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Abstract  
Data envelopment analysis (DEA) is recognized as a 

powerful analytical research tool for performance 
evaluations by obtaining empirical estimates of 
relations between multiple inputs and multiple outputs. 
In order to further embody the hierarchical structures 
of numerous performance evaluation problems in the 
DEA framework, a generalized multiple layer DEA 
(MLDEA) model is proposed, and its linear 
transformation is realized. Moreover, the weights 
within each category of each layer of the hierarchy are 
deduced, and different types of possible linear weight 
restrictions are discussed. 

Keywords: DEA; multiple layer; linear 
transformation; weight restriction 
 
1. Introduction 
 
Data envelopment analysis (DEA) developed by 
Charnes et al. [1] is a mathematical programming 
methodology to measure the relative efficiency of a 
homogeneous set of decision making units (DMUs). It 
provides a new way of obtaining empirical estimates of 
relations between the multiple inputs and multiple 
outputs related to DMUs. Since its first introduction in 
1978, DEA has been quickly recognized as a powerful 
analytical research tool for modeling operational 
processes for performance evaluations, and has been 
successfully applied to a host of different types of 
entities engaged in a wide variety of activities in many 
contexts [2]. For instance, DEA has been utilized as a 
practical decision making tool for determining the most 
efficient number of operators and the efficient 
measurement of labor assignment in cellular 
manufacturing system [3]. Cherchye et al. [4] proposed 
a DEA model for the selection of weights in creating 
composite indicators, and applied it to the technology 
achievement index case. Hermans et al. [5] developed a 

DEA model for evaluating European countries in terms 
of road safety performance. For underperforming 
countries, benchmarks were identified, and targets and 
priorities for policy action recommended.  

Meanwhile, based on the standard DEA models, 
some important methodological extensions have taken 
place improving its effectiveness. For example, a DMU 
can achieve a high relative efficiency score by being 
involved in an unreasonable weight scheme using a 
basic DEA model [6]. The techniques of weight 
restriction allow for the integration of managerial 
preferences in terms of relative importance levels of 
various inputs and outputs. Charnes et al. [7] proposed 
a ‘cone-ratio’ DEA model restricting weight flexibility 
directly in the weight space. Wong and Beasley [8] 
provided a weight restriction method by setting bounds 
on the proportions of individual inputs (outputs) to total 
input (output).  

Moreover, in order to better discriminate among 
efficient units, Sexton et al. [9] introduced the concept 
of cross-efficiency matrix which evaluated the 
performance of a DMU with respect to the optimal 
input and output weights of other DMUs. Based on the 
means, good overall performers could be identified and 
ranked effectively. Other practical approaches that can 
be used to improve the discrimination of DEA were 
presented by Podinovski and Thanassoulis [10] which 
included the methods such as the aggregation of inputs 
or outputs, the use of production tradeoffs, unobserved 
units, and the selective proportionality between the 
inputs and outputs.  

In addition, another way to improve its 
discriminating power is to introduce hierarchical 
structures in the DEA model as proposed by Meng et 
al. [11]. In this model, the weights among categories 
are determined using the standard DEA approach while 
weights within categories are determined by the 



weighted sum method. However, this is a nonlinear 
model if all weights are decided by the mathematical 
model. Therefore, Kao [12] further developed its linear 
formulation by introducing some variable substitutions. 
It is an interesting direction since there are a great 
number of performance evaluation problems with 
multi-dimensional structures such as human 
development index [13], R&D project evaluation [14] 
and road safety performance indicators [15]. However, 
literature mentioned above ([11] and [12]) only 
discussed the situations with a two-layer hierarchy. In 
this paper, a generalized multiple layer DEA (MLDEA) 
model is proposed and its linear transformation is 
realized. Moreover, the weights within each category 
of each layer are derived, and different types of 
possible weight restrictions are indicated and proved to 
be linear.  

The remaining of the paper is structured as follows. 
In Section 2, the basic DEA model is reviewed. The 
mathematical deduction process of the MLDEA model 
and its linear transformation are elaborated in Section 
3. Section 4 formulates the corresponding weights in 
each layer and three types of linear weight restrictions 
are given. In Section 5, the main strengths and 
weaknesses of this MLDEA model are discussed, and 
conclusions are summarized at the end of the paper. 
 
