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Summary: The majority of the statistical literature for the joint modelling of longitudinal and

time-to-event data has focused on the development of models that aim at capturing specific aspects of

the motivating case studies. However, little attention has been given to the development of diagnostic

and model-assessment tools. The main difficulty in using standard model diagnostics in joint models

is the non-random dropout in the longitudinal outcome caused by the occurrence of events. In

particular, the reference distribution of statistics, such as the residuals, in missing data settings is

not directly available and complex calculations are required to derive it. In this paper we propose a

multiple-imputation-based approach for creating multiple versions of the completed data set under

the assumed joint model. Residuals and diagnostic plots for the complete data model can then be

calculated based on these imputed data sets. Our proposals are exemplified using two real data sets.

Key words: Dropout; Joint Modelling; Longitudinal Data; Model Diagnostics; Residuals; Sur-
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1. Introduction

In many longitudinal studies the outcomes recorded on the subjects under study include

both a set of repeated measurements and the time at which an event of particular interest

occurs: for instance, death, development of a disease or dropout from the study. These two

outcomes are often separately analyzed. However, when interest is in measuring the effects

of a longitudinal covariate measured with error in the survival outcome, a joint modelling

approach is required. This has lead to a new and very active area of biostatistical research that

deals with the joint modelling of longitudinal and time-to-event data (Tsiatis and Davidian,

2004).

The majority of the joint modelling literature has focused on the development of models

that capture specific aspects of the motivating case studies. Examples are found in Ding and

Wang (2008), Elashoff et al. (2008), Liu et al. (2008), Larsen (2004), Lin et al. (2002), Wang

and Taylor (2001), and references therein. Little attention has been given to the development

of diagnostics and model-assessment tools for such joint models, the only exception being

the conditional residuals proposed by Dobson and Henderson (2003), hereafter abbreviated

as DH. A reason for the lack of such tools in this area is attrition in the longitudinal profiles.

In particular, when patients experience the event, they dropout from the study and no

longitudinal measurements are available after this time point. Thus, a direct connection can

be drawn between the missing data area and the joint modelling of longitudinal and survival

data. Specifically, in the joint modelling framework, it is assumed that the occurrence of

events is related with the underlying evolution of the subject-specific longitudinal profiles,

which corresponds to a non-random dropout mechanism (Little, 1995). Under this non-

randomness setting, the use of standard goodness-of-fit measures and residuals becomes

problematic due to the fact that their reference distribution is not directly available. Thus,

residual plots based on the observed data alone can be misleading, because these residuals
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should not be expected to exhibit standard properties, such as zero mean and independence.

For a more thorough discussion on the difficulties of model assessment in the missing data

context we refer to Verbeke et al. (2008).

In this paper, we propose a new method for calculating residuals and producing diagnostic

plots in joint models, based on the idea of multiply imputing the missing longitudinal

responses under the fitted joint model, thus creating random versions of the completed

data set. These completed data sets can then be used to extract conclusions regarding the

modelling assumptions, and how these assumptions are affected by the non-random dropout.

Contrary to the conditional residuals of DH, we feel that our approach is simple to use in

practice, since it aims at validating assumptions about the complete data model, and not

about the observed data model as in DH. Our method shares similarities with the approach

of Gelman et al. (2005) who used multiple imputation for posterior predictive checks in

missing data and latent variable contexts. Our proposals are exemplified using two real data

sets. The first concerns the joint modelling of CD4 cell counts and time to death in HIV

infected patients, and the second one deals with the joint modelling of serum bilirubin levels

and time to death in patients with primary biliary cirrhosis. In addition, motivated by these

case studies, we propose different multiple imputation schemes depending on the nature of

the visiting process (i.e., the stochastic mechanism that generates the time points at which

the longitudinal measurements are collected). In particular, in the first data set patients

are asked to provide CD4 cell counts measurements at fixed time points, whereas in the

second one serum bilirubin is recorded at random visit times. Finally, the practicality of the

proposed methods can be explored within the R environment (R Development Core Team,

2008), with the publicly available package JM (developed by the first author) that can be

downloaded from http://cran.r-project.org.

The rest of the paper is organised as follows. Section 2 presents the submodels specification
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for the longitudinal and survival processes. Section 3 describes the two real data examples

that are used throughout the paper and the joint models fitted to them. Section 4 starts by

illustrating the problems in interpreting residual plots based on the observed data alone, and

presents the multiple imputation schemes that are used to recreate random versions of the

completed data set. Finally, Section 5 utilizes the multiple imputation residuals for checking

the joint models fit in the two data sets, and Section 6 refers to the results of a simulation

study.

2. Joint Modelling Framework

Let yij = {yi(tij), j = 1, . . . , ni} denote the longitudinal response measurements for the ith

subject (i = 1, . . . , n) taken at time points tij. We focus on continuous responses and we

postulate a linear mixed effects model to capture the subject-specific evolutions

yi(tij) = Wi(tij) + εyi(tij), εyi(tij) ∼ N (0, σ2
y), (1)

where Wi(tij) = x>i (tij)β+z>i (tij)bi, and Xi and Zi are the design matrices (with correspond-

ing row vectors x>i (tij) and z>i (tij)) for the fixed and random effects, β and bi, respectively.

