
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Flexible estimation of serial correlation in nonlinear mixed models

Peer-reviewed author version

SERROYEN, Jan; MOLENBERGHS, Geert; AERTS, Marc; Vloeberghs, Ellen; De

Deyn, Peter Paul & VERBEKE, Geert (2010) Flexible estimation of serial correlation

in nonlinear mixed models. In: JOURNAL OF APPLIED STATISTICS, 37(5). p. 833-846.

DOI: 10.1080/02664760902914425

Handle: http://hdl.handle.net/1942/11050



Flexible Estimation of Serial Correlation in

Nonlinear Mixed Models

Jan Serroyen 1, Geert Molenberghs 2,3, Marc Aerts 2

Ellen Vloeberghs 4, Peter Paul De Deyn 4, Geert Verbeke 3,2

1 Methodology and Statistics, University Maastricht,

Peter Debyeplein 1, 6229 HA Maastricht, the Netherlands

2 I-BioStat, Hasselt University,

Agoralaan 1, 3590 Diepenbeek, Belgium

3 I-BioStat, Katholieke Universiteit Leuven,
Kapucijnenvoer 35, 3000 Leuven, Belgium

4 Laboratory of Neurochemistry & Behaviour, University of

Antwerp, Universiteitsplein 1, 2170 Wilrijk, Belgium

Abstract

In the conventional linear mixed-effects model, four structures can be distinguished:

fixed effects, random effects, measurement error and serial correlation. The latter cap-

tures the phenomenon that the correlation structure within a subject depends on the

time lag between two measurements. While the general linear mixed model is rather

flexible, the need has arisen to further increase flexibility. In addition to work done

in the area, we we propose the use of spline-based modeling of the serial correlation

function, so as to allow for additional flexibility. The approach is applied to data from

a pre-clinical experiment in dementia which studied the eating and drinking behavior in

mice.

Some Keywords: Alzheimer’s Disease; Dementia; Ordinary least squares; Random

effect.

1 Introduction

Arguably, the linear mixed-effects model (Laird and Ware 1982, Verbeke and Molenberghs

2000, Diggle et al 2002) has become the most commonly used tool for analyzing continuous,
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normally distributed longitudinal data, arising from measuring a subject’s response repeat-

edly over time. In its general formulation, based on Diggle’s (1988) model, four structures

can be distinguished. First, so-called fixed regression effects describe population-averaged

relationships between covariates and the outcome of interest. Second, between-subject vari-

ability is captured by means of subject-specific parameters. For example, one often assumes

a subject-specific intercept. Such an effect is then assumed to follow from a stochastic dis-

tribution, usually of the normal type. This gives rise to the term random effect. Third, the

outcome is often measured with error, adding a second stochastic component to the model, the

measurement error , usually assumed to follow a normal distribution. When model specifica-

tion would conclude here, the so-called conditional independence model is obtained, meaning

that all within-subject correlation is captured by the random-effects structure. In case this

is deemed less plausible, the fourth structure, termed serial correlation can be included into

the model. Broadly speaking, serial correlation captures the phenomenon that the correlation

structure within a subject depends on the time lag between two measurements. Often, indeed,

measurements taken closer in time will exhibit a larger correlation than when they are fur-

ther apart. Diggle (1988) assumed the serial correlation to arise from a normally distributed

stochastic process. Combining these four components leads to the so-called general linear

mixed-effects model, which has been implemented in a good number of standard statistical

software packages, such as the SAS procedure MIXED or similar procedures in S-PLUS and R.

Standard fitting methods are based on maximum likelihood and variations there upon. Dig-

gle (1988) proposed the semi-variogram as a convenient graphical tool to study the overall

variance-covariance structure and to separate it into its three constituents. For this tool to be

applicable, one has to assume a constant variance over time and restrict the random-effects

structure to a random intercept only.

While the above model is rather flexible, the need has arisen for further flexibility. In response,

quite some work has been done to relax the model assumptions and/or to extend the model.