2. Basic DEA Model 
 
Consider a set of n DMUs, each consuming m different 
inputs to produce s different outputs. The relative 
efficiency of a DMU is defined as the ratio of its total 
weighted output to its total weighted input, and the 
efficiency score of a particular DMU0, i.e., h0, can be 
obtained by solving the following model [1]: 
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where yrj and xij are the rth output and ith input 
respectively of the jth DMU, ur is the weight given to 
output r, vi is the weight given to input i, and ε  is a 
small non-Archimedean number [16] for restricting the 
DMU to assign a weight of 0 to unfavorable factors. 
This fractional program is computed separately for 
each DMU to determine its optimal weights. In other 

words, the weights in the objective function are chosen 
to maximize the value of the DMU’s efficiency ratio 
subject to the less than unity constraints.  

Furthermore, the above fractional program can be 
converted into a linear program in order to simplify the 
calculation and avoid an infinite number of solutions. 
The linear program is formulated as follows [1]: 
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The transformation is completed by constraining the 

efficiency ratio denominator in (1) to a value of one. 
This model is run n times to identify the relative 
efficiency score of all DMUs by selecting optimal 
output and input weights. In general, a DMU is 
considered to be efficient if it obtains a score of unity 
whereas a score less than unity implies that it is 
inefficient. 
 
3. A Multiple Layer DEA Model and its 
Linear Transformation  
 
In the real world, there are numerous performance 
evaluation problems with multi-dimensional structures. 
Assume a hierarchical structure with K layers of 
outputs and L layers of inputs. Suppose that  s(k) is the 
number of output categories in the kth layer (k=1,…, K) 
where s(1)=s, and m(l) is the number of input categories 
in the lth layer (l=1,…, L) where m(1)=m. The idea of 
the MLDEA model is to first aggregate the values of 
the input and output factors within a particular category 
of a particular layer by the weighted sum approach. 
With respect to the final layer, weights are determined 
using the standard DEA approach described in the 
previous section. In such a way, normalized data 
should be used before aggregation so as to remove 
scale differences. 

Let ( )
k

k
fA  and ( )

l

l
gB  denote the set of the output and 

input factors of the fth category in the kth output layer 
and the gth category in the lth input layer, respectively. 
The DMU0’s aggregated performance responding the 
above sets of output and input layers can be thus 
expressed as:  
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where ( )

k

k
fp  and ( )

l

l
gq  are the weights associated with the 

factors of the fth category in the kth output layer and 
the gth category in the lth input layer, which sum up to 
one respectively, so that each weight can be interpreted 
as the importance share of the corresponding factor.  

Substitution of 0Kf
y  and 0Lgx  from (3a) and (3b) 

into (2) leads to the MLDEA model as follows: 
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where 

Kf
u  is the weight given to the fth output in the 

Kth layer, ( )1, , K
Kf s= , and 

Lgv  is the weight 

given to the gth input in the Lth layer, ( )1, , L
Lg m= . 

This MLDEA model is less flexible than the standard 
DEA model since the sum of the probabilities or 
weights in each category of each layer except the last 
layer is required to be equal to one, i.e., 
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( ) ( ), 0
k l

k l
f gp q ≥ , ( )1, , k

kf s= , 1, , 1k K= − , 
( )1, , l

lg m= , 1, , 1l L= − . In such a way, the 
efficiency score of each DMU calculated from this 
multilayer model will not exceed that calculated from 
the standard one layer model. As a result, it will 
improve the discriminating power of DEA to a 

certain extent. However, these probabilities are not 
given directly but to be decided upon by the 
mathematical model. Therefore the MLDEA 
framework is not linear any more.  

In order to linearize this nonlinear model, the 
following variable substitutions are introduced. 
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Summing up the probabilities ( ( )

k

k
fp  and ( )

l

l
gq ) of 

the factors in each category of each layer whose sum 
is equal to one, we obtain: 
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Consequently, the linear MLDEA model is 

obtained as follows:  
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The above model is exactly the same as the 
standard DEA model in (2). The only difference is 
that two sets of constraints on weights are added, 
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weights, i.e., 1fu
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 and 
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 are no longer required to be 
strictly positive. In other words, the value of zero 
could be assigned.  
 
