. One can also use a right integral to define the space A. Then

A can be made into an algebra and there is a coproduct on A making (A,∆) into a mul-

tiplier Hopf algebra with integrals. The product (resp. coproduct) of A is dual to the

coproduct (resp. product) of A. The dual of (A,∆) is canonically isomorphic with (A,∆).

1.2 Lemma Let A be a multiplier Hopf algebra with a left (resp. right) inte-

gral ϕ (resp. ψ). Let δ (resp. δ) denote the modular element in M(A) (resp. M(A)).

Let α be an algebra automorphism of A which respects the comultiplication in the sense

that ∆(α(a)) = (α⊗α)∆(a) for all a ∈ A. Under these conditions, α preserves the above
data in the following way: ϕ ◦ α = λϕ and ψ ◦α = λψ for some λ ∈ C\{0}, α(δ) = δ and

δ ◦ α = δ.

Proof. It is easy to show that ε(α(a)) = ε(a) and S(α(a)) = α(S(a)) for all a ∈ A.
We claim that ϕ ◦ α is again a left integral on A. For all a, b in A we have

((ι⊗ (ϕ ◦ α))∆(a))b = (ι⊗ (ϕ ◦ α))(∆(a)(b⊗ 1))
= (ϕ ◦ α)(a(2))a(1)b = α−1((ϕ ◦ α)(a(2))α(a(1)b))
= α−1(((ι⊗ ϕ)∆(α(a)))α(b)) = (ϕ ◦ α)(a)b.

Therefore (ι⊗ (ϕ ◦ α))∆(a) equals (ϕ ◦ α)(a)1 as multipliers in M(A).
Because integrals are unique, up to a scalar, ϕ ◦ α = λϕ for some λ ∈ C\{0}. As

ψ = ϕ ◦ S, up to a scalar, the result for ψ follows easily. Let a be an element in A

such that ϕ(a) = 1. By [VD, proposition 3.8], we have δ = (ϕ ⊗ ι)∆(a) in M(A).

This means that for all b in A we have δb = ϕ(a(1))a(2)b. So we obtain α(δ)α(b) =

ϕ(a(1))α(a(2)b) = λ−1((ϕ ⊗ ι)∆(α(a)))α(b) = λ−1ϕ(α(a))δα(b) = δα(b). As α is an
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automorphism, we conclude that the multipliers δ and α(δ) equal inM(A). To obtain the

result for the modular element inM(A), we observe that α defines an automorphism α on

A by the formula α(f) = f ◦ α for all f ∈ A. It is easy to see that α is an automorphism
on A which respects the comultiplication on A. Now the result for δ follows from the

foregoing part in this proof.

We use the right A-module structure on A, denoted A A, and defined as follows.

For a, aI ∈ A, we define a ϕ(aI ·) = ϕ(aIa(1))a(2) = (ϕ⊗ ι)((aI ⊗ 1)∆(a)) in A.
Observe that A A defines an A-module structure on A because the product in A is

dual to the coproduct in A. Analogously, we define the left action A A by the formula

ϕ(aI ·) a = ϕ(aIa(2))a(1) = (ι⊗ ϕ)((1⊗ aI)∆(a)) in A. As (A⊗ 1)∆(A) = A⊗ A =
(1 ⊗ A)∆(A), we have that A A = A = A A. Therefore, these actions extend in a

natural way to the multiplier algebra M(A). Finally, we observe that A is both a left and

a right A-module algebra for these actions.

In general, integrals on multiplier Hopf algebras are not traces. However the formulas

in Theorem 1.3 allow us to formulate conditions on A in order to construct traces. In the

margin of the first formulas, we obtain that Radford’s formula for the fourth power of the

antipode stays valid for this large class of multiplier Hopf algebras.

1.3 Theorem Let A be a multiplier Hopf algebra with integrals. Let ϕ (resp.

ψ) denote a left (resp. right) integral on A. Let δ (resp. δ) be the modular element in

M(A) (resp. M(A)). For all x, y ∈ A we have

ψ(xy) = ψ(y(S−2(x) δ−1)) and ϕ(xy) = ϕ(y(δ−1 S2(x))).

Furthermore, S4(x) = δ−1(δ x δ−1)δ for all x ∈ A.

Proof. The evaluation map of A on A is denoted as �A,AX. This map can be ex-

tended to �M(A), AX as follows. For m ∈M(A) and a ∈ A, we set �m, aX = �mb, aX where
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b is chosen in A such that a = b a. It is not difficult to show that this definition of

�m, aX does not depend on the element b. We claim that �δ, yX = ε(σ−1(y)) = ε(σ
I−1(y))

for all y ∈ A. To prove this claim, we choose any element a ∈ A and we consider the

element ω = ψ(a ·) in A. It is proven in [VD, Proposition 4.8] that a left integral ϕ on A
is given by the formula ϕ(ω) = ε(a). For all x and y ∈ A, we have

�ω, xyX = ψ(axy) = ψ(σ
I−1(y)ax) = ψ(σ

I−1(y)a ·)(x).