One strand of research is directed towards flexible covariance-structure modeling (Pan and

Mackenzie 2003), while another strand of research has considered spline-based formulations

for the random-effects structure (Verbyla et al 1999, Ruppert et al 2003). Such spline-based
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models can be implemented, on a routine basis, in the SAS procedure GLIMMIX. Ruppert et

al (2003) present the necessary S-Plus code to fit their model.

Comparatively less work has been devoted to more flexible serial correlation structures. Diggle

and Verbyla (1998) proposed kernel smoothing to provide a nom-parametric estimator for

the covariance structure without assuming stationarity. As mentioned by these authors, in

practice it often becomes essential to impose structural restrictions on the covariance matrix

either by smoothing or by fitting a parametric model. In their approach they clearly opt for

(non-parametric) smoothing, while we believe that the spline-based approach, which we will

introduce further on, strikes a good balance between the parametric and smoothing ideas.

Verbeke, Lesaffre, and Brant (1998) presented an extension of the semi-variogram, allowing

for random effects other than merely a random intercept. While elegant in concept, the

method is not invariant to the choice of transformation on which it is based. Lesaffre et al

(2000) used fractional polynomials (Royston and Altman 1994) to obtain a flexible yet still

fully parametric description of the serial correlation function. This is an appealing idea, worth

of further refinement. Consequently, it is taken up in this paper. Next to this, we also propose

the use of spline-based modeling of the serial correlation function.

When one is not directly interested in the correlation structure as such, but merely needs to

correct for it, the generalized estimating equations (GEE) approach of Liang and Zeger (1986)

can be adopted. Even in this situation, however, there are reasons to prefer a mixed model

approach. First, this is the case when subject-specific predictions are needed. Second, the full

likelihood-based mixed models are preferable when one is confronted with missing data and

the assumption of missing completely at random (MCAR, Little and Rubin 2002) is considered

too restrictive and one needs to revert to missing at random (MAR).

Section 2 introduces the motivating case study, of which the analysis is taken up in Section 5.

An overview of existing methodology, the linear mixed model and relevant extensions to be

found in the literature, is the topic of Section 3. Our proposals for flexible serial correlation

methodology are described in Section 4.
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2 Motivating Case Study

Alzheimer’s disease (AD) and other dementias have been defined by cognitive and non-

cognitive symptomatology. These neuropsychological characteristics are referred to as Behav-

ioral and Psychological Signs and symptoms of Dementia (BPSD). Besides these behavioral

disturbances and psychological symptoms described by Reisberg et al (1987), demented pa-

tients develop changes in eating and drinking behavior. The data introduced in this section

were obtained from a study which was set up to investigate behavioral changes in genetically

modified mice. These so-called transgenic APP23 mice were genetically engineered based on

an animal model for dementia (Vloeberghs et al 2004). The specific aim of the study was

to investigate whether this valuable mouse model develops eating and drinking disturbances.

The APP23 mice were compared with wild-type (WT) control littermates. The total sample

size was 85, of which 44 were transgenic mice and 41 were controls.

Eating and drinking behavior were simultaneously recorded for one week by employing so-

called Skinner boxes placed inside ventilated isolation compartments. Each mouse cubicle was

equipped with a pellet feeder and a water bottle (optical lickometer) to provide 20mg dustless

precision pellets of the rodent grain-based formula and tap water. Photocell sensors were used

to detect pellet removal, i.e., the number of pellets taken, and the number of licks at the

drinking tube. Registration periods st Wednesday at 10 am and ended exactly 167 hours later

on Wednesday at 9 am. During this 1-week recording period, the 12-hour light—12-hour dark

cycle was continued in the same way as in the facility where mice were previously housed (i.e.,

lights off at 8 pm).

The response variables were defined as the total number of licks and pellets per hour. Since

these responses showed severe right-tailed skewness, they were transformed to log(response +

1). Figure 1 presents the average evolutions in the log-transformed number of licks and pellets

over time for the WT and APP23 group. A circadian pattern can clearly be observed: the

mice show more activity at night (e.g., after 12 hours) compared to during the day (e.g., after

24 hours). Let log(`ij + 1) be the log-transformed number of licks for mouse i at time point

j. The observed individual profiles for log(`ij + 1) of 5 randomly selected mice are shown in
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Figure 1: Average evolutions for log-transformed number of licks and pellets over time.

