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ABSTRACT 

 

The well-known discrete theory of conjugate partitions, Ferrers graphs and Durfee squares is 

interpreted in informetrics. It is shown that partitions and their conjugates have the same h-

index, a fact that is not true for the g- and R-index. A modification of Ferrers graph is 

presented, yielding the g-index. 

 

We then present a formula for the Lorenz curve of the conjugate partition in function of the 

Lorenz curve of the original partition in the discrete setting. 

 

Ferrers graphs, Durfee squares and conjugate partitions are then defined in the continuous 

setting where variables range over intervals. Conjugate partitions are nothing else than the 

 

Key words and phrases: conjugate partition, informetrics, Lorenz curve, h-index, g-index, R-index, Ferrers 

graph, Durfee square. 
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inverses of rank-frequency functions in informetrics. Also here they have the same h-index 

and we can again give a formula for the Lorenz curve of the conjugate partition in function of 

the Lorenz curve of the original partition. Calculatory examples are given where these Lorenz 

curves are equal and where one Lorenz curve dominates the other one. We also prove that the 

Lorenz curve of a partition and the one of its conjugate can intersect on the open interval ] [0,1 . 

 

 

I.  Introduction 

 

The attention of this author was drawn by the paper Anderson, Hankin and Killworth (2008) 

where, for partitions (to be explained below), Ferrers graphs and Durfee squares are used to 

define a variant of the h-index. 

 

For the sake of completeness we will define these simple concepts here (see also Andrews 

(1998)). A partition is, simply, a vector of finite dimension T with decreasing coordinates 

which are elements of ¥ , the positive natural numbers (excluding 0). We will denote such a 

vector by ( )1 2 TC c ,c ,...,c=  where 1 2 Tc c ... c 1³ ³ ³ ³ . The name partition comes from the fact 

that the natural number 
T

i

i 1

c
=

å  is partitioned by C, whereby each coordinate 1 Tc ,...,c  indicates 

the relative size of the coordinate i 1,...,T= . 

 

Informetrically one can interpret C as a description of the number of items ic  in the source 

i, i 1,...,T= = the total number of sources. In this interpretation, 

 

 
T

i

i 1

A c
=

= å  (1) 

 

is the total number of items in the system (also called an information production process (IPP) 

in which source i produces (or has) ic  items, i 1,...,T= . In this interpretation, the vector C is 

nothing else than the rank-frequency function of this IPP. For more on IPPs we refer the 

reader to Egghe (2005) where many examples are given by interpreting C as an author or a 
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journal and where the T articles of this author or journal are ranked in decreasing order of the 

number of citations 
ic  that these articles have received (e.g. until now), i 1,...,T= . 

 

In the theory of partitions, there is a handy graphical representation of a partition as a so-

called Ferrers graph. Taking ( )C 8,5,4,4,3,1=  as an example, the Ferrers graph of C is 

depicted as in Fig. 1 

 

 

 

 

Fig. 1 Ferrers graph of ( )C 8,5,4,4,3,1=  

 

The largest, fully filled, square in this graph (starting from the point on the first row and the 

first column) is called the Durfee square (after W.P. Durfee). The side of this Durfee square is 

nothing else than the h-index of this system (here h 4= ). The h-index was introduced in 

Hirsch (2005) as the largest rank { }r 1,...,TÎ  such that rc r³  (hence 
hc h³  and hence ic h³  

for all i 1,...,h=  while h 1c h 1+ < + ). For more on the use and the (dis)advantages of the h-

index we refer to the vast literature and the extensive review Egghe (2008). That the side of 

the Durfee square has size h was first remarked in Anderson, Hankin and Killworth (2008). 

 

In the theory of partitions one defines the notion of “conjugate” of a partition ( )1 TC c ,...,c= , 

cf. Andrews (1998), Definition 1.8. We define the conjugate of partition C as ( )' '

1 mC' c ,...,c=  

where for j 1,...,m= , '

jc  equals the number of coordinates in C that are larger than or equal to 

j. In the example above: ( )C 8,5,4,4,3,1=  we see that its conjugate is ( )C' 6,5,5,4,2,1,1,1= . It is 

easily seen (cf. Andrews (1998)) that C'  is obtained from C  by mirroring the Ferrers graph of 
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C  over the main diagonal (i.e. the line connecting the points for which the column number 

equals the row number) – see Fig. 2 

 

 

 

Fig. 2  Ferrers graph of C' , the conjugate of C  

 

 

Note that dim C'  (the dimension of C' ) does not always equal dim C . Only if 1c = dim C  we 

have that dim 1C' c=  and hence dim C  = dim C' . Example: ( )C 6,5,5,4,2,1= . Now 

( )C' 6,5,4,4,3,1= . 