On the other hand, we have

�ω, xyX = �∆(ω), x⊗ yX = �ω(1), xX�ω(2), yX = ( �ω(2), yXω(1))(x).

AsA ∼= A, we conclude that ψ(σI−1(y)a ·) = �ω(2), yXω(1).
By taking the left integral ϕ on both sides of this equation, we obtain ε(σ

I−1(y))ε(a) =

ε(a)�δ, yX for all a, y ∈ A. Therefore we have �δ, yX = ε(σ
I−1(y)) for all y ∈ A. Observe

that δσ(y) = σI(y)δ for all y ∈ A and σ(δ) = λδ for a non-zero scalar λ, see [VD,

Proposition 3.15]. Therefore we also have �δ, yX = ε(σ−1(y)).

Next, we calculate δ x for all x ∈ A. To ensure that all decompositions in A are

well-covered, we consider an arbitrary element ω = ϕ(a ·) in A. We have

�ω, δ xX = �ω, �δ, x(2)Xx(1)X = �ω, ε(σ−1(x(2)))x(1)X.

We observe that ∆(σ(x)) = (S2 ⊗ σ)∆(x) for all x ∈ A, see [VD, Proposition 3.14].
We now obtain that �ω, δ xX = �ω, S2(σ−1(x))X and therefore δ x = S2(σ−1(x)). This

formula is equivalent to the identity σ(x) = δ−1 S2(x) for all x ∈ A.
By calculating the element x δ, we obtain the automorphism σI. Indeed, let ω = ϕ(a ·)
denote an arbitrary element in A. Then we have �ω, x δX = �ω, �δ, x(1)Xx(2)X =
�ω, ε(σI−1(x(1)))x(2)X.

We observe that ∆(σI(x)) = (σI ⊗ S−2)∆(x) for all x ∈ A, see [VD, Proposition 3.14].
Therefore we obtain that �ω, x δX = �ω, S−2(σI−1(x))X. By a similar reasoning as before,
we obtain that σI(x) = S−2(x) δ−1.

We have the equation δσ(x) = σI(x)δ for all x ∈ A, see [VD, Proposition 3.15]. By
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substituting the concrete realizations of σ(x) and σI(x) in this equation we obtain, for all

x ∈ A, S4(x) = δ−1(δ x δ−1)δ.

1.4 Remark By the use of a new technique, Theorem 1.3 extends a result from

finite-dimensional Hopf algebras to more general (multiplier) Hopf algebras.

1.5 Definition Let A be a multiplier Hopf algebra with integrals. If the dual

multiplier Hopf algebra A is unimodular integral i.e. δ = 1 in M(A), then we call A a

counimodular multiplier Hopf algebra.

In classical Hopf algebra theory, a Hopf algebra A such that δ = 1 is called “unimodular”.

However “counimodular” seems to us more appropriate, as it is consistent with the other

Hopf terminology. Notice that in Knot theory it is very natural to assume counimodu-

larity. This assumption is also motivated by the formulas in Theorem 1.3. Indeed, by

the assumption that δ = 1, the square of the antipode takes care of the problem that the

integrals are not traces.

1.6 Proposition Let ψ (respectively ϕ) denote a right (respectively left) integral

on a counimodular multiplier Hopf algebra (A,∆). We have

(1) ψ(xy) = ψ(yS−2(x)) and ϕ(xy) = ϕ(yS2(x)) for all x, y ∈ A.

(2) If m is a grouplike multiplier inM(A), then we have ϕ(· m) = ϕ(m ·) and ψ(· m) =
ψ(m ·).

(3) For any multiplier m in M(A), the linear functional ψ(m ·) is a trace on A if and
only if S2(a)m = ma for all a ∈ A. Similarly, we have that the linear functional
ϕ(· m) is a trace on A if and only if mS2(a) = am.

(4) Let δ denote the “modular element” in M(A). For any multiplier m ∈ M(A), we
have ψ(mS(·)) = ψ(m ·) if and only if S(m) = mδ.
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For a left integral ϕ, we have ϕ(S(·)m) = ϕ(· m) if and only if S(m) = δ−1m.

(5) Let m be a grouplike multiplier in M(A). Then ψ(m ·) is a trace on A so that

ψ(mS(a)) = ψ(ma) for all a in A if and only if S2(a) = mam−1 and m2 = δ−1. An

analogue result yields for the left integral ϕ.

Proof

The statements (1)-(2)-(3) are straightforward calculations.