Figure 2, while the corresponding observed variance function is portrayed in the left hand panel

of Figure 3. The variability is not constant and the circadian pattern also seems to be present in

the variance structure. The circadian rhythm thus appears to be a dominant biological factor in

this experiment. The right hand panel of Figure 3 presents the semi-variogram for log(`ij +1),

based on a random-intercept model with an unstructured model for the mean. However, we

should be careful in interpreting this semi-variogram, since the non-constant variance is a clear

indication of non-stationarity, thereby rendering the semi-variogram less than trustworthy. It is

therefore prudent to consider the semi-variogram for exploratory purposes only. Nevertheless,

there appears to be signs of a circadian trend in this graph as well. This was also the direct

motivation for studying whether the circadian pattern was also present on the level of serial

correlation. To corroborate this finding, we have also constructed a sample semi-variogram,

in terms of both mean and median values, supplemented with the interquartile ranges. These

can be found in Figure 4. Note that there is both a large spread as well as apparent asymmetry

(given the difference between mean and median). Both of these phenomena result from the

quadratic nature of the variogram contributions. One can see an apparent discrepancy between

the variograms in Figures 3 and 4. This is because the semi-variogram in Figure 4 is based on

standardised residuals. Thus, when the variance function is non-constant, but is assumed to

be constant nevertheless when computing semi-variogram, it may be less than trustworthy.

5



0 50 100 150

0
2

4
6

8

Time (hours)

lo
g
(l

ij
+

1
)

Figure 2: Observed profiles for log(`ij + 1) of 5 randomly selected mice.

3 Existing Methodology

After briefly describing the well-known linear mixed model, we turn to existing proposals for

flexible random-effects modeling, where the main focus will be placed on spline-based methods.

3.1 The Linear Mixed Model

Let Yi denote the ni-dimensional vector of measurements available for subject i = 1, . . . , N .

A general linear mixed model decomposes Yi as:

Yi = Xiβ + Zibi + εi, (1)

in which β is a vector of population-average regression coefficients called fixed effects, and

where bi is a vector of subject-specific regression coefficients. The bi describe how the

evolution of the ith subject deviates from the average evolution in the population. The matrices

Xi and Zi are (ni × p) and (ni × q) matrices of known covariates. The random effects bi

and residual components εi are assumed to be independent with distributions N(0, D), and

N(0, Σi), respectively. Note that Σi depends on i only dimension-wise, i.e., through the

number of measurements available for a particular subject. In other words, the parameters

governing Σi are generally common to all subjects. Let f(Yi|bi) and f(bi) be the density
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Figure 3: Left hand panel: observed variance function for log(`ij + 1). Right hand panel:
Semi-variogram for log(`ij + 1).

functions of Yi conditional on bi, and of bi, respectively. The marginal density function of Yi

is then given by the density of the ni-dimensional normal distribution N(Xiβ, ZiDZ ′

i + Σi).

Further, let α denote the vector of all variance and covariance parameters (usually called

variance components) found in Vi = ZiDZ ′

i +Σi, that is, α consists of the q(q+1)/2 different

elements in D and of all parameters in Σi. Finally, let θ = (β′, α′) be the s-dimensional vector

of all parameters in the marginal model for Yi.

Diggle et al (2002), based on Diggle (1988), proposed such a general model. They assume

that εi has constant variance and can be decomposed as εi = ε(1)i + ε(2)i in which ε(2)i is a

component of serial correlation, suggesting that at least part of an individual’s observed profile

is a response to time-varying stochastic processes operating within that individual. This type

of random variation results in a correlation between serial measurements, which is usually,

and quite sensibly, a decreasing function of the time separation between these measurements.