 

Note also that 

 

 
T m

'

i j

i 1 j 1

c c
= =

=å å  (2) 

 

In the informetric terminology of sources and items in IPPs we can define the conjugate of the 

rank-frequency function C  as the function yielding for every j 1,...,m=  the number of sources 

with j³  items. 

 

Ferrers graphs yield a trivial proof of the following important proposition. 

 

Proposition 1: The h-index of a partition equals the h-index of its conjugate. 
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Proof: In mirroring Ferrers graph of C  over the main diagonal, the size of the Durfee square 

is not changed, hence it has the same side-length (hence h-index) as the one of C . 

Consequently 'C C
h h= .                                 ⁭ 

 

One can indeed verify in the above example that C C'h h 4= = . Note that Ferrers graphs are 

handy in finding the conjugate C'  of a partition C  as well as in the proof of Proposition 1. 

 

The above proposition is false for the g-index and the R-index as we will show below but first 

a short introduction to the g-index and the R-index. The h-index has the disadvantage of not 

counting the actual number of citations to papers in the h-core (the h-core is defined as the set 

of the first h papers; the term is only a convenient definition but does not always constitute a 

real core set of papers for the author or the journal). Indeed, once a paper is in the h-core, it 

does not matter how many citations ( )h³  this paper actually receives. This was remarked in 

Egghe (2006) where e.g. the example was given of equal h-indices for E. Garfield and F. 

Narin (early 2006), namely h 27=  while Garfield had 14 papers with more than 100 received 

citations and Narin had only 1 paper with more than 100 received citations (namely 112). 

Furthermore, Garfield had 1 paper with 625 received citations. 

 

In order to improve the h-index for this (almost) insensibility to the actual number of received 

citations, we defined in Egghe (2006) the g-index as follows: in the same ranking as in 

( )1 TC c ,...,c= , r g  is the highest ranking such that the first g papers together received at 

least 2g  citations. Equivalently : the g-index is the highest ranking r g such that the first g 

papers received, on average, at least g citations. Obviously g h³  since the first h papers 

received, together, at least 2h.h h=  citations and since r g is the largest  rank with this 

property. The more discriminatory power of the g-index was illustrated by the fact that, while 

Garfield and Narin had the same h-index, the g-index of Garfield was 59 while the one of 

Narin was 40. The greater discriminatory power of the g-index above the h-index was also 

proved in Schreiber (2008a,b), Tol (2008) and Costas and Bordons (2008). 

 

The R-index, introduced in Jin, Liang, Rousseau and Egghe (2007) serves a similar goal as 

the g-index and is defined as 
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h

i

i 1

R c
=

= å  (3) 

 

, i.e. the square root of the sum of the received citations by the papers in the h-core (hence, the 

definition uses the h-index itself). 

  

Consider the example ( )C 8,6,6,5,1= . Then ( )C' 5,4,4,4,4,3,1,1= , hence 
c c'h h 4= =  as 

predicted in Proposition 1. But 
C C'g 5 g 4= ¹ =  and 

C C'R 8 6 6 5 5 R 5 4 4 4 17= + + + = ¹ = + + + = . Here 
C C'g g>  and 

C C'R R>  but opposite 

inequalities are also possible. This follows from the fact that the conjugate of the conjugate of 

a partition C  equals C :  ( )C' ' C=  as follows readily from the fact that Ferrers graph of the 

conjugate of C  is the mirror of Ferrers graph of C  over the main diagonal (cf. Fig. 2). Note 

that R g<  and R g>  are possible: for ( )6,4,4,2,1  we have h 3= , g 4= , R 14 g= <  while 

for ( )13,4,4,2,1  we have h 3= , g 4= , R 21 g= > . 