(4) We fix a multiplier m ∈ M(A). We make use of [VD, Proposition 3.10] and For-
mula (1) of this proposition. We have, for all a ∈ A, ψ(mS(a)) = ψ(δ−1aS−1(m)) =

ψ(aS−1(m)δ−1). On the other hand, we also have ψ(ma) = ψ(aS−2(m)). As ψ is faithful

on A, we have that ψ(mS(a)) = ψ(ma) for all a ∈ A if and only if S−1(m)δ−1 = S−2(m),
or equivalently, S(m) = mδ. The proof for the left integral ϕ is similar.

(5) This statement follows from (3) and (4).

To finish this section, we restrict to the multiplier Hopf algebras of the so-called dis-

crete type. A multiplier Hopf algebra is of discrete type if it has a cointegral. A left

cointegral is a non-zero element h in A such that ah = ε(a)h for all a ∈ A. One can
prove that the existence of a left cointegral ensures there is also a right cointegral. Left

and right cointegrals are unique up to a scalar, see [VD-Z, Proposition 2.7]. Multiplier

Hopf algebras of discrete type share many nice properties with (the much smaller class

of) finite-dimensional Hopf algebras, see [VD-Z]. In [VD, Proposition 5.3] is proven that

all discrete multiplier Hopf algebras are duals of multiplier Hopf algebras of compact

type and the other way around. A multiplier Hopf algebra is of compact type if it is

an ordinary Hopf algebra with integrals (i.e. a co-Frobenius Hopf algebra). Lemma 1.7

expresses the crucial properties of the antipode in a multiplier Hopf algebra of discrete

type. We use this lemma on several places in this paper. The evaluation map of A on

A is denoted as �A,AX. As before, we can extend this map to �A,M(A)X. For a left
integral ϕ on A and an element a ∈ A, consider ϕ(a ·) ∈ A. If m ∈ M(A), we set
�ϕ(a ·),mX = ϕ(am) ∈ C. We recall that A is a right A-module when the action is
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defined by the formula a ϕ(aI ·) = ϕ(aIa(1))a(2) for all a,aI ∈ A.

1.7 Lemma [D-VD-W] Let h be a left cointegral in A. Let δ (resp. δ) de-

note the modular element in M(A) (resp. M(A)). Then we have for all a ∈ A

(1) ha = �δ, aXh,

(2) (1⊗ a)∆(h) = (S(a)⊗ 1)∆(h),

(3) ∆(h)(a⊗ 1) = ∆(h)(1⊗ S(a δ)) and

(4) ∆(h)(a⊗ 1) = �δ, δX−1 S2(h(2))a⊗ h(1)δ.

1.8 Remark If A is a classical Hopf algebra, cointegrals in A are called “integrals in

A”. If A is furthermore a finite-dimensional Hopf algebra, then there always exist both

left and right cointegrals. They are, respectively, left and right integrals on the dual Hopf

algebra AI. Therefore, it seems to us more appropriate to use “cointegral” instead of “in-

tegral in” because it is consistent with the other Hopf terminology. From (1) in Lemma

1.7, we see that the modular element δ equals the “distinguished grouplike element” for

finite-dimensional Hopf algebras.

1.9 Proposition Let A be a counimodular discrete multiplier Hopf algebra. Let ψ

denote a right integral on A. A linear functional f is a trace on A if and only if f = ψ(m ·),
where m is any multiplier in M(A) satisfying the equation S2(a)m = ma for all a ∈ A.

Proof By Proposition 1.6(3), we only have to prove that each trace f on A takes

the form f = ψ(m ·), where m is a multiplier in M(A) satisfying the appropriate condi-

tion. Let h be a cointegral in A. We define the multiplier m inM(A) by m = (f⊗ ι)∆(h).
For all a ∈ A, we have
am = a((f ⊗ ι)∆(h)) = (f ⊗ ι)((1⊗ a)∆(h)) = (f ⊗ ι)((S(a)⊗ 1)∆(h))
= (f ⊗ ι)(∆(h)(S(a)⊗ 1)) = (f ⊗ ι)(∆(h)(1⊗ S2(a))) = (f ⊗ ι)∆(h))S2(a) = mS2(a).
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In the third step we use Lemma 1.7(2). In the fourth step we use the fact that f is a

trace and for the next step we use Lemma 1.7(3). Let ϕ denote a left integral on A and

suppose that ϕ(h) = 1. We see that the trace function f ◦ S equals the trace ϕ(· m), or
equivalently f = ψ(S(m) ·) where ψ denotes the right integral ψ = ϕ ◦ S−1. Of course,
we have S2(a)S(m) = S(m)a for all a ∈ A.

1.10 Remark In the Appendix we give a construction of infinite-dimensional couni-

modular discrete multiplier Hopf algebras which have a grouplike multiplier m, satisfying

both conditions of Proposition 1.6(5).