The random effects bi are assumed to follow a multivariate normal distribution with mean

zero and variance-covariance matrix D.

For the event process, we denote by T ∗
i the true failure time for the ith subject and by

Ti = min(T ∗
i , Ci) the observed failure time, where Ci is the corresponding censoring time.

Further, we define the event indicator as δi = I(T ∗
i 6 Ci), where I(·) is the indicator function.

Relative risks models of the form:

h(t | bi) = h0(t) exp{γ>xti + αWi(t)},

have been traditionally used for the event outcome within the joint modelling framework

(Wulfsohn and Tsiatis, 1997), where the baseline risk function h0(t) is typically left unspeci-

fied, xti denotes the vector of baseline covariates, Wi(t) denotes the hypothetical true value of
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the longitudinal time-dependent covariate at time t, and γ and α are regression coefficients.

However, there are two issues with joint models, in which h0(t) is left unspecified. First, Hsieh

et al. (2006) have recently noted that the nonparametric maximum likelihood estimate for

the baseline hazard cannot be obtained explicitly under the random effects structure, and

thus, when the profile score vector (that remains a function of the baseline hazard) is used

for the estimation of standard errors, it leads to their underestimation. Second, the multiple-

imputation approach for model diagnostics, which is going to be introduced in more detail in

Section 4, requires a complete likelihood specification, and thus it cannot be applied in joint

models with infinite dimensional baseline risk functions. Mainly for the latter reason, we

are going to concentrate on parametric models for the survival outcome. Available options

are either common survival distributions, such as the Weibull or Gamma, or more flexible

models in which h0(t) is approximated using a piecewise-constant function by appropriately

discretizing the time scale into a number of intervals or using splines-based approaches. In

this paper and for illustrative purposes that will become apparent in Section 4.1, we postulate

a Weibull model for the survival times under the accelerated failure time formulation; the

possibility of using the developments of Section 4 with a more flexible survival model is

presented in Section 7. In particular, let

log T ∗
i = γ>xti + αWi(T

∗
i ) + σtεti, (2)

where σt is a scale parameter, and εti follows a standard extreme value distribution of a

minimum. Note that the regression parameters γ and α have a different interpretation than

in the relative risk model, and they measure the effect of the baseline covariates and of the

time-dependent longitudinal outcome to the expected log survival time.

Combining (1) and (2), the joint likelihood contribution of the two outcomes for the ith

subject is given by:

p(Ti, δi, yi; θ) =
∫
{p(Ti | bi; θ)

δiS(Ti | bi; θ)
1−δi}p(yi | bi; θ)p(bi; θ) dbi (3)
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∝
∫

[exp{ζi(bi)− log σt}]δi exp[− exp{ζi(bi)}]×

(σ2
y)
−ni/2 exp

(
− ‖ yi −Xiβ − Zibi ‖2 /2σ2

y

)
× det(D)−1/2 exp(−b>i D−1bi/2) dbi,

where p(·) denotes appropriate probability density functions, for the event outcome S(·)

denotes the survival function conditional on the random effects, yi is the ni×1 vector of longi-

tudinal responses of the ith subject, θ> = (γ>, α, σt, β
>, σ2

y, vech(D)) is the parameter vector,

with vech(D) denoting the unique elements of D, ζi(bi) = {log Ti − γ>xti − αWi(Ti)}/σt,

with Wi(Ti) being a function of bi, and ‖ · ‖ denotes the Euclidean vector norm. Further-

more, we make the local independence assumption that is, the random effects are assumed

to account for all the correlations between the longitudinal repeated measurements, i.e.,

p(yi | bi; θ) =
∏

j p{yi(tij) | bi; θ}. Extensions to more complex error structures for the

longitudinal outcome, by e.g., including serial correlation terms, are straightforward but are

not considered here. Finally, the censoring and visiting processes are assumed noninformative

given the observed history of longitudinal responses (Tsiatis and Davidian, 2004).

Maximization of the log-likelihood function corresponding to (3) with respect to θ requires

a combination of numerical integration and optimization algorithms due to the fact that the

(multidimensional) integral with respect to the random effects does not have a closed-form

solution. Standard numerical integration techniques such as Gaussian quadrature and Monte

Carlo have been successfully applied in the joint modelling framework (Henderson et al., 2000;

Wulfsohn and Tsiatis, 1997). Furthermore, Rizopoulos et al. (2009) have recently discussed

the use of Laplace approximations for joint models, that can be especially useful in high-

dimensional random effects settings. These integration techniques have been traditionally

combined with an EM algorithm (treating the random effects as missing data), mainly

because of the appealing feature of closed-form M-step updates for certain parameters.
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3. Description of Case Studies and Fitted Joint Models

3.1 AIDS Data Set

Longitudinal CD4 cell counts measurements and the time to death have been recorded for

467 HIV infected patients who had failed or were intolerant of zidovudine therapy. The aim

of this study was to compare the efficacy and safety of two alternative antiretroviral drugs,

namely didanosine (ddI) and zalcitabine (ddC). Patients were randomly assigned to receive

either ddI or ddC, and CD4 cell counts were recorded at study entry, where randomization

took place, as well as 2, 6, 12, and 18 months thereafter. More details about this data set

can be found in Guo and Carlin (2004). The Kaplan-Meier estimate for the time to death

as well as sample smooth average profiles for the two treatment groups are displayed in

Web Figure 1.