Further, ε(1)i is an extra component of measurement error reflecting variation added by the

measurement process itself, and assumed to be independent of ε(2)i. The corresponding

distributional assumptions are ε(1)i ∼ N(0, σ2Ini
) and ε(2)i ∼ N(0, τ 2Hi). The model is

completed by assuming a specific structure for the (ni × ni) correlation matrix Hi. One

usually assumes that the serial effect ε(2)i is a population phenomenon, independent of the

individual. The serial correlation matrix Hi then only depends on i through the number of ni

7



0 20 40 60 80 100 120

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

Time Lag (u)

S
a

m
p

le
 s

e
m

i−
v
a

ri
o

g
ra

m
  

 v̂
(u

)
mean

median

P75

P25

Figure 4: Sample semi-variogram: mean and median values, supplemented with interquartile
ranges, plotted over time.

observations and the time points tij at which measurements were taken. Further, it is assumed

that the (j, k) element hijk of Hi is modeled as

hijk = g(|tij − tik|) (2)

for some decreasing function g(·) with g(0) = 1. This means that the correlation between the

measurements ε(1)ij and ε(2)ik only depends on the time interval between the measurements

yij and yik, and decreases if the length of this interval increases.

Two frequently used g(·) functions are the exponential and Gaussian serial correlation func-

tions, defined as g(u) = exp(−φu) and g(u) = exp(−φu2), respectively (φ > 0).

The marginal covariance matrix is then of the form Vi = ZiDZ ′

i + τ 2Hi + σ2Ini
. Inference

usually proceeds via maximum likelihood (ML) or restricted maximum likelihood (REML)

(Verbeke and Molenberghs 2000).
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3.2 Fractional Polynomials

Fractional polynomials have been used in several contexts as a flexible regression device.

Royston and Altman (1994) define a fractional polynomial as any function of the form

f(u) =
m

∑

j=0

φj Hj(X),

where the degree m is a positive integer, and φ0, . . . , φm are real-valued unknown regression

coefficients. Further, Hj(X) is defined as

Hj(X) =

{

xpj if pj 6= pj−1,
Hj−1(X) ln(X) if pj = pj−1.

(3)

where H0(x) = 1, p0 = 0, and p1 ≤ . . . ≤ pm are real-valued prespecified powers.

In the context of linear and logistic regression analyses, Royston and Altman (1994) have

shown that the family of fractional polynomials is very flexible and that models with degree

m larger than 2 are rarely required. In practice, several values for the powers p1, . . . , pm can

be tried and the model with the best selected.

In the context of the linear mixed model, fractional polynomials have been used both in the

fixed-effects structure (Verbeke and Molenberghs 2000, Ch. 24.5) as well as in the serial

correlation structure. We will return to the latter application in Section 4.1.

3.3 Splines

Another flexible way for obtaining a smooth fit to one’s data is through splines , which are

piecewise polynomials with components smoothly spliced together. The joining points of the

polynomial pieces are called knots , which do not have to be evenly spaced. A spline is of

degree p when the highest degree of the polynomial segments is p. Ruppert et al (2003)

define a pth-degree spline model with knots at κ1, . . . , κK as

f(x) = β0 + β1 x + . . . + βp xp +
K

∑

k=1

βp+k (x − κk)
p
+, (4)

where (x − κk)+ is the truncated power basis function, i.e., the positive part of the function

(x − κk). Other possible basis functions include the B-spline (Dierckx 1993), natural cubic

spline (Eubank 1988), and radial basis (Green and Silverman 1994).
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A simple and straightforward way to fit splines is by using ordinary least squares to estimate

the (unrestricted) knot point coefficients βp+k. This essentially means that the coefficient at

each knot point is considered a fixed effect and this is usually referred to as a regression spline.

However, this approach usually tends to overfit the data, leading to too coarse a regression

curve, unless the number of knot points is small and their location carefully chosen, as in

adaptive splines (Zhang 2004).

Owing to the aforementioned coarseness of the parametric spline, various methods have been

developed to constrain the knots’ influence. Classically, the amount of smoothing is controlled

by adding a term to the likelihood function, penalizing large coefficients at the knot points,

which amounts to counterbalancing such coefficients’ contribution to the raggedness of the

curves. A candidate penalty term, though not the only one, is λ
∑K

k=1 β2
p+k. There is a

vast amount of literature on the selection of the optimal smoothing parameter λ. Roughly

speaking, there are three (related) ways to determine the smoothing parameter λ. A first option

is cross-validation, where for a grid of λ-values the squared error loss criterion is minimized in a