2 Construction of traces on multiplier Hopf algebras

In this section we investigate whether the conditions in Proposition 1.6(5) are fulfilled.

We solve this problem in a more general context. More precisely, we allow the multiplier

Hopf algebra A to be group-cograded by a group G, in the following sense.

(1) A =
p∈G

Ap with {Ap}p∈G a family of subalgebras such that ApAq = 0 if p W= q,

(2) ∆(Apq)(1⊗Aq) = Ap ⊗ Aq and (Ap ⊗ 1)∆(Apq) = Ap ⊗Aq for all p, q ∈ G.

It is shown in [A-D-VD] that the data of a Hopf group-coalgebra, as introduced by Turaev

in [T], give an example of a cograded multiplier Hopf algebra. By a crossing π of the group

G on A, we mean a group homomorphism π : G → Aut(A). Further, for all p ∈ G we

require the following axioms.

(1) πp respects the comultiplication on A in the sense that

∆(πp(a)) = (πp ⊗ πp)(∆(a)) for all a ∈ A.

(2) πp(Aq) = Apqp−1 .

Observe M(A) =
p∈G

M(Ap). A multiplier in M(A) is denoted by m = (mp)p∈G where

mp ∈ M(Ap). In this framework, we additionally require a trace to be invariant for the
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crossing π, in the sense of Definition 2.1(2). For a crossed Hopf-group-coalgebra, we re-

cover the notion of a “group-trace” as defined in [Vir].

2.1 Definition Let A be a G-cograded multiplier Hopf algebra and let π be a

crossing of G. A linear functional f ∈ AI is called a π-trace on A if for all x, y ∈ A the
following conditions hold:

(1) f(xy) = f(yx) and f(S(x)) = f(x),

(2) f(πp(x)) = f(x) for all p ∈ G.

When we set G = {e}, the results in this section can be used to construct traces on
possibly infinite-dimensional (multiplier) Hopf algebras.

We assume that A is counimodular in the sense of Definition 1.5. Let ψ denote a right

integral on A and let δ denote the modular element in M(A). For a grouplike multiplier

m in M(A), we consider the linear functional ψ(m ·). By Proposition 1.6(5) we have
that ψ(m ·) satisfies Condition (1) in Definition 2.1 if and only if S2(x) = mxm−1 for all
x ∈ A and m2 = δ−1. To find a grouplike multiplier m in M(A) which satisfies both these

conditions we require that A is π-quasitriangular in the sense of [D-VD-W].

We briefly recall the fundamental definitions of the basic ideas which are used in [D-

VD-W]. First, we have to consider a deformation A of A in the following way. As

algebras, we set A = A. The comultiplication ∆ on A is defined by ∆(a)(1 ⊗ aI) =
(πq−1 ⊗ ι)(∆(a)(1⊗ aI)), where a ∈ A and aI ∈ Aq. The counit ε is the original counit ε.
The antipode S is given by the formula S(a) = πp−1(S(a)) for all a ∈ Ap. One can show
that A is a regular multiplier Hopf algebra.

We call A π-quasitriangular if there is an invertible multiplier R ∈M(A⊗ A) such that

(1) (πp ⊗ πp)(R) = R for all p ∈ G,

(2) R∆(a) = ∆op(a)R for all a ∈ A,

12



(3) (∆⊗ ι)(R) = R13R23 and

(4) (ι⊗∆)(R) = R13R12.

We call R the generalized π-matrix for A. For all a ∈ A, we require that both R(a⊗1) and
(a⊗1)R sit in A⊗M(A). We denote the element R(a⊗1) in A⊗M(A) by R(1)a⊗R(2).
A similar notation is used for (a⊗ 1)R. The π-Drinfel’d multiplier u is an invertible mul-
tiplier in M(A). As a left multiplier, we have ua = S(R(2))R(1)a for all a ∈ A. As a
right multiplier, we have au = uπp−1(S−2(a)) for all a ∈ A. The square of the antipode
is given by the formula S2(a) = u(πp−1(a))u−1 for all a ∈ Ap. Further, we impose extra
conditions on A in the sense of the following definition.

2.2 Definition LetA be aG-cograded multiplier Hopf algebra which is π-quasitriangular

for a given crossing π of G and let R denote the “π-matrix” in M(A ⊗ A). We call A a
π-ribbon multiplier Hopf algebra if there is a invertible multiplier θ ∈ M(A) such that,
for all p, q ∈ G,

(1) πp(θ) = θ,

(2) S(θ) = θ,

(3) πp(a) = θ−1aθ for a ∈ Ap and
(4) ∆(θ)(1p ⊗ 1q) = (θ ⊗ θ)((ι⊗ πp−1)(σ(R)))R(1p ⊗ 1q),

where σ denotes the usual flip map, extended to M(A⊗ A).