Out of the 2335 planned measurements, 1408 were actually recorded, leading to 39.7%

intermittent missingness; moreover, until the end of the study 188 patients died, resulting in

59.7% censoring. Taking advantage of the randomization set-up of the study, we fit a joint

model in which we only correct for treatment. In particular, for the longitudinal process,

we assume a linear mixed model, with main effects for treatment and time and with their

interaction for the fixed effects part, and with random intercepts and random slopes for the

random effects part. For the survival process, we assume the Weibull model (2), where xti

contains an intercept and the treatment dummy variable:

yi(tij) = β0 + β1tij + β2Treati + β3Treati × tij + bi0 + bi1tij + εyi(tij),

log T ∗
i = γ0 + γ1Treati + αWi(T

∗
i ) + σtεti,

where Treati denotes the treatment indicator taking the value ‘1’ if the ith subject received

ddI, and ‘0’ otherwise. Furthermore, for the random effects covariance matrix D, we set

d11 = var(bi0), d22 = var(bi1), and d12 = cov(bi0, bi1). The parameter estimates and standard

errors for this joint model can be found in Table 1.
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[Table 1 about here.]

3.2 PBC Data Set

As a second example, we also consider the primary biliary cirrhosis (PBC) data collected by

the Mayo Clinic from 1974 to 1984 (Murtaugh et al., 1994). PBC is a chronic, fatal, but rare

liver disease characterized by inflammatory destruction of the small bile ducts within the

liver, which eventually leads to cirrhosis of the liver. Patients with PBC have abnormalities

in several blood tests, such as elevated levels of serum bilirubin. In this study 312 patients are

considered of whom 158 were randomly assigned to receive D-penicillamine and 158 placebo,

and we are interested in testing for a treatment effect on survival after adjusting for the

longitudinal bilirubin levels. The Kaplan-Meier estimate for the time to death as well as the

sample smooth average profiles for the two treatment groups are depicted in Web Figure 1.

Patients did not return to the study centers at prespecified time points to provide serum

bilirubin measurements, and thus we observe great variability between their visiting patterns.

In particular, patients made on average 6.23 visits (s.d. = 3.77), resulting in a total of 1945

observations. The joint model fitted to the PBC data is of the same form as for the AIDS

data set presented in the previous section. Now Treati takes the value ‘1’ for D-penicillamine,

and ‘0’ otherwise. The parameter estimates and standard errors are also shown in Table 1.

4. Calculating Residuals for Joint Models

4.1 Residuals based on the Observed Data

A traditional approach to check model assumptions is the inspection of residual plots.

Properties and features of residuals, when longitudinal and survival outcomes are separately

modelled, have been extensively studied in the literature. For instance, different types of

residuals for linear mixed models are discussed in Nobre and Singer (2007) and Verbeke and

Molenberghs (2000), whereas residuals for parametric and semiparametric survival models
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are presented in Harrell (2001) and Therneau and Grambsch (2000). For our purposes, we

consider two types of residuals for each of the two processes. In particular, for the longitudinal

process we use the standardized marginal and subject-specific residuals defined as

r
(ym)
i = V̂

−1/2
i (yi −Xiβ̂), and

r
(ys)
i (tij) = {yi(tij)− x>i (tij)β̂ − z>i (tij)b̂i}/σ̂y,

(4)

where β̂, σ̂y, and D̂ denote the maximum likelihood estimates under model (1), b̂i are the

empirical Bayes estimates for the random effects, and V̂i = ZiD̂Z>
i + σ̂2

yI, with I denoting

the identity matrix of appropriate dimensions. The marginal residuals r
(ym)
i predict the

marginal errors yi −Xiβ = Zibi + εyi, and can be used to investigate misspecification of the

mean structure Xiβ as well as to validate the assumptions for the within-subjects covariance

structure Vi. The subject-specific residuals r
(ys)
i (tij) predict the conditional errors εyi(tij),

and can be used for checking the homoscedasticity and normality assumptions. For survival

models the martingale residuals are commonly used for a direct assessment of excess events

(i.e., to reveal subjects that are poorly fit by the model), and for evaluating whether the

appropriate functional form for a covariate is used in the model. The accelerated failure time

formulation of the Weibull model (2) also allows the calculation of standardized residuals of

the form

r
(t)
i = {log Ti − γ̂>xti − α̂Ŵi(Ti)}/σ̂t, (5)

where γ̂, α̂, and σ̂t denote the maximum likelihood estimates under model (2). Note that

when Ti is right-censored, r
(t)
i is also right-censored. Thus, in order to use r

(t)
i for practical

purposes, censoring must be taken into account by displaying for instance, Kaplan-Meier

estimates based on groups of residuals rather than showing individual residuals (Harrell,