4. Weights in Each Layer and Available 
Restrictions 
 
After calculating the optimal efficiency score of each 
DMU, the best possible input and output weights, i.e., 

1fu
∧

 and 
1gv

∧

 are obtained directly. Then we can 
further deduce the weights of corresponding factors 
in each category of each layer, i.e., 
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on (5a), we obtain: 
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Substituting 

Kf
u  from (6a) into (8) leads to: 
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The above formula can be generalized and the 

weights of factors in each category of each output 
layer are deduced as follows: 
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Analogously, the weights relating to the input layer 
can be determined: 
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As indicated above, each weight assigned in a 
particular category of a layer is interpreted as the 
importance share of the corresponding factor. 
Therefore, the value judgment from decision makers 
can be incorporated into the MLDEA model by 
restricting the weight flexibility in a category. There 
are a variety of weight restriction techniques. Again 
taking the output layer as an example, the following 
weight constraints can be formulated: 

(i) the absolute range constraint, i.e., 
( ) ( ) ( )

k k k
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of  the share;  

(ii) the relative range constraint, i.e., 
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(iii) the ordinal constraints, i.e., ( ) ( )k kp pα β≤ ≤ , 

where 
1

( 1), ,
k

k
k ff Aα β α β

+

+∈ ∈ ≠ , 1, , 1k K= − . 
Moreover, based on (10), we can prove that the 

above three weight restriction formulas will maintain 
the MLDEA model to be linear. 

The substitution of ( )
k

k
fp  from (10) into the 

constraint (i) results in a linear restriction below: 
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Likewise, substituting ( )
k
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constraint (ii) leads to: 
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where 
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( 1), ,
k

k
k ff Aα β α β

+

+∈ ∈ ≠ , 1, , 1k K= − . It 

can be noted that the denominators of ( )kpα  and ( )kpβ   
are the same since they belong to the same category, 
i.e., 
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( 1)
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fA
+

+ . As a result, the constraint (ii) can be 
written as: 
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where 
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Analogously, the constraint (iii) could be 

transformed into: 
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where the same parameters are required as in (14). 
 
5. Discussions 
 
Having developed the MLDEA model and deduced 
its linear transformation and having derived the 
formulation of weights in each layer, we further 
discuss the main strengths and weaknesses of this 
model. First of all, the proposed MLDEA model 
reflects the hierarchical structure by aggregating the 

factors within the same category using the weighted 
sum method. At the same time, due to the constraints 
on these weights ( )

k

k
fp  and ( )

l

l
gq , the efficiency score 

of each DMU calculated from this model will be less 
than or equal to that calculated from the standard 
DEA model, thereby improving its discriminating 
power. However, this results in a nonlinear and rather 
complicated model. It takes a great deal of time or 
may be even impossible to obtain the feasible 
solutions if the number of layers exceeds three. A 
solution was provided by introducing proper variable 
substitutions rendering the model linear and having a 
similar structure as the standard one layer model 
except two additional sets of constraints on weights 

1fu
∧

 and 
1gv

∧

. The extra programming effort is limited 
and optimal weights are obtained within a few 
seconds.  

Moreover, as shown in the model (7), these two 
kinds of weights are no longer required to be strictly 
positive, i.e., the value of zero could be assigned. It 
means that based on the allocated weights, not only 
the relative importance of the corresponding factor 
can be interpreted, but the number of core factors 
having a weight larger than zero can be identified.  

In addition, it can be seen that when we use this 
MLDEA model, the results will be the same no 
matter if it is two layers or three or even more, unless 
weight restrictions are adopted in different layers. 
This should be considered as the most important 
feature of the model since the value judgment from 
decision makers can be incorporated by restricting 
the weight flexibility in a particular category of each 
layer, while it is impossible to realize it in the one 
layer model. However, the price we need to pay is 
that raw data cannot be used directly. In other words, 
data must be standardized first in order to remove 
scale differences. 
 
6. Conclusions 
 
Starting from the two layer DEA model ([11] and 
[12]), this paper further explores the generalized 
multiple layer DEA (MLDEA) model and its linear 
transformation. The mathematical deduction process 
is elaborated, the corresponding weights in each layer 
are formulated, and different types of weight 
restrictions are discussed. In the future, the proposed 
model will be applied in numerous performance 
evaluation problems with hierarchical structures, and 
in turn validate the effectiveness of this model. 
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