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Impact of ignoring serial correlation and memory effect on 
reliability estimates and plausible solutions. 
 
 

Abstract 
 
Longitudinal studies are currently permeating clinical trials in psychiatry. It is 

therefore of the utmost importance to study the psychometric properties of the 
rating scales, frequently used in these trials, within a longitudinal framework. 
However, intra-subject serial correlation and memory effects are problematic 
issues frequently encountered in longitudinal data. In the present work we study, 
via simulation, the impact of uncontrolled sources of serial correlation on newly 
proposed measures designed to evaluate reliability in a longitudinal scenario. We 
also address the relationship between serial correlation and memory effect. The 
simulations illustrate that ignoring serial correlation can have a severe impact on 
the estimates of reliability parameters and inferences related to them. We also 
argue that the underlying modeling framework allows correcting for this type of 
correlation and avoiding bias. Moreover, it can adjust for the presence of a 
memory effect. Nevertheless, to achieve that, a careful model building is 
required. 
 
Keywords: Hierarchical Model, Memory effect, Rating Scales, Reliability, Serial 
correlation. 
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Introduction 
 
Longitudinal clinical trials are becoming a standard tool for the evaluation of 

new psychiatric drugs. Moreover, in psychiatry, longitudinal data are also 

frequently encountered in clinical practice where patients are measured 

repeatedly over time in view of obtaining precise diagnostics as well as 

evaluating the effect of a treatment or a therapeutic intervention. 

Such evaluations are typically carried out using rating scales, which are 

mainly used when the trait of interest cannot be observed directly, such as the 

measurement of depression, anxiety, or quality of life. Whenever a new 

measurement scale is developed, its validity and reliability ought to be evaluated. 

Reliability is, however, not an intrinsic property of an instrument but rather 

changes over time and with the population to which it is applied. Therefore, the 

reliability of a measurement scale should be evaluated every time the scale is 

introduced to a different population or translated into a different language.  

In general, each data structure presents unique problems for the estimation of 

reliability, but longitudinal data, with their different sources of variation and 

correlation, present some of the most challenging problems for defining and 

estimating reliability. Indeed, in such studies, patients usually exhibit a systematic 

change or evolution over time in addition to an individual-specific evolution that is 

characterized by correlated subject-specific effects. Moreover, serial correlation 

and heterogeneous variance components (i.e., variance functions changing over 

time and/or with covariate levels) are frequently present as well (Verbeke & 

Molenberghs, 2000). 
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In the so-called classical test theory (CTT), the reliability of a measurement 

was defined as the ratio of the true score variability and the total variability (Lord 

& Novick, 1968). In this scenario and under some additional assumptions, 

reliability equals the correlation between two measurements on the same 

subjects. These assumptions state that, for both measurements: (i) the true 

scores are equal; (ii) the error variances are equal; and (iii) the measurement 

errors are independent. In this framework, the reliability of a measurement can 

then be estimated by rating a group of subjects at two time-separated occasions 

and then calculating Pearson’s correlation coefficient between both 

measurements. Note that a test-retest scheme is the simplest possible 

longitudinal design. 

It is fair to say that test-retest reliability has always been controversial. A 

fundamental issue with the approach resides in finding the optimal length of the 

time interval between the first and the second measurement. Whenever 

measuring living organisms, it is clear that the characteristics being measured 

might change from one replication to another. The usual approach is therefore to 

take the time interval sufficiently short so that it would be safe to assume that the 

underlying process is unlikely to have changed in important ways. However, if 

both measurements are taken too close in time, it is quite probable that the rater 

will recall his/her previous ratings and, therefore, the new assessments will likely 

be influenced by them. Usually, the rater will give similar ratings in each of the 

replications. This effect of memory is not limited to the case where raters make 

subjective decisions but can also occur in a second attempt on a cognitive ability 
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test, or when filling out a questionnaire on political attitudes (Dunn, 1989; Streiner 

& Norman, 1995). 

The problem of memory reappears whenever we want to study reliability in a 

more general longitudinal study, i.e., where subjects are measured at more than 

two occasions using the same rating scale. When a memory effect emerges in 

such a setting it implies that observations closer to each other in time are more 

alike than observations further apart. Basically, this is the same effect produced 

by a so-called serial correlation component, a term used to capture exactly this 

type of effect in the association structure (Verbeke & Molenberghs, 2000). 