2001, Sec. 17.3.5). These residuals can be used to investigate the appropriateness of the

assumed parametric survival model, by comparing their Kaplan-Meier estimate with the

survival function of the assumed distribution for the error terms εti.
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The problem in using the above defined residuals for inspecting the fit of joint models

is that their reference distribution is not directly evident. Complications arise due to the

non-random dropout in the longitudinal process caused by the occurrence of events. That

is, the observed data, upon which the residuals are calculated, are not a random sample of

the target population. To clarify this, we define for each subject the observed and missing

part of the longitudinal response vector. The observed part yo
i = {yi(tij) : tij < Ti, j =

1, . . . , ni} contains all observed longitudinal measurements of the ith subject before the

observed event time, whereas the missing part ym
i = {yi(tij) : tij > Ti, j = 1, . . . , n′i} contains

the longitudinal measurements that would have been taken until the end of the study, had

the event not occurred. Under these definitions, the dropout mechanism corresponding to

(3) has the form

p(T ∗
i | yo

i , y
m
i ; θ) =

∫
p(T ∗

i | bi; θ)p(bi | yo
i , y

m
i ; θ) dbi, (6)

which still depends on ym
i through the posterior distribution p(bi | yo

i , y
m
i ; θ). It is this feature

of joint models that complicates inspection of residual plots, because a potential systematic

behaviour is not necessarily indicative of a model misfit. Thus, conclusions from common

residual plots in the joint model framework should be drawn with extreme caution.

To depict how the non-random dropout affects the use of residuals based on the observed

data alone, we show in Figure 1 plots of the standardized marginal and standardized subject-

specific residuals (4) versus the fitted values, for the AIDS and PBC data sets.

[Figure 1 about here.]

We observe that the fitted loess curves in the plots of the standardized marginal residuals

versus the fitted values show a systematic trend. Note, however that, small numbers of CD4

cell counts on the one hand and high levels of serum bilirubin on the other, indicate a

worsening of patients’ condition resulting in higher death rates (i.e., dropout). This is also

reflected in the different signs for the association parameter α in the two data sets, presented
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in Table 1. Thus, the residuals corresponding to small and large fitted values, respectively,

for the two data sets are only based on patients with a ‘good’ health condition.

Finally, we should mention that, in non-random missing data contexts, the form of the

dropout mechanism cannot be verified from the observed data (Molenberghs and Kenward,

2007). That is, we cannot definitively test whether the time to dropout depends on the

underlying evolution of the disease (i.e., joint model assumption) or, for instance, it depends

on the actual value of the longitudinal outcome at the event time (i.e., selection model

assumption). Thus, in order to proceed, we make the assumption that joint model (3) is the

correct modelling framework and that the non-random dropout mechanism is of the form

(6). Our interest is then focused on investigating whether the formulation of this model (e.g.,

functional form of covariates, assumptions for the error terms, etc.) is adequate for a specific

data set at hand. The effects of misspecifying the missing data mechanism is empirically

investigated in Section 6.

4.2 Multiple Imputation Based Residuals with Fixed Visit Times

To produce residuals that can be readily used in diagnostic plots for joint models, we propose

to augment the observed data with randomly imputed longitudinal responses under the

complete data model, corresponding to the longitudinal outcomes that would have been

observed had the patients not dropped out. The multiple imputation approach properly

accounts for the uncertainty in the imputed values due to missingness. Furthermore, note that

in some clinical studies in which the terminating event is death, it may not be conceptually

reasonable to consider the values of the longitudinal outcome after the event time; for instance

see Kurland and Heagerty (2005). However, in our setting, we merely use multiple imputation

as a mechanism to help us investigate the fit of the model, and we are not actually interested

in inferences after the event time.

In the following, we assume that the joint model has been fitted to the data set at hand,
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and that we have obtained the maximum likelihood estimates θ̂ and an estimate of their

asymptotic covariance matrix, say Ĥ. Moreover, we assume that longitudinal measurements

are planned to be taken at prespecified time points t0, t1, . . . , tmax, and that for the ith

subject measurements are available up to the last prespecified visit time earlier than Ti.

Since multiple imputation has Bayesian grounds (Little and Rubin, 2002, Ch. 10), we adopt

a Bayesian point of view for the joint model, even though we have fitted it using maximum

likelihood. The multiple imputation method is based on repeated sampling from the posterior

distribution of ym
i given the observed data, averaged over the parameter values. Under joint

model (3) and dropout mechanism (6), the density for this distribution can easily be found

to be

p(ym
i | yo

i , Ti, δi) =
∫

p(ym
i | yo

i , Ti, δi; θ)p(θ | yo
i , Ti, δi) dθ. (7)

The first part on the right hand side of (7) can be derived from (6) taking also into account

the local independence assumption, i.e.,

p(ym
i | yo

i , Ti, δi; θ) =
∫

p(ym
i | bi, y

o
i , Ti, δi; θ)p(bi | yo

i , Ti, δi; θ) dbi

=
∫

p(ym
i | bi; θ)p(bi | yo

i , Ti, δi; θ) dbi. (8)

For the second part, which is the posterior distribution of the parameters given the observed

data, we use arguments of standard asymptotic Bayesian theory (Cox and Hinkley, 1974,

pp. 299–300), and assume that the sample size n is sufficiently large such that {θ | yo
i , Ti, δi}

can be well approximated by N (θ̂, Ĥ). This assumption, combined with (7) and (8), suggests

the following simulation scheme:

Step 1. draw θ(`) ∼ N (θ̂, Ĥ).