 

We close this introduction by indicating how the g-index can be derived from a modified 

Ferrers graph. Let ( )1 TC c ,...,c=  with Durfee square of side = h (cf. above). Enlarge this 

Durfee square to squares of side h 1,h 2,...,g+ +  by using, in the Ferrers graph of C , the 

elements outside the Durfee square: 1c h-  elements of the first row, 2c h-  elements of the 

second row,…, hc h-  elements of the thh  row, (if g h> ) h 1c +  elements of the ( )
th

h 1+  row,…, 

until a number of elements gc£  of the thg  row in the Ferrers graph of C . The newly found 

Ferrers graph has Durfee square of side size equal to g. 

 

In the next section we will calculate the Lorenz-curve 
C'L  of C'  (the conjugate of C ) in 

function of the Lorenz-curve CL  of C  and the elements ic . Examples are given. 

 

In the third section we present a theory of conjugate partitions where r ranges in an interval 

[ ]0,T  instead of { }r 1,...,TÎ  for rc . It will turn out that C  is replaced by the rank-frequency 

function   of a continuous IPP and that its conjugate is nothing else than 1- , the inverse of 

this function. Ferrers graphs and Durfee squares are discussed in this continuous setting. We 
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also present a formula for the Lorenz-curve 1L
-  of the conjugate of   in function of the 

Lorenz-curve L  of   and of numbers ( )r , [ ]r 0,TÎ . Practical calculations show the value of 

this formula for the easy calculation of 1L
-  and we will give examples showing that 

1L L -= , 1L L ->  or 1L L -<  are possible (the inequality refers to the existence of a point 

in the open interval ] [0,1  on which this inequality is valid). For definitions of Lorenz-curves 

(in the discrete as well as in the continuous setting) we refer to Egghe (2005a,b) or to the 

definitions given in the next two sections. 

 

The paper closes with conclusions and some open problems. 

 

 

II.  The Lorenz-curve of the conjugate of a partition 

in function of the Lorenz-curve of the original 

partition 

 

Let ( )1 TC c ,...,c=  be the original partition: a decreasing vector of natural numbers (nonzero). 

The Lorenz-curve of C , denoted CL  maps the cumulative fraction of sources ( )
i

i 1,...,T
T

=  

onto the corresponding cumulative fraction of items: 

i

j

j 1

c

A

=

å
, where A is given by (1). So the 

Lorenz-curve connects (0,0) to (1,1) via the points    

 

 
1

( , )

i

j

j

c
i

T A




. 

 

Hence we have the concavely increasing function 

 

  

i

j

j 1

C

c
i

L
T A

=æ ö
÷ç =÷ç ÷çè ø

å
 (4) 
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(concave because C is decreasing). We refer to Egghe and Rousseau (1990), Egghe (2005a,b) 

for more (well-known) aspects of discrete Lorenz concentration theory. 

 

To be able to construct the Lorenz-curve of the conjugate partition C'  of C  we must model 

the general form of the vector C'  itself, in function of the elements in C  itself. By the very 

definition of conjugate partition of C  we have 

 

 {
T T 1 T T 2 T 1 1 2C C C C C C C

C' T,...,T,T 1,...,T 1,T 2,...,T 2,...,1,...,1

- - -- - -

æ ö
÷ç ÷ç= - - - - ÷ç ÷ç ÷çè ø

1442 443 1444442 444443 1444442 444443  (5) 

 

Note that this representation is also correct in case some i i 1c c +-  are zero. 

 

Denoting ( )' '

1 mC' c ,...,c=  we should have (cf. Andrews (1998)) that 

 

 
m T

'

j i

j 1 i 1

c c A
= =

= =å å  (6) 

 

This will be verified now. By (5) we have 

 

 

 

         T T 1 T T 1 T T 2 T 1 T 2 T 1Tc Tc Tc c c Tc Tc 2c 2c- - - - - -= + - - + + - - + +  

 

T 3 T 2 T 3 T 2 1 2Tc Tc 3c 3c ... c c- - - -- - + + + -  

 

         
T

i

i 1

c A
=

= =å  

 

by (1).                                                      ⁭ 

 

( )( ) ( )( ) ( )( )
m

'

j T T 1 T T 2 T 1 T 3 T 2 1 2

j 1

c Tc T 1 c c T 2 c c T 3 c c ... c c- - - - -

=

= + - - + - - + - - + + -å
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For the Lorenz-curve 
C'L  of C'  it is sufficient that we calculate 

C'L  in the nods 
1

j

c
 where 

 

 T T 1 T T i 1 T i 2j c c c ... c c- - + - += + - + + -  

 