Ignoring serial correlation, originating from memory effects or other sources, 

can have a serious impact on the estimated reliability coefficients. In the present 

work we study via simulations the bias produced by such uncontrolled sources of 

serial correlation when employing recently proposed reliability coefficients. Our 

study complements previous research that has reported the effect of ignoring 

intra-subject serial correlation on the G-coefficients within a generalizability 

theory (G-theory) framework (Cronbach, Gleser, Nanda & Rajaratnam, 1972). 

Further, we argue in favor of hierarchical linear models as valuable tools to 

accommodate intra-subject serial correlation and to avoid bias in the variance 

components and the reliability coefficients derived therefrom. Importantly, we 

claim that this type of model can aid when adjusting for a possible memory effect. 

In the following section, a summary is given of previous studies evaluating the 

impact of serial correlation on the estimation of reliability in a longitudinal 

framework when G-theory is used. Thereafter, linear mixed models are 
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introduced and we elaborate on how reliability can be studied within this frame. 

Some newly introduced measures, designed to evaluate reliability in a 

longitudinal scenario, are presented. Further, we analyze the impact of 

uncontrolled serial correlation on these new reliability measures via simulations. 

Finally, the methodology is illustrated by means of a case study. 

 

Ignoring Intra-subject Serial Correlation 

 
An important attempt to extend the concept of reliability to a longitudinal 

setting was done using generalizability theory, developed by Cronbach et al. 

(1972) to explicitly model the multiple sources of variation present in a 

measurement system. G-theory has played a prominent role in the psychometric 

field over the last 40 years. The basic mathematical model on which it is based is 

solidly rooted in analysis of variance with random effects. However, the utility of 

G-theory to evaluate reliability in longitudinal studies depends on the adequacy of 

this model to describe the specific data structure encountered. Unfortunately, the 

G-theory modeling framework can be applied to a longitudinal setting only if 

strong and unrealistic assumptions are made (DeShon, Ployhart & Sacco, 1998). 

One such assumption is the presence of an uncorrelated and homoscedastic 

error structure. However, correlated error structures are frequent in longitudinal 

studies. Usually, observations close in time exhibit a stronger association than 

observations with more time separation. Ignoring this correlation will introduce 

bias in the variance-component estimates and, as a result, in the generalizability 

coefficients. This has been documented in the literature. For example, Smith and 

Luecht (1992) investigated the effect of ignoring correlated errors in a longitudinal 
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framework. Their results showed that not taking into account this correlation will 

lead to an overestimation of the subject-specific parameters’ variance and to 

overestimating the generalizability coefficient. In their simulations, these authors 

considered a stationary correlated error structure, i.e., the error terms were 

allowed correlated but still with equal variances over time. Bost (1995) studied 

this issue further by examining the effect of both stationary and non-stationary 

auto-regressive error variance-covariance matrices. His results showed that, in 

the presence of non-stationary auto-regressive error, the G-coefficients were 

usually underestimated and the magnitude of the bias increased with the number 

of observations. Clearly, these results indicate that variance components 

estimates and the resulting generalizability coefficients can be severely biased 

when longitudinal data are analyzed under the assumption of independent errors 

across time. Incorrectly assuming a stationary variance for the error structure 

also results in bias. Unfortunately, the classic modeling paradigm used in G-

theory is not designed to capture this type of associations and assumes 

uncorrelated error terms with equal variance over time. 

Laenen, Alonso and Molenberghs (2007) and Laenen, Alonso, Molenberghs 

and Vangeneugden (2009) proposed an extension of the concept of reliability to 

a longitudinal framework, based on a simple set of defining properties. 

Additionally, these authors introduced two measures of reliability that satisfied 

these defining properties, the so-called TR and ΛR  coefficients. They based their 

proposals on hierarchical linear models. Here, we will study the impact of ignored 

sources of serial correlation on TR and ΛR , and we will stress the importance of 
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a careful model building exercise. We will argue in favor of linear mixed models 

as a valuable tool to account for many different sources of serial correlation 

including the one emanating from a possible memory effect. 

 

Methodology 
 
Linear mixed models (LMM) allow incorporating many of the previously 

discussed longitudinal features, including varying true scores, correlated random 

effects, heteroscedastic error components, and correlated error terms. Being 

able to account for all of these complexities within the same modeling paradigm 

is extremely important to guarantee unbiased results when estimating reliability. 