leave-one-out cross-validation procedure. A second approach is the use of some model selection

criterion, such as Akaike’s Information Criterion (AIC, Hurvich, Simonoff, and Tsai 1998). This

method, however, requires a so-called equivalent number of parameters or the effective degrees

of freedom (Ruppert et al 2003) to define the AIC appropriately. Thirdly, penalized splines

can also be represented in mixed-model form (Verbyla et al 1999, Ruppert et al 2003), in the

sense that each knot point coefficient acts as a random effect. This results in a multivariate

normal density entering the marginal likelihood, which then needs to be integrated out. The

variance component governing these additional random effects is usually kept constant across

knot points; it controls and describes the degree of flexibility and smoothness. The fitted

curve can be constructed by means of empirical Bayes estimation.

The linear mixed model representation can be set up by considering the following random-spline

design matrix:

Zi =









(x1 − κ1)+ · · · (x1 − κK)+
...

. . .
...

(xn − κ1)+ · · · (xn − κK)+









.

Of course, such additional random effects can be combined with random effects already present
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in (1). Other modeling assumptions expressed in conjunction with (1) are left unaltered. Let

the sole variance component governing the smoothing process be σ2
u and assume the residual

error structure is of the conditional independence type with variance component σ2
ε , then the

smoothing parameter λ2 can be shown to take the form λ2 = σ2
ε/σ

2
u (Verbyla et al 1999,

Ruppert et al 2003).

4 Flexible Serial Correlation Structures

In analogy with choosing flexible functions and modeling concepts for the fixed and random

effects, it would be desirable to have available flexible tools for the serial structure. Lesaffre et

al (2000) proposed fractional polynomials to flexibly model this structure, which, jointly with

some issues surrounding it, will be reviewed briefly in Section 4.1. The subsequent section deals

with penalized splines, the concept of which was introduced in Section 3.3, when describing

the serial association. All methods are rooted in studying the function g(·) in (2).

4.1 Fractional Polynomials

Lesaffre et al (2000) applied fractional polynomials to model the serial correlation function

g(·). Their model is of the form

τ 2g(u) = exp







φ0 +
m

∑

j=1

φj u(pj)







. (5)

This parameterization does not a priori ensure that g(·) is a decreasing function, nor that it

is has an upper bound of 1. Furthermore, these authors construct a fractional polynomial of

degree 4, using the power set {0, 0.5, 1, 2}, in clear contrast with the recommended degree of

m = 2. As a result, concerns of multicollinearity and model stability can be raised.

The fractional polynomial approach, using the recommended degree of m = 2, will be applied

to the case study data and the results will be presented in Section 5.
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4.2 Splines

Returning to the smoothing spline ideas laid out in Section 3.3, we are now in a position to

formulate a spline model for the serial process:

τ 2g(u) =
exp(φ0)

1 + exp{φ1 + φ2 log(u) +
∑K

k=1 φk+2[log(u)− log(κk)]+}
. (6)

This means that φ0 acts as a (strictly positive) intercept, capturing the variance of the se-

rial correlation component, τ 2. Further, φ1 acts as an intercept, φ2 is the linear slope and

φ3, . . . , φK+2 are the spline coefficients associated with the serial correlation function g(·). The

logistic link ensures that the estimated g(·) function stays within the [0, 1] interval. Defining

the spline on the log-scale, using argument log(u), and constraining φ2 to be strictly pos-

itive, the serial correlation function satisfies the natural assumption that limu→0 g(u) = 1.

Additionally, the use of the log-scale improved convergence considerably.

For a particular, rich enough set of knots, a penalty term is added to the marginal likelihood

to obtain a smooth fit, leading to the following marginal log-likelihood function:

`(θ) = `ML(θ) + λ
K

∑

k=1

φ2
k+2, (7)

where ` denotes the natural logarithm of the corresponding likelihood L and, again, the

smoothing parameter λ controls the amount of smoothing. In principle, it is conceivable to

develop methods for an optimal, data-driven selection of λ, as those briefly discussed in Section

3.3. The main difficulty, however, is that criteria such as cross-validation and the effective

degrees-of-freedom, being the trace of the so-called smoother matrix in the classical setting,

are defined on the scale of the data, and it is no means clear how to translate these concepts

to serial correlation. The same holds for the mixed model representation. The aforementioned

integration can be done analytically in case of normal random spline effects, but this is no

longer true for spline effects in the serial correlation function. In this case the integration can

be carried out using conventional numerical integration (e.g., Gaussian quadrature, Laplace

approximation) or sampling based (e.g., Monte Carlo Markov chain) methods.