Step 2. draw b
(`)
i ∼ {bi | yo

i , Ti, δi, θ
(`)}.

Step 3. draw y
m(`)
i (tij) ∼ N

{
µ

(l)
i (tij), σ̂2,(`)

y

}
, for the prespecified visit times tij > Ti, j =
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1, . . . , n′i that were not observed for the ith subject, where µ
(l)
i (tij) = x>i (tij)β̂

(`) +

z>i (tij)b̂
(`)
i .

Step 4. repeat Steps 1–3 for each subject, ` = 1, . . . , L times, where L denotes the number

of imputations.

Steps 1 and 2 account for uncertainties in the parameter and empirical Bayes estimates,

respectively, whereas Step 3 imputes the missing longitudinal responses. Steps 1 and 3

are straightforward to perform since they require sampling from a multivariate normal

distribution; on the contrary, the posterior distribution for the random effects in Step 2

is of a non-standard form, and thus a more sophisticated approach is required to sample

from it. We propose the use of a Metropolis-Hastings algorithm with independent proposals

from a multivariate t distribution centered at the empirical Bayes estimates b̂i, with scale

matrix var(b̂i), and four degrees of freedom. A similar approach has been used by Booth

and Hobert (1999) to simulate from the posterior distribution of the random effects in the

generalized linear mixed models context. In the joint modelling framework, our justification

for a multivariate t proposal is two fold. First, Rizopoulos et al. (2008) have recently shown

that, as ni increases, the leading term of the log posterior distribution of the random effects

is the linear mixed model log p(yi | bi; θ
(`)) =

∑
j log p{yi(tij) | bi; θ

(`)}, which is quadratic

in bi and will resemble the shape of a multivariate normal distribution, and second, for small

ni, the heavier tails of the t distribution will ensure sufficient coverage.

The simulated y
m(`)
i (tij) values together with yo

i can now be used to calculate residuals

according to (4). A key advantage of the multiply imputed residuals is that they inherit

the properties of the complete data model. This facilitates common graphical model checks,

without requiring formal derivation of their reference distribution. In contrast, if we used only

the observed residuals, as in the approach of DH, then it is required to explicitly compute

characteristics of their distribution. For instance, DH computed the first two moments of the
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marginal residuals r
(ym)
i conditional on the dropout time and event status. Finally, regarding

the choice of L, we expect that a moderate number of multiple imputations, say between 10

and 100, will be sufficient for the propagation of uncertainty.

4.3 Multiple Imputation Based Residuals with Random Visit Times

In observational studies and in some randomized trials (such as the PBC study), the time

points at which the longitudinal measurements are taken are not fixed by design but rather

determined by the physician or even the patients themselves. For instance, for the PBC data

set, the patients’ visit patterns are illustrated in the bottom-left panel of Web Figure 1.

We observe that for the first two years of follow-up, measurements of serum bilirubin are

taken at baseline, 0.5, 1, and 2 years, with little variability, whereas, in the latter years the

variability in the visit times increases considerably. Under the noninformativeness assumption

mentioned in Section 2, and provided that the joint model is correctly specified, the visiting

process can be ignored in the modeling process without influencing the asymptotic properties

of the maximum likelihood estimates.

However, the possibility of random visit times complicates the methodology presented in

Section 4.2. In particular, the time points at which the ith subject was supposed to provide

measurements after the observed event time Ti are not available, and thus the corresponding

rows x>i (tij) and z>i (tij), for tij > Ti, of the design matrices Xi and Zi, respectively, required

in Step 3, cannot be computed. In addition, a ‘simplistic’ approach of imputing ym
i at

arbitrary specified fixed time points may contaminate the residuals plots by producing either

too many or too few, say positive, residuals in areas with few observed data. An example

can be found in Web Section 2.

To overcome this problem and use the multiple imputation idea introduced in Section 4.2,

we propose postulating a suitable model for the visiting process, and use it to simulate future

visit times for each individual. Formally, let uik (k = 2, . . . , ni) denote the time elapsed
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between visit k−1 and visit k for the ith subject, and without loss of generality assume that

all subjects have at least one measurement. Let also {y∗i (t)} denote the complete version of

the longitudinal response vector. Using these definitions, the noninformativeness assumption

for the visiting process can be formulated as

p(uik | ui2, . . . , ui,k−1, {y∗i (t)}; θv) = p{uik | ui2, . . . , ui,k−1, yi(t1), . . . , yi(tk−1); θv}, (9)

where θv is the vector parameterizing the visiting process density, and {θ, θv} have disjoint

parameter spaces. For the multivariate elapsed visit times u>i = (ui2, . . . , uini
), we propose a

Weibull model with a multiplicative Gamma frailty

λ(uik | xvi, ωi) = λ0(uik)ωi exp(x>viβv), ωi ∼ Gamma(η, η), (10)

where λ(·) is the risk function conditional on the frailty term ωi, xvi denotes the covariate vec-

tor that may contain a functional form of the observed longitudinal responses yi(ti1), . . . , yi(ti,k−1),

βv is the vector of regression coefficients, and η−1 is the unknown variance of ωi’s. The Weibull

baseline risk function is given by λ0(uik) = φψuψ−1
ik , with ψ, φ > 0. Our choice for this model

is motivated, not only by its flexibility and simplicity, but also by the fact that the posterior

distribution of the frailty term, given the observed data, is of standard form (Sahu et al.,

1997), which as will be shown below facilitates simulation.