Essentially, one would like to consider the following general model 

ijijijijY ξτµ ++= ,                                                                                             (1) 

where ijY  denotes the observed score of subject i at time point j, ijµ  is a general 

mean that can vary over time, ijτ is the true score of subject i at time point j and 

ijξ  is the corresponding error component. Note that in the previous model the 

ijτ s are subject-specific random variables that can vary over time, i.e., we are 

not assuming that the true scores are constant over time. Within the linear mixed 

model framework one can explicitly model the true scores as linear functions of 

time by considering ijij bz=τ  where jz  is a row-vector that may depend on 

time and ib  is a vector of subject specific coefficients. Similarly to classical linear 

regression, this function is linear in the subject-specific parameters ib  but it does 
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not need to be linear in time. For example, one could consider the following 

expression to model the true scores as a function of time )log(10 jjiiij ttbb +=τ . 

In the previous formula ))log(1( jjj tt=z   and 







=

1

0

i

i

i
b

b
b . One of the 

biggest advantages of this approach is that the time evolution of the subject-

specific true scores ijτ is now entirely characterized by a vector of subject-

specific coefficients ib  that does not vary over time. Basically, the ijτ s and  ib  

are equivalent quantities and, therefore, ib  can be treated as a vector of true 

scores itself. 

Model 1 is a special case of the more general family of linear mixed models. 

Indeed, assuming a balanced study design, in the sense that all patients are 

evaluated at a common set of measurement occasions, the general linear mixed 

model can be written as 

iiiii )2()1( ξξZbβXY +++=                                                                             (2) 

),N(~ D0b i , ),N( ~ (1)i R0ξ , )  ,N( ~ 2

 (2)i H0ξ τ , 

ib , i)1(ξ  and i)2(ξ  are independent, 

where iY  is a p-dimensional vector of repeated measurements on certain trait 

for subject i and i takes values from 1 to n. Further, iX and Z are fixed (p × q) 

and (p × r) dimensional matrices of known covariates, β  is a q-dimensional 

vector of fixed effects, ib is a r-dimensional vector containing the random effects, 
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i)2(ξ  is a p-dimensional vector of components of serial correlation, and i)1(ξ  is a 

p-dimensional vector of residual errors. Additionally, D  is a general (r × r) 

covariance matrix, H  is a (p × p) correlation matrix, 
2τ  is a variance parameter, 

and R  is an (p × p) covariance matrix.  

Another reason why this model is interesting in reliability research is the fact 

that it allows to simultaneously model mean (i.e., fixed-effects), random-effects, 

and residual variability structures. The systematic evolution over time can then 

be modeled as part of the fixed-effects structure and one can also explicitly 

model the time evolution of the true scores, making the steady-state assumption 

unnecessary (Vangeneugden, Laenen, Geys, Renard, & Molenberghs, 2004). On 

the other hand, the models’ ability to distinguish between different sources of 

variability (Laird & Ware, 1982; Verbeke & Molenberghs, 2000) makes it 

especially suitable for reliability estimation. Model 2 implies the marginal model 

),N(~ i VβXYi  where ΣZDZV += '  ( 'A  denoting the transpose of matrixA ) 

with RHΣ += 2τ . Note that the total variability is decomposed into two parts: 

the first one 'ZDZ , accounts for the variability of the subject-specific parameters 

or true scores, whereas the second one,Σ , includes all remaining sources of 

variability. Exactly these two sources of variability constitute the main reliability 

ingredients.  

Observe that, whenever serial correlation is present, whether caused by the 

rater’s memory effects or by other sources, it can be incorporated within model 2. 

Frequently, this serial correlation component is modeled through an auto-
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regressive structure with
jkd

jk ρ=H . In this case, H  is then a correlation 

matrix, with ρ denoting the correlation between two measurements taken one 

unit of time apart, and jkd  the time lag between two measurements taken at 

times j and k. 

As stated in the introduction, we argue that a memory effect will typically 

produce the same correlation pattern as a serial correlation component and, as a 

result, it could be absorbed into it. Clearly, other sources of association may also 

contribute to the presence of serial correlation and, therefore, we should not fully 

identify these two related but different concepts. In general, a strong serial 

correlation can be the reflection of a strong memory effect, a memory effect 

combined with other factors, or simply (a combination of) such other factors. 

Which of these scenarios is the true one is not relevant, but rather the fact that 

serial correlation is able to absorb each one of them. This is because one’s 

primary interest is not in making inferences about serial correlation, but rather 

about reliability, with serial correlation treated as a nuisance characteristic. 