A data-driven optimal selection of the smoothing parameter falls outside of the scope of this

paper. Instead, we limit the number of (well-chosen) knots and try out some fixed values for
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the smoothing parameter. The number and position of knot points for the spline function

has to be chosen wisely. This is generally the case in smoothing when using only a limited

number of knots, but maybe even more so when modeling the covariance matrix, where

parsimonious modeling is very important. Covariance modeling can in general be considered

as computationally heavy, and this is particularly true for our case study, where we have 167

measurement occasions. In practice, splines with different sets of knot points can be fitted

to the data. This then gradually gives an idea of the shape of the serial correlation function.

Since most pairs of data can be formed for shorter time lags, it is also most sensible to focus

at least some knot points in this range.

Note that, in principle, spline functions allow for almost unlimited flexibility. Evidently, the

more complex the model, the more data would be needed to stably estimate the corresponding

parameters. Too complex a model could easily result in convergence issues. For this reason, we

have chosen to restrict periodicity to less than 36 hours, thereby capturing the main component

of periodicity.

All analyzes were performed using the statistical software package R (R Development Core

Team 2007). The marginal log-likelihood expression for (7) was constructed and then maxi-

mized using a general purpose numerical optimizer based on a quasi-Newton method.

5 Analysis of Case Study

First, a model for the mean number of licks will be presented. Then, the approaches as

described above in Section 4 will be applied to the case study data introduced in Section 2.

The mean structure was modeled using the six-parameter function:

log(`ij + 1) = β0 + β1 tij + β2 t2ij + β3 log(tij)
2 + β4 sin(β5 tij). (8)

Note that this model includes one non-linear parameter, i.e., the sine frequency parameter

β5. This parameter, together with β4, is included to accommodate the clear circadian pattern

present in the data. However, since we opted for a fully marginal approach, capturing the

within-subject association through the serial correlation function, no random effect enters the

13



Table 1: Parameter estimates and standard errors for the spline model with knots located at
u = 6, 12, 18, 24, 36

Effect Parameter Estimate (s.e.)
Mean function:

Intercept β0 4.6670 (0.0655)
Linear slope β1 -0.3580 (0.0559)
Quadratic slope β2 -0.0251 (0.0366)
Log quadr. slope β3 -0.1529 (0.0082)
Amplitude sine β4 -1.2128 (0.0282)
Frequency sine β5 26.6225 (0.0232)
Variance function:

Intercept σ0 1.8990 (0.0062)
Linear slope σ1 -0.1514 (0.0235)
Amplitude sine σ2 1.6004 (0.0295)
Frequency sine σ3 26.9143 (0.0217)
Serial correlation function:

Variance (τ 2) φ0 -0.1370 (0.0275)
Intercept φ1 -3.7514 (0.0962)
Slope φ2 -1.6284 (0.0450)
Knot (u = 6) φ3 0.8145 (0.0613)
Knot (u = 12) φ4 0.4875 (0.1082)
Knot (u = 18) φ5 2.9516 (0.1838)
Knot (u = 24) φ6 -5.2902 (0.2273)
Knot (u = 36) φ7 1.5939 (0.2637)

likelihood in a non-linear way. This means that no random effect needs to be numerically or

approximately integrated out from the likelihood function and therefore, we can still use the

marginal likelihood to fit (8). No treatment effect is included in (8). It is obviously virtually

absent from the model from graphical inspection (Figure 1). Also, initially fitting the model

with treatment effect included produced a highly non-significant p-value. Hence, we start

further modeling efforts from mean-model description (8).

The resulting model fit for the mean number of licks is shown in Table 1 and in Figure 5.