Similarly to Section 4.2, we assume that both models (3) and (10) have been fitted to the

data at hand, and that the maximum likelihood estimates θ̂ and θ̂v, and their corresponding

asymptotic covariance matrices, Ĥ and Ĥv, respectively, have been obtained. Let also tmax

denote the end of the study, and δv,ik the event indicator corresponding to uik. Furthermore,

taking into consideration the noninformativeness assumption (9), the future elapsed visit

time ui,ni+1 can be simulated independently from ym
i (ti,ni+1). Thus, the simulation scheme

under the random visit times setting takes the following form:

Step 1. Parameter Values
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a. draw θ(`)
v ∼ N (θ̂v, Ĥv).

b. draw θ(`) ∼ N (θ̂, Ĥ).

Step 2. Frailties and Random Effects

a. draw ω
(`)
i ∼ Gamma

{
η(`) +

ni∑
k=2

δv,ik, η(`) +φ(`)
ni∑

k=2
uψ(`)

ik exp(x>viβ
(`)
v )

}
for subjects with

two or more visits, and ω
(`)
i ∼ Gamma(η(`), η(`)) for subjects with one visit.

b. draw b
(`)
i ∼ {bi | yo

i , Ti, δi, θ
(`)}.

Step 3. Outcomes

a. draw u
(`)
i ∼ Weibull

{
ψ(`), φ(`)ω

(`)
i exp(x>viβ

(`)
v )

}
.

b. set t̃i = u
(`)
i + tini

, where tini
denotes the last observed visit time for the ith subject.

If t̃i > tmax, no ym
i need to be imputed for this subject; otherwise draw y

m(`)
i (t̃i) ∼

N
{
µ

(l)
i (t̃i), σ̂2,(`)

y

}
, where µ

(l)
i (t̃i) = x>i (t̃i)β̂

(`) + z>i (t̃i)b̂
(`)
i .

c. set tini
= t̃i, and repeat a–b until tini

> tmax for all i.

Step 4. Repeat Steps 1–3 for ` = 1, . . . , L times.

As in Section 4.2, Steps 1–3 simultaneously account for uncertainties in both the joint and

visiting process models. Furthermore, note that subjects who have only one longitudinal

measurement provide no information to the visiting process model. For these cases, in Step 3a,

we can only simulate future elapsed visit times using a simulated frailty value from the

Gamma prior distribution (Step 2a).

The form of the linear predictor of the visiting model can have an effect on the simulated

future visit times for each subject. Therefore, we would like to note that assumption (9) is the

weakest assumption under which the joint model provides valid inferences even if the visiting

process is ignored; however, the visiting model corresponding to (9) may be unstable because

it involves many parameters. A set of stronger but maybe more plausible assumptions is

p(uik | ui2, . . . , ui,k−1, {y∗i (t)}; θv) = p{uik | ui2, . . . , ui,k−1, yi(tk−1); θv}, (11)
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or

p(uik | ui2, . . . , ui,k−1, {y∗i (t)}; θv) = p{uik | yi(tk−1); θv}. (12)

Equation (11) posits that the time elapsed between visit k − 1 and visit k depends on the

previous elapsed times and the last observed longitudinal measurement, whereas under (12)

it depends only on the last observed longitudinal measurement. These assumptions describe

the situation in which physicians base their decision for a future visit for a patient on the

last observed outcome and possibly the past visiting pattern.

5. MI Based Residuals for the AIDS and PBC Data

Based on the fitted joint models presented in Section 3, we simulated ym
i (tij) values for each

of the AIDS and PBC data sets. The implementation of the multiple imputation scheme

for the PBC data set is based on the visiting process model (10) with linear predictor

x>viβv = βv1Treati + βv1yi(tk−1), which corresponds to assumption (11). The parameter

estimates and standard errors for this model can be found in Web Table 1. For the AIDS

data we use L = 50, and for the PBC data L = 10. The reason for using less imputations

for the PBC data set is that, as we observed, in each imputation many future visit times are

simulated for subjects that dropped out quite early. This inevitably results in busy residual

plots, and should we have used L = 50 for this case as well, then their usefulness would be

compromised.

As we argued in Section 4.2, the multiply imputed residuals combined with the residuals

corresponding to yo
i can be used to investigate the validity of the underlying assumptions of

the complete data model. For instance, in Web Figure 2 we present the plots of standardized

marginal and standardized subject-specific residuals versus the fitted values for the first

imputation, for the two data sets. From these plots, we observe that the systematic trends

that were present in the residual plots based on the observed data alone (i.e., Figure 1) are
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alleviated. However, it might prove difficult in some cases to extract conclusions by examining

the residual plots for each imputation separately. This can also be seen in Web Figure 3,

which shows that the variability due to missingness in the loess smoother can be considerable

in the areas with few observed data. To overcome this problem, we propose to include in

one plot the residuals from all imputations. Then we can check for systematic trends using

weighted loess fits, with weight one for the observed residuals, and 1/L for the imputed ones.