 T i 1j c - += , (7) 

 

i.e. 
1

j

c
 versus the corresponding cumulative number of coordinates in (5), divided, by (6), by 

A. Hence 

 

T i 1

C' C'

1 1

cj
L L

c c

- +
æ ö æ ö

÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 

 

( )( ) ( )( ) ( )( ) ( )( )( )T T 1 T T 2 T 1 T 3 T 2 T i 1 T i 2

1
Tc T 1 c c T 2 c c T 3 c c ... T i 1 c c

A
- - - - - - + - += + - - + - - + - - + + - + -

 

which yields, after some calculation 

 

 ( )( )T i 1

C' T T 1 T i 2 T i 1

1

c 1
L c c ... c T i 1 c

c A

- +

- - + - +

æ ö
÷ç ÷= + + + + - +ç ÷ç ÷çè ø

 (8) 

 

( ) ( )
T

i 1 2 T i 1 T i 1

i 1

1
c c c ... c T i 1 c

A
- + - +

=

æ ö
÷ç= - + + + + - + ÷ç ÷ç ÷è ø

å                  (9) 

 

 T i 1

C' C T i 1

1

c T i 1 T i 1
L 1 L c

c T A

- +

- +

æ ö æ ö- + - +÷ç ÷ç÷= - +ç ÷ç÷ ÷ç ç÷ç è øè ø
 (10) 

 

for i 1,...,T= . In decreasing order of the abscissa of C'L , but in increasing order of the 

abscissa of CL , we get  

 

 i
C' C i

1

c i i
L 1 L c

c T A

æ ö æ ö÷ç ÷ç÷= - +ç ÷ç÷ ÷ç ç÷ç è øè ø
 (11) 
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which looks a bit simpler. We have proved the following proposition: 

 

Proposition 2: 

Let 
CL  denote the Lorenz-curve of partition ( )1 TC c ,...,c=  and 

C'L  denote the Lorenz-curve of 

the conjugate C'  of C , then, for all i 1,...,T=  we have 

 

 i
C' C i

1

c i i
L 1 L c

c T A

æ ö æ ö÷ç ÷ç÷= - +ç ÷ç÷ ÷ç ç÷ç è øè ø
 

 

Note that, when i varies, the abscissa of 
CL  and 

C'L  go in opposite direction (since C  

decreases). We can verify that, if i 1= , we have 

 

  

 ( ) 1
C' C

c1
L 1 1 L 1

T A

æ ö
÷ç= - + =÷ç ÷çè ø

 

 

by (4) and that, if i T= , we have 

 

( )T T
C' C

1

c Tc
L 1 L 1

c A

æ ö
÷ç ÷= - +ç ÷ç ÷çè ø

 

 

 TTc

A
=  (12) 

 

which is ok according to (5). Note also that the number of nods of CL  is equal to the number 

of nods of C'L  and is equal to the number of different values ic  in C , although dim C  can be 

different from dim C' . 

 

The valid remark (see above) that ( )C' ' C=  yields in (11) that 

 

 i i
C C'

1

c ci
L 1 L i

T c A

æ öæ ö ÷ç÷ç ÷= - +ç÷ç ÷÷ çç ÷çè ø è ø
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which is the same equation as (11) (as it should). 

 

We also note that, in the first nod of 
CL  we have that the slope of the line connecting this 

point 
C

1 1
,L

T T

æ öæ ö÷ç ÷ç ÷÷ç ç ÷÷çç ÷è øè ø
 with ( )0,0  equals (by (4)) 

 

 

1
C

1

1 cL
c TT A

1 T A

T

æ ö
÷ç ÷ç ÷çè ø

= =  (13) 

 

For the first nod of 
C'L  we have that the slope of the line connecting this point T T

C'

1 1

c c
,L

c c

æ öæ ö÷ç ÷ç ÷÷ç ç ÷÷ç ç ÷÷ç ÷ç è øè ø
 

with ( )0,0  equals (by (12)) 

 

 

T
T

C'

1 1

T T

1 1

c TcL
c c TA

c c A

c c

æ ö÷ç ÷ç ÷ç ÷çè ø
= =  (14) 

 

, hence equal to (13). This implies that, if T

1

c1

T c
< , for certain values 

1

T
> , C'L  is above CL  

(since CL  has a nod in 
1

T
) and, analogously, if T

1

c1

T c
>  that, for certain values T

1

c

c
> , CL  is 

above C'L  (since C'L  has a nod in T

1

c

c
, if T T 1c c -¹ ). Further arguments on C C'L L³  or 

C' CL L³  on ] [0,1  are left as an open problem. 