2.3 Remarks (1) Write A =
p∈G

Ap. If each algebra Ap has a unit element, then A

is a Hopf G-coalgebra in the sense of [T]. In this case we recover the definition of a ribbon

Hopf group-coalgebra as given in [T, Section 14].

(2) In Definition 2.2 we make use of the extension of a non-degenerate homomorphism to

the multiplier algebra. We have A =
p∈G

Ap and so M(A) =
p∈G

M(Ap). The multiplier

θ ∈M(A) can be written as θ = (θp)p∈G with θp ∈M(Ap).
(3) Let w ∈M(A) and πp(w) = w for all p ∈ G. Then we have wθ = θw.
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(4) Put G = {e}. In the case where A is a usual Hopf algebra we recover the definition
of a ribbon Hopf algebra as given in [R2, Section 2.2]. Remark that Radford’s ribbon

element is the inverse of the ribbon element θ as considered in Definition 2.2.

2.4 Proposition Let A be a π-ribbon multiplier Hopf algebra in the sense of

Definition 2.2 and let u denote the π-Drinfel’d multiplier of the π-matrix R. Define m in

M(A) as m = θu. We have

(1) m = uθ and m is a grouplike multiplier in M(A),

(2) S2(a) = mam−1, for all a ∈ A, and

(3) m2 = uS(u)−1 = S(u)−1u.

Proof (1) For all p ∈ G we have πp(u) = u. By Remark 2.3(3), u commutes with θ.

By [D-VD-W, Lemma 3.10], we have for all p, q ∈ G

∆(u)(1p ⊗ 1q) = R−1((ι⊗ πp−1)(σ(R
−1)))(u⊗ u)(1p ⊗ 1q).

By the formula above, we easily see that m = θu is a grouplike multiplier.

(2) If p ∈ G and a ∈ Ap, then we have S2(a) = uπp−1(a)u−1. By (3) in Definition 2.2, we
obtain S2(a) = uθaθ−1u−1 = mam−1.

(3) We observe that (θ−1)2 = uS(m)θ−1 = uS(θu)θ−1 = uS(u)S(θ)θ−1 = uS(u).

By [D-VD-W, Lemma 3.7], we have πp(a)uS(u) = uS(u)πp−1(a) for all p ∈ G and

a ∈ Ap. As πp(u) = u for all p ∈ G, we obtain uS(u) = S(u)u. Finally we have

uS(u)−1 = u2θ2 = (uθ)2 = m2.

The following definition is motivated by Lemma 1.2.

2.5 Definition Let A =
p∈G

Ap denote a G-cograded multiplier Hopf algebra and

let π denote a crossing of G on A. Suppose that ϕ (resp. ψ) is a left (resp. right) integral

on A. For all p ∈ G, we define the crossing scaling as the scalar ρp such that ϕ◦πp = ρpϕ.
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Remark that we also have ψ ◦ πp = ρpψ for all p ∈ G.

2.6 Theorem Let A be a multiplier Hopf algebra with integrals and assume A

to be counimodular. Furthermore suppose A to be G-cograded and let π be a crossing

of G such that A is π-ribbon. Let m denote the grouplike multiplier m = θu where u is

the π-Drinfel’d multiplier and θ is the π-ribbon multiplier. Let ψ denote a right integral

on A and let δ denote the modular element in M(A). The linear functional ψ(m ·) is a
π-trace on A if and only if (1) uS(u)−1 = δ−1 and (2) ρp = 1 for all p ∈ G.

Proof First, we combine Proposition 1.6(5) and Proposition 2.4(2)-(3) . Next, we

observe that for all p ∈ G and for all a ∈ A, ψ(mπp(a)) = ψ(πp(ma)) = ρpψ(ma). We

obtain that ψ(m(πp(a))) = ψ(ma) for all a ∈ A if and only if ρp = 1 for all p ∈ G.

In Proposition 2.7 we give situations where the condition ρp = 1, for all p ∈ G, is fulfilled.

2.7 Proposition Let A be a multiplier Hopf algebra as in Theorem 2.6. Let ψp

denote the restriction of ψ to the subalgebra Ap. In each of the situations (1)-(2), we have

ρp = 1 for all p ∈ G.

(1) There exists an element a ∈ Ae, such that ψe(a) W= 0 and πp(a) = a for all p ∈ G.

(2) For all p ∈ G, there exists an element ap ∈ Ap such that ψp(ap) W= 0 and πp(ap) = ap.

Proof

(1) For all p ∈ G, we have ψe ◦ πp = ρpψe. Let a be in Ae and suppose πp(a) = a, then

we have ψe(a) = ρpψe(a) and the result follows.