This approach is illustrated in Figures 2 and 3 for the AIDS and PBC data, respectively.

[Figure 2 about here.]

[Figure 3 about here.]

These plots corroborate the conclusions made using the first imputation alone. However,

Figure 3 also reveals that the variability in the standardized subject-specific residuals in-

creases with the fitted values. This feature is more clearly illustrated in Web Figure 4, which

depicts the square root of the absolute residuals versus the fitted values. Note that this issue

is only revealed by an inspection of the multiply imputed residuals, since the residuals for

the observed data show constant variance. Based on this finding, we could suggest that a

possible extension of the joint model for the PBC data set is to consider heteroscedastic

error terms εyi(tij).

Figures 2 and 3 also include residual plots for the survival submodel. In particular, we

present Kaplan-Meier estimates per treatment group for the standardized accelerated failure

time residuals (5), and the scatterplots of the martingale residuals versus the fitted values

of the longitudinal outcomes evaluated at the observed event times. We observe that, for

both data sets, the Kaplan-Meier estimates of the accelerated failure time residuals are in

close agreement with the survival function of the standard extreme value distribution. This

suggests that (2) is a suitable model for the time to death for both studies. Furthermore,

the martingale residuals also show that the assumed relation between the longitudinal time-
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dependent covariate and the hazard function is adequate, since the loess smoother does not

show severe discrepancies from zero.

Finally, we would like to note that the methodology presented in Sections 4.2 and 4.3 can

be directly used to perform posterior predictive checks as have been formalized by Gelman

et al. (2005). We applied this procedure to the AIDS data set. In particular, 60 data sets

are simulated from the fitted joint model, and time-specific samples averages are compared

to the averages obtained from augmenting the observed data using the multiple imputations

y
m(`)
i . The results are shown in Web Figure 5 for the two treatment groups separately. Both

plots suggest that the posited joint model is in agreement with the AIDS data set. Moreover,

the comparison of the simulated data from the fitted joint model (dashed grey lines) with

the sample averages based on the observed data alone (dashed black line) elucidates why

plots based on only the observed data can lead to misleading conclusions.

A similar to the posterior predictive checks approach, suggested by a referee, is to simulate

the reference distribution of the observed data residuals. In particular, with this approach

we have two options. First, based on θ̂, complete data sets can be simulated based on which

we can compute the error terms of the longitudinal outcomes that are measured before the

simulated event times. Second, for the simulated data sets of the first option we can fit the

joint model in order to form residuals for the longitudinal outcomes that are measured before

the simulated event times. These simulated error terms or residuals can then be directly

compared with the observed residuals corresponding to the original data set. To explore

this idea, we simulated 200 data sets based on the maximum likelihood estimates and the

structure of the AIDS data set, and then calculated the standardized subject-specific and

standardized marginal residuals for the observed part of the simulated longitudinal responses.

Web Figure 6 illustrates Q-Q plots of the simulated residuals versus the observed ones from

the AIDS data set as well as Q-Q plots of the simulated error terms versus the observed
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residuals. From these plots we observe that standardized marginal residuals for the AIDS

data set lie within the envelope of their empirical distribution, whereas the distribution of

the observed standardized subject-specific residuals seems to have longer tails compared to

the empirical reference distribution. Regarding the use of the simulated distribution of the

error terms versus the one of the residuals, we should note that, from a statistical point

of view, the latter is more appropriate because in the calculation of the residual terms

we also take into account the variability in θ̂ (see also Section 7). This difference is also

apparent from the comparison between the simulated distributions of the subject-specific

error terms and the subject-specific residuals, presented in the top-left and bottom-left panels

of Web Figure 6, respectively. Therefore, the appealing feature of this approach is that it

directly checks assumptions about the observed residuals that are generally much easier

to compute. However, as mentioned above, to simulate the empirical distribution for the

observed residuals (that are more appropriate than the error terms), it is required that we

fit the joint model for each simulated data set to form residuals that hinders the practicality

of this method, especially for large data sets.

6. Simulation Study

Since in a non-random dropout context the joint modelling assumption (6) cannot be verified

from the observed data, we have performed a number of simulations in order to empirically

evaluate the performance of the proposed multiple-imputation-based residuals, especially in

the case of misspecification. In particular, the effects of misspecification were studied in two

directions. First, within the joint modelling framework, where we considered misspecification

of the linear predictors and of the error distributions for the two submodels (1) and (2).

Second, we considered misspecification of the missing data mechanism (6) by positioning

joint models as a special case of the general selection modelling framework formulated as
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p(T ∗
i , yo

i , y
m
i , bi; θ) = p(T ∗

i | yo
i , y

m
i , bi; θ)p(yo

i , y
m
i | bi; θ)p(bi; θ),

i.e., the event time T ∗
i could depend on ym

i and/or bi. In each case, residuals were calculated

based on a misspecified joint model and plots were produced to check for systematic behavior.