 

Examples: 

1. ( )C 3,2,1= , T 3= , A 6= . Then ( )C' 3,2,1 C= = . We can verify that C C'L L= : 

C

1 1
L

3 2

æ ö
÷ç =÷ç ÷çè ø

 and C

2 5
L

3 6

æ ö
÷ç =÷ç ÷çè ø

 and the same for C' . Using (11) we find 

 

 2
C' C' C 2

1

c 2 2 2
L L 1 L c

c 3 3 6

æ ö æ ö æ ö÷ç ÷ ÷ç ç÷= = - +ç ÷ ÷ç ç÷ ÷ ÷ç ç ç÷ç è ø è øè ø
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5

6
=  

 

 and 

 

 ( )3
C' C' C 3

1

c 1 3
L L 1 L 1 c

c 3 6

æ ö æ ö÷ç ÷ç÷= = - +ç ÷ç÷ ÷ç ç÷ç è øè ø
 

 

   
3 1

6 2
= =  

 

2. ( )C 3,3,1= , T 3= , A 7= , hence ( )C' 3,2,2= . We have C

1 3
L

3 7

æ ö
÷ç =÷ç ÷çè ø

, C

2 6
L

3 7

æ ö
÷ç =÷ç ÷çè ø

. Using 

( )C' 3,2,2=  or (11) we find (there is only one nod for 
C'L ), e.g. via (11) 

 

 3
C' C'

1

c 1
L L

c 3

æ ö æ ö÷ç ÷ç÷=ç ÷ç÷ ÷ç ç÷ç è øè ø
 

 

    ( )C

3 3
1 L 1

7 7
= - + =  

 

 In 
2

3
 as abscissa (which is not a nod for C'L ) we have C'

2 5
L

3 7

æ ö
÷ç =÷ç ÷çè ø

 (half way between 

3

7
 and 1), hence here C C'L L>  since C

2 6
L

3 7

æ ö
÷ç =÷ç ÷çè ø

. 

 

 

III.  Theory of continuous partitions, their 

conjugates and Lorenz-curves 

 

Since discrete partitions ( )1 TC c ,...,c=  can be interepreted, informetrically, as rc = the number 

of items in the source on rank r ( )r 1,...,T=  (where the rc  are ranked in decreasing order), we 
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have an interpretation of C as a rank-order function. Rank-order functions of continuous 

variables are well-known in informetrics : it are strictly decreasing functions 

[ ] ( ): r 0,T r Î ®  where ( )r  is the density of the items in the rank-density r. As in (1) we 

denote by A the total number of items, hence 

 

 ( )
T

0
r dr A =ò  (15) 

 

We suppose   to be differentiable (hence also continuous) so that ( )r  also ranges in an 

interval that we suppose (for reasons which will be given later) to start in 0 : let us denote this 

interval by [ ]0,m . This is almost the same as the rank-frequency functions described in Egghe 

(2005a) except that these functions range in an interval starting in 1 (this was needed for 

developing a Lotkaian informetrics theory); here we need the interval [ ]0,m  to develop the 

theory of the conjugate of   (see further). Note that in Egghe (2005a) this function is denoted 

by g but, to avoid confusion with the in this paper used g-index, we use the notation  . 

 

Fig. 3 gives an example of such a rank-frequency function. In this graph we clearly see the 

continuous version of the Durfee square. If we turn this graph clockwise over 90° we obtain 

the continuous version of Ferrers graph (and again the Durfee square). As in the discrete case 

the side of this Durfee square is the h-index of   

 

r

j = (r)

m

h

h

0 T  

 

Fig. 3.  Example of the function  , Durfee 

square and the h-index. 
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m

h

h

T  

 

Fig. 4.  Ferrers graph, Durfee square 

and h-index of  . 

 

 

Now we will define the size-frequency function   (denoted in Egghe (2005a) by f) as 

follows (see also Egghe and Rousseau (2003)) : for [ ]j 0,mÎ , 

 

 ( )
( )( )1

1
j

' j


 -
= -  (16) 

 

Note that 1- , the inverse function of  , exists since   is strictly decreasing. 