Let us now turn to the main topic of interest, namely the modeling of the serial correlation

function. After fitting models over a range of smoothing parameter values, a small value

(λ = 0.01) was chosen since this improved convergency, while it only had a small impact on
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Figure 5: Observed mean profile (solid) and fitted mean model (dashed) for log(`ij + 1).

the actual fit. A classical exponential function, a fractional polynomial fit, together with spline

fits at two different sets of knot points of the serial correlation function g(.) for the number

of licks is shown in Figure 6. The combination of fractional powers that provided the best

fit was {0.5, 1}. The choice of knot point locations did not seem to have a large impact on

convergence, as long as they were not positioned too close to one other. For this reason, we

chose to set the knot points at 6 hourly intervals. The results obtained with different sets of

knot points were all consistent.

It may be surprising at first sight that the serial correlation function in Figure 6 predicts

high values, whereas the observed correlations in Table 2 are relatively low. However, they

cannot be compared directly. The observed correlations result from the interplay between three

variance components: measurement error, serial correlation, and random effects. The latter

two contribute to the correlation, whereas the first one does now. Figure 6 singles out the

serial correlation component. Suppose, for example, that the measurement error contribution

is very high. Then the observed correlations may be low, even when computed between two

instantaneous replications (two measurements taken at the same time). However, between two

such instantaneous replicates, the serial correlation would always be 1, because for every choice

of g(·), we have that g(0) = 1. Likewise, g(+∞) = 0, even though the observed correlation
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Table 2: Estimated marginal correlation matrix based upon the spline model presented in
Table 1.

k

1 7 13 19 25 31 37 43 49 55

1 1.0000 0.1533 0.1621 0.1831 0.1711 0.1280 0.1362 0.1382 0.0890 0.0794

7 0.1533 1.0000 0.1769 0.1725 0.1142 0.1405 0.1531 0.1347 0.0861 0.0763

13 0.1621 0.1769 1.0000 0.2759 0.1577 0.1375 0.2462 0.2220 0.1230 0.1082

19 0.1831 0.1725 0.2759 1.0000 0.2326 0.1750 0.2222 0.3293 0.1869 0.1425

j 25 0.1711 0.1142 0.1577 0.2326 1.0000 0.1513 0.1658 0.1742 0.1625 0.1270

31 0.1280 0.1405 0.1375 0.1750 0.1513 1.0000 0.1888 0.1711 0.1132 0.1453

37 0.1362 0.1531 0.2462 0.2222 0.1658 0.1888 1.0000 0.2838 0.1620 0.1474

43 0.1382 0.1347 0.2220 0.3293 0.1742 0.1711 0.2838 1.0000 0.2222 0.1745

49 0.0890 0.0861 0.1230 0.1869 0.1625 0.1132 0.1620 0.2222 1.0000 0.1507

55 0.0794 0.0763 0.1082 0.1425 0.1270 0.1453 0.1474 0.1745 0.1507 1.0000

function may not fully phase out, owing to the presence of random effects. Thus, one must not

loose sight of the fact that the serial correlation is one component of the variance-covariance

structure.

A 10×10 subset, using time intervals of 6 hours, of the in principle 167×167 fitted correlation

matrix, is displayed in Table 2.

Note that unlike in the fully parametric case, the fractional-polynomial and spline-based models

can be tuned as far as smoothness is concerned, resulting in more or less smoothness. Related

to this, by choosing this particular level of smoothness, we are able to follow trends in the

data, which are less smooth than the parametric model can possibly support.

The spline fits indicate that the serial correlation function is non-monotone. The (point-wise)

95% confidence bands for this model fit is presented in the left hand graph in Figure 7. The

non-monotone trend is indeed confirmed by this graph. This fact would go entirely unnoticed

with a conventional serial correlation approach and is also missed by the fractional polynomial

fit. For example, we now see that the serial correlation is substantially lower for a 12-hour

time lag than for one of 24 hours. Very likely, this can be ascribed to the circadian rhythm.
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Figure 6: Exponential, fractional polynomial and spline fit of the serial correlation function
g(.) for number of licks. Left hand graph: knot points at u = 6, 12, 18, 24, 36. Right hand
graph: knot points at u = 8, 14, 20, 26, 36.