(2) For all p ∈ G, we have ψp ◦ πp = ρpψp. If ap ∈ Ap is such that πp(ap) = ap then we
have ψp(ap) = ρpψp(ap) and ρp = 1 when ψp(ap) W= 0. Suppose that for all p ∈ G the
algebra Ap is unital. Then the element ap can be taken as ap = 1p when ψp(1p) W= 0.
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In the sequel, we restrict to the category of discrete multiplier Hopf algebras and we sharp

the result of Theorem 2.6. Recall from [VD, Proposition 5.3] that the discrete multiplier

Hopf algebras are the duals (in the sense of [VD]) of the co-Frobenius Hopf algebras (i.e.

Hopf algebras with integrals). So, if A is a discrete multiplier Hopf algebra, then we have

M(A) = A.

2.8 Lemma Let A be a discrete G-cograded multiplier Hopf algebra and put

A =
p∈G

Ap. Then each cointegral is in Ae. For the modular element δ in A, we have

δ ∈ Ae.

Proof. For the counit ε we have ε(Ap) = 0 when p W= e. Let h be a left cointegral

in A. For p ∈ G and a ∈ Ap, we have that ah = 0 whenever p W= e. As each subalgebra Ap
has a non-degenerate multiplication, we easily obtain that h ∈ Ae. The proof for a right
cointegral is similar. By Lemma 1.7(1) and the first part of this proof, we easily see that

δ ∈ Ae.

We now generalize the result of [Vir, Theorem 6.9] on finite-type quasitriangular Hopf

group-coalgebras. Suppose A is a discrete G-cograded multiplier Hopf algebra. Put

A =
p∈G

Ap. By Lemma 2.8 we have that Ae is a discrete multiplier Hopf algebra. Let π

be a crossing ofG. Suppose A is π-quasitriangular. Let u denote the π-Drinfel’d multiplier

in M(A) according to a π-R-matrix. We give a relation between the modular element δ

in M(A) and the grouplike multiplier uS(u)−1.

2.9 Theorem Let A be a discrete G-cograded multiplier Hopf algebra, A =
p∈G

Ap.

Let δ = (δp)p∈G denote the modular element in M(A). Let π denote a crossing of G and

suppose A is π-quasitriangular. The modular element δ is determined by the Drinfel’d
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multiplier u in the following way:

δ−1p = ρp−1uS(u)
−1(ι⊗ �δ, ·X)(R)1p

for all p ∈ G.

Proof. By applying Lemma 2.8, we have that Ae is a multiplier Hopf algebra of dis-

crete type and so M(Ae) = (Ae)
I, see [VD-Z, Proposition 2.9]. Observe that we first take

the dual in the sense of [VD] and then the classical linear dual. Therefore, (ι⊗ �δ, ·X)(R)
is a multiplier in M(A) in the following way. For a ∈ A, we have ((ι ⊗ �δ, ·X)(R))a =
�δ, R(2)XR(1)a ∈ A because R(a ⊗ 1) is in A ⊗ M(A). Similarly, we obtain that

(ι ⊗ �δ, ·X)(R) is a right multiplier of A. By the associativity of the product in A, we
have that (ι⊗ �δ, ·X)(R) is a multiplier in M(A).
In the proof we take the notation R(a⊗1) = R(1)a⊗R(2) = r(1)a⊗r(2) in A⊗M(A).
We use the deformed multiplier Hopf algebra A as defined before. Let h be a left cointegral

in Ae. For all p ∈ G and a, aI ∈ Ap, we have in A⊗A

(a⊗ 1)R∆(h)(aI ⊗ 1) (∗)= (a⊗ 1)∆cop(h)R(aI ⊗ 1).

By Lemma 1.7, we rewrite the left hand side of equation (∗) as

(a⊗ 1)R∆(h)(aI ⊗ 1) = aR(1)h(1)a
I ⊗ R(2)h(2) = aR(1)S(R(2))h(1)a

I ⊗ h(2)
= aS(u)h(1)a

I ⊗ h(2) = �δ, δX−1 aS(u)S2(h(2))a
I ⊗ h(1)δ = aS(u)S2(h(2))δ

−1aI ⊗ h(1).

Again, by Lemma 1.7, we rewrite the right hand side of equation (∗) as

(a⊗ 1)∆cop(h)R(aI ⊗ 1) = ah(2)R
(1)aI ⊗ πp−1(h(1)πp(R

(2)))

= ah(2)S(πp(R
(2)) δ)R(1)aI ⊗ πp−1(h(1)).

In the expression above we use the action A A, as defined in Section 1 and extended

to M(A) A. By the use of the properties of the π-quasitriangular R-matrix and the

use of Lemma 1.2, we find successively the following expressions for the right hand side
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of equation (∗)

�δ, πp(r(2))Xah(2)S(πp(R(2)))R(1)r(1)aI ⊗ πp−1(h(1))

= �δ, πp(r(2))Xah(2)ur(1)aI ⊗ πp−1(h(1))

= �δ, r(2)Xah(2)ur(1)aI ⊗ πp−1(h(1)).