 

Equivalently, we have, if ( )j r= , [ ]r 0,TÎ , [ ]j 0,mÎ , 

 

 ( ) ( ) ( )
m

1

j
r r j j j' dj' -= = = ò  (17) 

 

From this it follows that, for ( )j r= , 

 

 ( ) ( )
r m

0 j
r ' dr ' j' j' dj' =ò ò  (18) 
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, being the total number of items in the sources on rank densities [ ]r ' 0,rÎ . Formula (18) is an 

exercise in Egghe (2005a) (Exercise II.1.2.3, p. 110) for which the proof was not given. 

Because of this and for the sake of completeness, we present here the short proof. 

 

Proof of formula (18) : 

From formula (16) we have, for all [ ]j 0,mÎ  : 

 

 
( )( )

( )
1

j
jf j

' j -
- =  

 

, hence 

 

 
( )( )

( )
m m

1j j

j'dj'
j'f j' dj'

' j' -

-
=ò ò  (19) 

 

For ( )j r=  we have ( )1r j-= , ( )dj ' r dr=  and, since ( )0 m =  we have by (19) : 

 

 ( )
( ) ( )

( )( )( )

m r ' 0

1j r ' r

r ' d r
j'f j' dj'

' r

 

  

=

-=

-
=ò ò  

 

( )
r

0
r ' dr '= ò .                     ⁭ 

 

So, this result is not different from the one in Egghe (2005a) where j 1³  while here j 0³ . 

 

In the discrete case, the conjugate of the partition ( )1 TC c ,...,c=  is, by definition, 

( )' '

1 mC' c ,...,c= , where for each j 1,...,m= , '

jc  equals the number of coordinates in C  that are 

larger than or equal to j. Hence, as mentioned above, in the informetric terminology, the 

conjugate of the rank-frequency function C  is ²the function yielding for each j 1,...,m=  the 

number of sources with j³  items. 

 



 16 

Hence, in our continuous case, the conjugate of the rank-frequency function   can only be the 

inverse function 

 

 [ ] ( ) [ ]1 1: j 0,m j r 0,T - -Î ® = Î  (20) 

 

For a conjugate partition, in the discrete case, we required that the sum of the coordinates 

should be the same as the sum of the coordinates of the original partition, denoted A (see 

formulae (1) and (2)). This should also be the case here (e.g. also for simplicity in the 

construction of the Lorenz-curves, to be introduced further on). It will now become clear why 

we assumed [ ]j 0,mÎ . We have the following proposition. 

 

Proposition 3 : 

 

 ( ) ( )
m T

1

0 0
j dj r dr A - = =ò ò  (21) 

 

Proof : By formula (17) : 

 

 ( ) ( )
m j m j' m

1

0 j 0 j' j
j dj j' dj'dj 

= =
-

= =
=ò ò ò  

 

which is equal, by Fubini’s theorem to 

 

         ( )
j' m j j'

j' 0 j 0
j' djdj'

= =

= =
= ò ò  

 

         ( )
j' m

j' 0
j' j' dj' A

=

=
= =ò  

 

by (15) and (18) and the fact that ( )T 0 = .                      ⁭ 

 

For 1-  we can make similar graphs as for   in Figs. 3 and 4. As in Figs. 1 and 2, Ferrers 

graph of 1-  is a mirroring of the one of   (Fig. 4) over the diagonal (as is the graph of 1-  

itself with respect to the one of   (Fig. 3)). 
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Proposition 1 for discrete partitions is also valid in the continuous case. 

 

Proposition 4 : The h-index of a partition equals the h-index of its conjugate. 

 

Proof :  

By the definition, the h-index is the unique rank r h=  for which ( )h h =  (see Egghe and 

Rousseau (2006) for a proof of the existence of h). Obviously ( )1h h-=  and 1-  is the 

conjugate partition of  .                       ⁭ 

 

Continuous Lorenz theory is described in Egghe (2005a,b). We will denote the Lorenz-curve 

of   by L  and the one of its conjugate by 1L
- . By definition, we have for all [ ]r 0,TÎ  and all 

[ ]j 0,mÎ  : 

  

 
( )

r

0
r ' dr 'r

L
T A



æ ö
÷ç =÷ç ÷çè ø

ò
 (22) 

 

 
( )

1

j
1

0
j' dj'j

L
m A



-

-

æ ö
÷ç =÷ç ÷çè ø

ò
 (23) 

 

Note that the denominator in both cases is A because of Proposition 3. The relation between 

L  and 1L
-  is as given in Proposition 5. 