This 24-hours pattern can also be observed in Figures 1 and 2. It therefore plays a role in

the mean structure, variance structure, and the correlation structure simultaneously. Since

a classical serial correlation model would not allow for this, it is conceivable that in such

a model, for this type of applications, the mean structure fit would be distorted, rendering

associated inferences less reliable. To check whether the estimation of the serial correlation

function was not distorted by the non-constant variance, the variance itself was modeled with

a sine function. The right hand side graph in Figure 7 shows the observed and fitted variance

function. Although modeling the variance function improved the likelihood considerably, the

estimated serial correlation function remained virtually unchanged.

The fact that the one-parameter exponential function cannot detect this type of serial cor-

relation also shows through the difference in log-likelihood between the exponential, and the

spline model with knots located at u = 6, 12, 18, 24, and 36. Precisely, the difference equals

2(27395.0−27306.9) = 176.2. The corresponding value of Akaike’s Information Criterion pro-

vides strong evidence of an improved fit by the spline model, when compared to the exponential

model.
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Figure 7: Spline model with knot points at u = 6, 12, 18, 24, 36. Left hand graph: spline fit
with 95% confidence bands. Right hand graph: observed and fitted variance function.

6 Concluding Remarks

Flexible serial correlation structures, in agreement with flexible random-effects modeling, are

necessary when modeling complex longitudinal profiles, especially with a long period of follow

up and/or a large number of measurements within subjects. To this end, we have proposed a

spline-based approach. Such a parametric spline approach works acceptably well, as long as

the number of knot points is chosen to be relatively small compared to the number of time

points. In our case study, we essentially used 5 knot points for 167 follow-up occasions. The

choice of the knot points’ position, too, is important, both for the quality of the fit as well as

for convergence of the updating algorithm.

Convergency can be problematic when fitting an elaborate covariance structure. However, in

the analysis of the case study, the proposed spline approach actually performed better than

some of the simpler serial correlation based models, such as one featuring Gaussian serial

correlation. Arguably, the specific parameterization in combination with the added flexibility

allows for a better fit and ultimately therefore better convergence.

Since model (8) includes a non-linear parameter, i.e., frequency of the sine wave, we opted

for a fully marginal approach, thus omitting random effects. Although it is possible to include

both random effects and serial correlation in a linear mixed-effects model, this is not advisable
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in many applications. Diggle et al (2002) and Verbeke and Molenberghs (2000) argue that,

in applications, the effects of random effects and serial correlation are often intertwined in the

sense of high correlation between the corresponding parameter estimates. In practice, this is

often reflected by way of estimation problems. Therefore, restricting the model’s covariance

structure to either serial correlation or random effects, often combined with measurement

error, may be pragmatically a sensible choice. A situation where all aspects of (co)variability

could successfully be included is where: (1) the time lag between subsequent measurements

is sufficiently large to separate instantaneous measurement error from serial correlation on the

one hand; and (2) there are a sufficient number of measurement occasions so as to separate

serial correlation from random-effects variability on the other hand.

The presented spline approach provides a flexible alternative to the simple classical models,

such as, for example, the exponential model, which is useful when interest lies directly in the

shape of the serial correlation function. The approach can also be used for sensitivity analysis

purposes, i.e., checking if an assumed simple serial correlation function is adequate.

For the case study data, the standard errors of the fixed-effects parameter estimates did not

change substantially when comparing the relatively simple exponential serial correlation model

with the more elaborate spline model. Thus, this particular analysis could not provide evidence

for a gain in efficiency related to inference about the fixed-effects parameters. However, a

simulation study might shed some light as to whether this conclusion would be more broadly

tenable.

The choice of the smoothing parameter λ is rather subjective in nature. In our analysis, we

chose a small value since this improved convergence, without smoothing out the non-monotone

trend in the fitted serial correlation function and without adversely impacting the model’s fit.

Admittedly, observations made in a case study are always a bit ad hoc. Therefore, we performed

a small simulation study (details not reported), which largely confirmed the finding that adding

knot points can improve the fit, while at the same time causing rapid variance increases and

having a detrimental influence on convergence.
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