The linear mixed model framework conveniently offers a large amount of 

flexibility for modeling serial correlation. For instance, Gaussian or exponential 

structures could replace an autoregressive structure when data points are not 

equally spaced, with heterogeneous versions further allowing for time- and 

covariate-dependent variance functions. Furthermore, on top of the serial 

correlation, additional measurement error variability can be superimposed. 

In CTT, the reliability of a measurement is defined as the ratio of the true-

score and total variability, or equivalently, as one minus the ratio of the error and 
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total variability. Considering all data at a fixed time point, say jt , then one is 

back to the cross-sectional setting with true score ijij bz=τ . Applying the 

classical definition of reliability at time point jt  then leads to the expression 

2

2

1
jj

jj

TjR
V

Σ

σ

σ
−=                                                                                                     (3) 

with 
2

jjΣσ  the jth diagonal element of the general error matrix Σ , representing 

the error variability at time jt , and 
22 ' jjjjjj ΣV Dzz σσ +=  the jth diagonal element 

of the matrix V , representing the total variability at the same time point.  Note 

also that the variance of the true scores at time jt  is then given by 

jjijVar ')( Dzz=τ . 

From expression 3 we can see that reliability is not necessarily constant over 

time, as frequently assumed in earlier approaches (Tisak & Tisak, 1996; Wiley & 

Wiley, 1970; Raykov, 2000). Two aspects may cause reliability to be different at 

different measurement occasions. First, if the variability of the measurement error 

decreases over time then the reliability will increase. Second, the reliability will 

also be affected if the true scores of subjects change over time, i.e, if the vector 

jz  depends on time (Heise, 1969; Jagodzinski & Kühnel, 1987; Werts et al., 

1980). As previously stated, model 2 will allow the true scores to change over 

time as soon as a random slope for time is included in the random effect 

structure. A model including both, a random intercept term ( ib0 ) and a random 
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slope ( ib1 ),  may lead, for example, to the following expression, introduced 

previously, for the true score of subject i at time jt : )log(10 jjiiij ttbb +=τ . 

Using expression 3 one can then calculate the reliability of the observed 

scores ijY at each time point, what naturally leads to a time varying function of 

reliability. However, interpretability may be substantially improved if one could 

have a meaningful summary measure. Such a measure is provided by the 

coefficient TR  that indicates the average reliability over the different time points 

 
)(

)(
1

V

Σ

tr

tr
RT −=  .                                                                                                (3) 

Actually, it is possible to show that  TR  can be rewritten as 

∑
=

=
p

j

TjjT RwR
1

, 

With weights )(2 VV trw jjj σ= . Basically, these weights quantify the proportion 

of the total variability that each time point accounts for. Notice that variability is 

information and, therefore, TR  establishes a compromise between the amount of 

information every time point conveys and the quality of that information, i.e., its 

reliability. 

A summary measure can be very useful when a large number of repeated 

measurements are taken; or in case the researcher is interested in the general 

performance of the outcome scale over the entire longitudinal study. Also when 

two scales are to be compared, such a summary can simplify the interpretation 

and conclusions. 
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Besides this average reliability measure, Laenen et al. (2009) proposed a 

global reliability coefficient 

11 −
Λ −= ΣVR                                                                                                   (4) 

It is clear from model 2 that in a longitudinal framework the variability is 

expressed by matrices rather than single variance coefficients. Two common 

ways of summarizing the variability from such a variance-covariance matrix are 

the so-called generalized variances, which are typically based on the concepts of 

trace and determinant, naturally leading to TR  and ΛR , respectively. It can be 

noticed, however, that both measures still express one minus the proportion of 

the total variability that is due to measurement error, exactly as in the classical 

definition of reliability. 

Remarkably, the ΛR coefficient bears a different interpretation than TR : ΛR  

expresses the reliability of an entire longitudinal sequence. Indeed, as previously 

stated, TR  quantifies the average reliability over time, i.e., it is a summary 

measure of the cross-sectional reliabilities. On the other hand, ΛR  quantifies the 

reliability of the entire vector of observed scores with respect to the vector of 

subject-specific effects that describes the true scores evolution over time, i.e., the 

vector ib .  Simply said, ΛR  quantifies the amount of information about ib  that 

iY  conveys. Notice that the vector ib  is the element of the model that fully 

captures the longitudinal evolution of the true scores and can be considered itself 

a vector of true scores. In a longitudinal design, every new measurement for a 
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subject brings additional information on his/her vector of true scores ib . It is this 