 

Proposition 5 : For all ( )j r=  : 

 

 
( ) ( )

1 1

r r rj r
L L 1 L

m m T A
 

 
- -

æ ö æ ö æ ö÷ç ÷ ÷ç ç÷= = - +ç ÷ ÷ç ç÷ ÷ ÷ç ç ç÷ç è ø è øè ø
 (24) 

 

Proof : Using (17) and (23) we have 

 

 ( )1

j' j j'' m

j' 0 j'' j

j 1
L j'' dj'' dj'

m A
-

= =

= =

æ ö æ ö÷ç ÷ç=÷ ÷ç ç ÷÷ç è øè ø ò ò  (25) 
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But 

 

( ) ( ) ( )
j' j j'' m j'' j j' j'' j'' m j' j

j' 0 j'' j' j'' 0 j' 0 j'' j j' 0
j'' dj''dj' j'' dj'dj'' j'' dj'dj''  

= = = = = =

= = = = = =
= +ò ò ò ò ò ò  

 

by Fubini’s theorem. This equals 

 

( ) ( )
j'' j j'' m

j'' 0 j'' j
j'' j'' dj'' j j'' dj'' 

= =

= =
+ò ò  

 

( ) ( ) ( )
j'' m j'' m j'' m

j'' 0 j'' j j'' j
j'' j'' dj'' j'' j'' dj'' j j'' dj''  

= = =

= = =
= - +ò ò ò  

 

( )
r

A AL r r
T

 
æ ö

÷ç= - +÷ç ÷çè ø
, 

 

by (18) (and the fact that ( )T 0 = ), (17) (and the fact that ( )j r= ) and by (22). This proves 

(24), using (25).                           ⁭ 

 

So we found, essentially, the same formula (11) as in the discrete case. Note that for the h-

index h (of   or of  1-  –  see Proposition 4) we have, from (24), 

 

 1

2h h h
L 1 L

m T A
-

æ ö æ ö
÷ ÷ç ç= - +÷ ÷ç ç÷ ÷ç çè ø è ø

 (26) 

 

and for the g-index g of   we have ( ( )j g=  here) 

 

 
( ) ( )

1

2g g gg
L 1

m A A

 
-

æ ö
÷ç ÷= - +ç ÷ç ÷çè ø

 (27) 

 

 
( )

( )( )1

g g
L 1 g g

m A


-

æ ö
÷ç ÷= - -ç ÷ç ÷çè ø

 (28) 
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(note that ( )g g>  since ( )g h h> =  and since   is decreasing). 

 

Formula (24) is easy to apply as the next examples show. 

 

Examples : For 0>  (a parameter) define 

 

 ( )
m

r m r
T




 = -  (29) 

 

  is strictly decreasing, ( )0 m = , ( )T 0 = . Varying   will lead to an infinite number of 

examples. We have 

 

 ( )
1r

0

r m
r ' dr ' mr .

1 T








+

= -
+ò  (30) 

 

so that 

 

 

1r m
mr .

r 1 T
L

T A









+

-
æ ö +÷ç =÷ç ÷çè ø

 (31) 

 

The requirement ( )L 1 1 =  leads to the relation (this also follows from (30), requiring 

( )
T

0
r ' dr ' A =ò ) 

 

 
mT

. 1
1 A




=

+
 (32) 

 

Now (24) yields, by (29) 

 

 
( )

1 1

r r
L L 1

m T



 


- -

æ ö æ ö÷ ÷ç ç÷ ÷= -ç ç÷ ÷ç ç ÷÷ çç è øè ø
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( )r rr

1 L
T A



æ ö
÷ç= - +÷ç ÷çè ø

 

 

 
( )

1

1r r m
L 1

m 1 T A





 


-

+æ ö
÷ç ÷= -ç ÷ç ÷ç +è ø

 (33) 

 

Requirement (32) makes sure that ( )1L 0 0
- = , ( )1L 1 1

- =  as it should. 