For all p ∈ G and a ∈ Ap we have obtained that the equation (∗) is equivalent to

aS(u)S2(h(2))δ
−1aI ⊗ h(1) = �δ, r(2)Xah(2)ur(1)aI ⊗ πp−1(h(1)).

For any right integral ψ, we have ψ(h) W= 0. So we can assume ψ(h) = 1. By applying the
operator (ι⊗ ψ) on both sides of the above equation, we obtain for all p ∈ G and a ∈ Ap

S(u)δ−1a = ρp−1 �δ, r(2)Xur(1)a = ρp−1u((ι⊗ �δ, ·X)(R))a.

This equation is equivalent to the equation in the statement of the theorem.

2.10 Corollaries Let A be a discrete multiplier Hopf algebra as in Theorem 2.9.

(1) In Theorem 1.3, we have proven Radford’s formula for the fourth power of the

antipode. As A is a π-quasitriangular multiplier Hopf algebra, we also have S4(x) =

uS(u)−1xS(u)u−1 for all x ∈ A. The formula in Theorem 2.9 gives a connection

between these two forms for S4 when A is a discrete π-quasitriangular multiplier

Hopf algebra.

(2) Assume that A is counimodular. We obtain δ−1p = ρp−1uS(u)
−11p for all p ∈ G.

(3) If G = {e}, then A is a quasitriangular discrete multiplier Hopf algebra. We obtain
the formula δ−1 = uS(u)−1(ι⊗ �δ, ·X)(R), see also [D-VD-W, Proposition 2.9].

2.11 Proposition Let A be a counimodular, discrete multiplier Hopf algebra.

Suppose that A is G-cograded and let π denote a crossing of G such that A is π-ribbon.

Let m denote the grouplike multiplier given by m = θu. Let ψ denote a right integral on
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A. For all p ∈ G, let ρp denote the scalar crossing scaling. The linear functional ψ(m ·)
is a π-trace on A if, for all p ∈ G, we have ρp = 1.

Proof. Combine the results of Theorem 2.6 and Corollary 2.10(2).

2.13 Remark Let A be a discrete multiplier Hopf algebra as in Proposition 2.11

and suppose that each component Ap is a unital and finite-dimensional algebra. A can be

considered as a finite-type Hopf group-coalgebra, in the sense of [T] and [Vir]. The result

of Proposition 2.11 can be put in the setting of [Vir, Lemma 7.1].
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Appendix-Examples

We first prove the existence of infinite-dimensional counimodular, discrete multiplier Hopf

algebras which are ribbon. Remark that these multiplier Hopf algebras can not be clas-

sical Hopf algebras. Indeed, a Hopf algebra with both integrals and cointegrals has to

be finite-dimensional, see [VD, Proposition 5.5]. As mentioned before discrete multiplier

Hopf algebras are duals (in the sense of [VD]) of co-Frobenius Hopf algebras. Recall that

co-Frobenius Hopf algebras are identified as Hopf algebras with integrals. Let A be a co-

Frobenius Hopf algebra with a left integral ϕ. Let A denote the dual discrete multiplier

Hopf algebra, given by A = {ϕ(a ·) | a ∈ A}. The evaluation of A on A is denoted by
�A,AX. When we are dealing with infinite-dimensional algebras, the dual bases should be
replaced by the canonical multiplier W = ϕ(· ϕ(2))⊗ S−1(ϕ(1)) in M(A⊗ A), see [Z1,
Lemma 9]. In the lemma below, the multiplier W is denoted by the formal summation

W = ui ⊗ vi in M(A⊗ A). Observe that, for all f ∈ A, we have that both W (1⊗ f)
and (1⊗ f)W are elements in A⊗A.
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A.1 Lemma Let A be a co-Frobenius Hopf algebra and suppose that A is co-

quasitriangular (or cobraided) in the sense of [Ka, Definition VIII.5.1]. Then the dual A

is a discrete quasitriangular multiplier Hopf algebra.

Proof. As explained above, A is a multiplier Hopf algebra of discrete type. Let r

denote a linear form on A ⊗ A, making A into a coquasitriangular Hopf algebra. Let

W = ui⊗ vi denote the formal summation of the canonical multiplier W in M(A⊗A).
We define the multiplier R in M(A⊗ A) by

R(f ⊗ g) = r(ui ⊗ uj)vif ⊗ vjg and (f ⊗ g)R = r(ui ⊗ uj)fvi ⊗ gvj

for all f, g ∈ A.