increase in total information that is captured by ΛR . As a consequence, the 

measure increases as the number of repeated measurements increases. Such a 

global measure can be very useful to analyze the total impact of measurement 

error on a longitudinal study. One frequently encounters that, although a single 

measurement can suffer from high measurement error (indicated by low TjR ’s), 

the impact of that error is minimized when several repeated measurements are 

taken (indicated by high ΛR ). Essentially, what lies behind this behavior is that 

even though every ijY may not convey a lot of information about the 

corresponding ijτ , the entire longitudinal set of observations iY  may still convey 

a lot of information about the vector describing the time evolution of the ijτ , i.e., 

the vector ib . 

When the assumptions of CTT are met, both TR  and ΛR  reduce to the 

classical expression of reliability. Furthermore, when applied in a setting where 

G-theory assumptions are met, such as non-changing true scores or equal error 

variances at different time points, the two measures reduce to the index of 

dependability, and after conditioning on the time points they equal the 

generalizability coefficient. Both G-coefficients are commonly used to quantify 

reliability in a longitudinal scenario (Brennan, 2001; Laenen et al., in press). For a 

full discussion of the rationale and mathematical details behind TR  and ΛR  we 

refer the reader to the original papers (Laenen et al., 2007, 2009). 
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In the following section, we will design and carry out a simulation study to 

investigate the impact of the presence of serial correlation, whether caused by a 

memory effect or another source, on the two reliability coefficients introduced by 

Laenen et al. (2007, 2009). This allows for the evaluation of the robustness of 

TR and ΛR  relative to potential misspecification of the error structure in model 2. 

 

A Simulation Study 
 
The design of the simulation study was a 2*3*2 complete factorial 

arrangement with: 2 types of subject-specific true scores, (1) true scores that 

were constant over time, i.e., a random intercept model, and (2) true scores that 

evolved linearly over time, i.e., a random intercept and random slope model; 3 

levels of auto-regressive serial correlation were considered with values 0.1, 0.5, 

and 0.8; and two types of analyses were carried out (1) ignoring serial correlation 

and (2) fitting serial correlation.  

The random-intercept model can be expressed as 

ijijijij dtY ξτβββ ++++= 210                                                                       (5) 

where jt denotes the time at which measurement j is taken, and id the treatment 

allocation for subject i. Further, iij b0=τ  indicates the true score for subject i 

which is not varying over time, with )N(0,~ 2

00 bib σ , and ijξ  is the measurement 

error at time j for subject i, with )  ,N( ~ 2

 i H0ξ τ . We fix 3002

b0 =σ  and 

1002 =τ , corresponding to a situation where the error variability accounts for 

one quarter of the total variability.  
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The model with random intercept and slope has the same general form as (5) but 

now jiiij tbb 10 +=τ , i.e., the true scores are allowed to vary linearly over time, 

we further assume that  

),N(~ 
01

0i
D0b 








=
b

b
i  with 








−

−
=

51

1300
D , and )  ,N( ~ 2

 i H0ξ τ . 

Values for the fixed effects were set to 850 =β , 5.21 −=β , and 852 =β . 

Six equally spaced time points, at weeks 0, 2, 4, 6, 8, and 10, were considered, 

and the sample size was set equal to 250. Finally, a total of 250 data sets were 

generated for each of these six settings. 

First we will illustrate the effect of instability (changing true scores) and serial 

correlation on ordinary reliability estimates, calculated as test-retest correlations.  

Table 1 presents Pearson correlations between the outcome at the first 

measurement ( 0iY ) and the outcomes at later measurement occasions 

( 102 ,, ii YY K ), for different strengths of serial correlation ( ρ ). For the random 

intercept model (RI) one can easily obtain the reliability of the scale as the ratio 

of the true score variability to the total variability 

75.0
100300

300
22

0

2

0 =
+

=
+

==
τσ

σ

b

b
TRR  

Note that in this model the true score does not change over time and, therefore, it 

does not distort the pairwise correlations. Essentially, one can state that for the 

random intercept model the steady-state assumption is valid and all the 

misspecification is concentrated in the error structure. The upper half of Table 1 
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clearly shows that test-retest reliability can give a severely distorted image if 

serial correlation is present. Indeed, in case of small serial correlation, as 

expected, Pearson correlation coefficient can give stable and trustworthy results 

as an estimator of reliability, especially when using observations that are far 

apart. We must point out, however, that some overestimation can appear, even 

in this scenario, if the observations are close in time. Basically, this illustrates that 

correlation is a valid estimator for reliability, only when the serial correlation is 

very small or does not exist at all. However, with an increasing serial correlation 

the situation changes dramatically and reliability is usually strongly 

overestimated, especially for small time lags. 