 

Of course, we want to compare L  and 1L
-  in the same abscissa 

r

T
, [ ]r 0,TÎ . For L  we have 

already (31). For 1L
-  we put 

 

 
( )xr x

1
T m T






= = -  

 

hence  

 

 ( )( )
1

1x T T r -= -  (34) 

 

So 

 

   

( )( )
1 1

1
1T T r

r
L L

T m

 

 



- -

-
æ öæ ö÷ç ÷ç ÷÷-ç ç ÷÷ç ç ÷÷çæ ö ç è ø÷÷ çç ÷=÷ ç ÷ç ÷ç ÷çè ø ÷ç ÷ç ÷ç ÷ç ÷è ø

 

 

 ( )( )
1

1m
1 T T r

1 AT


 







+
-= - -

+
 (35) 

 

Since both Lorenz-curves are defined on the interval [ ]0,1 , it is handy to express L  and 1L
-  

as function of 
r

T
= . We have then, using (31), (32) and (35): 

 



 21 

 ( )
1

L 1
1





 
 

 

æ ö+ ÷ç ÷= -ç ÷ç ÷ç +è ø
 (36) 

 

 ( ) ( )1

1

L 1 1





 -

+

= - -  (37) 

 

Note that for 1= , ( ) ( )1

2L L 2 
   -= = - . For 1 ¹ , we are not able to determine the 

relations between ( )L   and ( )1L


- , although some numerical calculations suggest that 

1L L ->  in case 2=  (perhaps this is so for all 1> ) and 1L L -<  in case 0.5=  

(perhaps this is so for all 0 1< < ). 

 

In general, however, we can show that rank-frequency functions   exist such that L  and 1L
-  

intersect in a point in the open interval ] [0,1 . Indeed, for [ ]0,1 Î  we have, by (22) and (23) 

that 

 

 ( ) ( )' 1
L T

A
   =  (38) 

 

 ( ) ( )1

' 11
L m

A
  -

-=  (39) 

 

A necessary condition for 1L L- <  is that ( ) ( )1

' 'L 0 L 0- <  and ( ) ( )1

' 'L 1 L 1- > . A necessary 

condition for 1L L- >  is that ( ) ( )1

' 'L 0 L 0- >  and ( ) ( )1

' 'L 1 L 1- < . So, if for 0» , 

( ) ( )1

' 'L L
 - <  and, if for 1 » , ( ) ( )1

' 'L L
 - <  then L  and 1L

-  must intersect in a point in 

] [0,1 . By (38) and (39) we hence require (in order that L  and 1L
-  intersect), that for 0» , 

( ) ( )1 m T   - <  and that for 1 » , ( ) ( )1 m T   - < . This is the case for   as in Fig. 5 if 

( ) ( )tg ' 0 tg ' T   = < =  and T m< . 
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r

m

m

0 T

j = (r)

T



(T)

-1(m)



 

 

Fig. 5.  An example of a function   such that  

L  and 1L
-  intersect. 

 

 

 

 

Also an example where T m>  and tg tg >  yield intersecting Lorenz-curves L  and 1L
-  

(here the roles of   and 1-  are interchanged). 

 

 

IV.  Conclusions and open problems 

 

We have interpreted the discrete theory of partitions, conjugate partitions, Ferrers graph and 

Durfee square in informetrics. We showed that the h-index of a partition equals the one of the 

conjugate partition and we noted that this is false for the g-index and the R-index. A 

modification of Ferrers graph yielding the g-index has been presented. A formula for the 

Lorenz-curve of the conjugate partition in function of the one of the original partition is given. 
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A continuous theory of partitions, conjugate partitions, Ferrers graph and Durfee square has 

been given. Also here a partition and its conjugate have the same h-index. Also here we 

proved a formula for the Lorenz-curve of a conjugate partition in function of the one of the 

original one. Examples are given. 

 

Although we have proved that these Lorenz-curves can intersect in the open interval ] [0,1 , we 

had to leave open to problem of the characterization of partitions (discrete or continuous) for 

which certain relations exist between their Lorenz-curves and the ones of the conjugate 

partitions. In particular we conjecture (in the discrete case) that, if the partition and its 

conjugate have the same dimension (i.e. where ( )1 TC c ,...,c=  where 
1c T= = dim C, then   

dim C = dim C′  where C′ is the conjugate partition of C) that their Lorenz-curves do not 

intersect (except, of course, in ( )0,0  and ( )1,1 ). 
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