A detailed description of the set up of the simulation study as well as a discussion of the

results can be found in Web Section 3. The general conclusion that can be extracted from

these simulations is that the plots of the observed residuals, in all cases, suggest that the

assumptions of the joint model seem to be violated, even when we simulated from the true

model. On the other hand, the multiply imputed residuals show the expected systematic

trends mainly in the scenarios where we have misspecified some of the components of the

joint model. Therefore, by looking at the observed residuals alone, one cannot be certain if

something is indeed wrong with the postulated joint model or if the systematic trends in the

observed residuals plots are mainly attributed to the non-random dropout setting. In such

cases, the multiply imputed residuals are more insightful regarding the model assumptions,

because they explicitly take dropout into account.

7. Discussion

We have proposed a new approach for calculating residuals for joint models of longitudinal

and survival data based on multiple imputation. A key advantage of this method is that

it requires simple simulation steps that can be easily performed, using the components of

the fitted joint model. Moreover, the practical use of our proposals can be directly explored

using the publicly available R package JM that was used to fit the joint models considered in

Section 3, and to compute the residuals presented in Section 4.

Even though we have focused on linear mixed models for the longitudinal responses and a

Weibull survival model for the dropout process, the proposed method can easily be extended

to other types of joint models. For instance, the Weibull assumption in (2) can be relaxed by
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assuming more flexible models. In particular, the methodology developed in Section 4 has

also been implemented in JM for a relative risk model, that is related to the time-varying Cox

model, and in which the covariates affect linearly the log cumulative hazard ratio. In order

to allow for flexibility, the log cumulative baseline risk function log H0(t) = log
t∫
0

h0(s) ds is

expanded into B-spline basis functions, i.e.,

log H(t | bi) = log H0(t) + γ>xti + αWi(t),

log H0(t) = κ0 +
m∑

d=1

κdBd(log t, q),

where κ> = (κ0, κ1, . . . , κm) are the spline coefficients, q denotes the degree of the B-splines

basis functions B(·), and m = m̈ + q − 1, with m̈ denoting the number of interior knots.

More information regarding this model can been found in Rizopoulos et al. (2009) as well as

in the manual of JM.

Another issue that we have not considered in this paper is the studentization of residuals

(4) and (5). That is, we have assumed that the variance of r
(ym)
i , r

(ys)
i (tij), and r

(t)
i is

the same as the variance of the corresponding error terms of submodels (1) and (2). This

assumption, although commonly made for the residuals of a variety of statistical models, is

unfortunately not correct. Under our approach, the residuals corresponding to the observed

data, augmented with the multiply imputed residuals, inherit the properties of the complete

data model, which implies that we may use known results for studentization of residuals,

ignoring the dropout process. For example, Nobre and Singer (2007) present formulas for

calculating studentized subject-specific residuals for linear mixed models. However, under the

joint model (3), it is difficult to apply these formulas, because we do not have closed-form

solutions for θ̂, and thus cov(yi, θ̂) and cov({Ti, δi}, θ̂) cannot be easily derived. A possible

solution to this issue could be to adapt the developments of Cox and Snell (1968) to the

joint modelling framework.
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Figure 1. Standardized marginal and subject-specific residuals for the AIDS and PBC
data set based on the observed data only. The superimposed lines represent the fit of the
loess smoother.
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Figure 2. Residual plots for the AIDS data set. The top and bottom left panels show the
observed standardized subject-specific and standardized marginal residuals (black circles),
augmented with all the multiply imputed residuals produced by the L = 50 imputations
(grey points). The superimposed dashed lines represent a loess fit based only on the observed
residuals; the superimposed solid lines represent a weighted loess fit based on all residuals.
The top right panel shows Kaplan-Meier estimates of the accelerated failure time residuals
(5) for each treatment group; the superimposed solid grey line is the survival function of
the standard extreme value distribution. The bottom right panel shows martingale residuals
versus the fitted values of

√
CD4 evaluated at the observed event times.
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Figure 3. Residual plots for the PBC data set. The top and bottom left panels show the
observed standardized subject-specific and standardized marginal residuals (black circles),
augmented with all the multiply imputed residuals produced by the L = 10 imputations
(grey points). The superimposed dashed lines represent a loess fit based only on the observed
residuals; the superimposed solid lines represent a weighted loess fit based on all residuals.
The top right panel shows Kaplan-Meier estimates of the accelerated failure time residuals
(5) for each treatment group; the superimposed solid grey line is the survival function of
the standard extreme value distribution. The bottom right panel shows martingale residuals
versus the fitted values of log serum bilirubin levels evaluated at the observed event times.
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Table 1
Parameter estimates and standard errors (in parenthesis) for the joint models fitted to the AIDS and PBC data sets,

respectively.

Longitudinal Process Survival Process
AIDS PBC AIDS PBC

β0 2.430 (0.052) 0.660 (0.037) γ0 2.548 (0.145) 3.296 (0.177)
β1 −0.035 (0.005) 0.151 (0.006) γ1 −0.233 (0.110) 0.054 (0.146)
β2 0.095 (0.080) −0.183 (0.065) α 0.407 (0.075) −0.514 (0.067)
β3 0.007 (0.006) 0.023 (0.016) log σt −0.332 (0.067) −0.178 (0.073)

log σy −0.988 (0.029) −0.998 (0.018)
d11 0.077 (0.037) 1.025 (0.043)
d12 0.000 (0.003) 0.066 (0.013)
d22 0.001 (0.124) 0.027 (0.076)