Observe that both R(f⊗g) and (f⊗g)R are elements in A⊗A because, for all f ∈ A, we
have that both W (1⊗ f) and (1⊗ f)W are in A⊗ A. Further, we use that the product
in A is associative. We extend the pairing �A ⊗ A,A ⊗ AX to �M(A ⊗ A), A ⊗ AX in a
natural way. Now we easily see that �R,x⊗ yX = r(x⊗ y) for all x, y ∈ A.
By [Z1, Lemma 9] and the conditions on r, we can prove that R is a generalized R-matrix

for the multiplier Hopf algebra A, in the sense of [D-VD-W, Definition 2.3].

Recall that a coquasitriangular Hopf algebra A is called coribbon if there is a central,

invertible functional ζ in the linear dual AI such that

ζ ◦ µ = σ(r) ∗ r ∗ (ζ ⊗ ζ), ζ(1) = 1 and ζ ◦ S = ζ.

In these formulas, µ denotes the product in A, ∗ is the convolution operation on linear
forms, r is the universal R-form on A⊗A, σ is the fly map on A⊗A and S is the antipode
on A. Remark that the functional ζ is the inverse of the functional used in [Ka, Definition

XIV.7(5)].
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A.2 Lemma Let A be a co-Frobenius Hopf algebra which is coquasitriangular with

the universal R-form r. Suppose that A is coribbon and let ζ denote the linear functional

as before. Then ζ is a ribbon multiplier in M(A), in the sense of Remark 2.3(4).

Proof. As A is a discrete multiplier Hopf algebra, we can apply [VD-Z, Proposition

2.9]. We obtain that M(A) = AI and so the linear functional ζ is a central multiplier of

M(A). Moreover, the multiplier ζ satisfies

∆(ζ) = σ(R)R(ζ ⊗ ζ), 6(ζ) = 1 and S(ζ) = ζ.

A.3 Example Assume that 0 W= q ∈ C and that q is not a root of 1. Let

A = Oq(SL2) be the quantized function algebra on SL2. It is known that A is a co-

Frobenius Hopf algebra which is unimodular integral, see [M-M-N-N-S-U]. Furthermore, A

is coquasitriangular and coribbon, see [L-T, Section 5] and [Ka, Sections VIII.7-XIV.7(6)].

By applying the foregoing lemmas, we know that the dual multiplier Hopf algebra A,

denoted as Dq(sl2), is a discrete multiplier Hopf algebra which is counimodular, quasitri-

angular and ribbon. As Dq(sl2) is of discrete type, we have that M(Dq(sl2)) = AI, see

[VD-Z, Proposition 2.9]. We obtain that Uq(sl2) is a subalgebra of M(Dq(sl2)) because

it is well-known that Uq(sl2) is paired with Oq(SL2). In [Z2], the algebra structure of
Dq(sl2) is described in terms of idempotents and multiplier generators (in Uq(sl2)).

Let m denote the grouplike multiplier inM(Dq(sl2)), determined from the ribbon setting.

Let ψ be a right integral on Dq(sl2). By Proposition 2.11, we have that ψ(m ·) is a trace
on Dq(sl2) which is invariant for the antipode on Dq(sl2). In the expression m = uθ, the

multiplier θ is known, see [Ka, XIV.7(6)]. However, to calculate the Drinfel’d multiplier

u, we need the multiplier R in M(Dq(sl2) ⊗ Dq(sl2)). This calculation is a part of the
paper [Z2]. The approach above is of pure algebraic nature. In literature we only could

find infinite-dimensional Hopf algebras which are “topological” quasitriangular. E.g. for

the Hopf algebra Uq(sl2), the R-matrix is considered in an appropriate completion of

Uq(sl2)⊗ Uq(sl2).
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A.4 Example Let G denote an arbitrary group. We give an example of a G-

cograded π-quasitriangular multiplier Hopf algebra. Let �A,BX be a pairing of two multi-
plier Hopf algebras. Assume that B is G-cograded and let π denote a crossing of G on B.

In [D-VD] we have constructed the Drinfel’d double Dπ in this framework. The product

and the coproduct depend both on the pairing and on the crossing π. We have that Dπ is

again a G-cograded multiplier Hopf algebra and there is a natural crossing of G on Dπ, see

[D-VD, Proposition 3.13]. Suppose that the pairing �A,BX is provided with a cannonical
multiplier W in M(B ⊗ A). E.g. let B be a Co-Frobenius Hopf algebra and put A = B,
then W = ϕ(· ϕ(2)) ⊗ S−1(ϕ(1)) in M(B ⊗ B) for a left integral ϕ on B and a left

integral ϕ on B. The embedding of W inM(Dπ⊗Dπ) makes Dπ into a π-quasitriangular

multiplier Hopf algebra, see [D-VD-W, Theorem 2.13]. The “finite-type” version of this

construction is done in [Zu].
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