The classical definition of reliability does not apply to a model with random 

intercept and slope (RIS). We will then use the true value of TR as a reference 

point. Using the parameter values chosen for the simulation study we obtain a 

value of 0.826. For this model, true scores change over time, i.e, different 

subjects can now evolve over time in different ways. The lower half of Table 1 

shows that these changes in the true scores lower the correlations when time lag 

increases. This can lead to a severe underestimation of reliability if the two 

observations used to calculate the test-retest estimate are far apart. The serial 

correlation, on the other hand, produces the opposite effect, i.e, it increases the 

Pearson correlations. This clearly shows one of the most important problems 

associated with test-retest reliability: choosing two time points which are close 

enough in time to guarantee the steady-state assumption and, at the same time, 

far enough from each other to annul the effect of serial correlation.  As the 
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simulation results clearly show, this optimal time point depends on the value of 

the unknown serial correlation and it can be extremely difficult to determine in 

practice. Notice also that even when such an optimal time point can be 

determined, this does not guarantee that bias will be fully avoided.  As a 

summary, the results presented here illustrate that the classical approach to 

reliability is only justified when the necessary assumptions are fulfilled. Whenever 

a serial correlation is present or the true scores vary over time, this approach will 

not lead to correct estimates. 

Let us now look at the effects of serial correlation on the TR  and 

ΛR coefficients. We consider two different scenarios for analysis: (i) a correctly 

specified model that includes a serial correlation component with an auto-

regressive structure and (ii) a miss-specified model that assumes an 

uncorrelated structure for the residual part, i.e., IΣ 2σ= . Based on these 

models, we calculated the point estimates and confidence intervals for TR  and 

ΛR .  

Tables 2 and 3 present the true values for TR  and ΛR , and the average of 

the estimated values over the 250 simulated data sets. The coverage probability 

(CP) indicates the percentage of the cases in which the true value lies within the 

estimated 95% confidence interval.  

Let us first focus on the random-intercept setting. The first half of Table 2 

illustrates that, when the model used to fit the data does not include a serial 

correlation component, both TR̂  and ΛR̂  overestimate the true values. As one 
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would expect, for the smallest values of ρ , the bias present in TR is only minor 

and the misspecification seems to exert a weak impact only on the coverage 

probability of the corresponding confidence interval. However, a totally different 

image emerges when larger values of ρ  are considered. In such scenarios, a 

large bias is observed in the point estimates of TR  and the coverage probability 

of the corresponding confidence interval is considerably smaller than the pre-

specified 95% value. 

Interestingly, ΛR seems to be more sensitive to the misspecification. Indeed, 

even for the smallest values of ρ , a moderate bias appears in the point estimate 

of ΛR  and the coverage probability of the confidence intervals are also more 

seriously affected than the confidence intervals for TR . Unsurprisingly but with 

important ramifications, the situation worsens considerably for larger values of 

serial correlation. 

These findings fully coincide with the results reported by Smith and Luecht 

(1992) and Bost (1995) in their studies of the effect of ignoring a stationary 

correlated error structure on the estimation of the G-coefficients. Fortunately, 

unlike in the modeling framework used in G-theory, linear mixed models allow for 

the absorption of such a correlation structure. The second part of Table 2 shows 

the results obtained when the models fitted to the data included a serial 

correlation component. As one would expect, now there is bias in neither the TR  

nor the ΛR  point estimates. Furthermore, the confidence intervals now enjoy 

coverage probabilities very close to their nominal level. 
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Interestingly, the true value of ΛR decreases when the serial correlation 

increases, which is an entirely plausible feature. Indeed, it has been shown that 

ΛR has the ability to increase with the number of time points, owing to the fact 

that every new observation purports additional information, even if it comes 

contaminated by measurement error (Laenen et al., 2009). Nevertheless, for a 

given number of time points, we have less information when different 

observations are strongly correlated, explaining lower ΛR for larger values of ρ . 

Table 3 displays the results obtained under the second setting, i.e., when the 

true scores vary linearly over time. The conclusions in this case are almost 

identical to our earlier ones. Note that, if the serial correlation is ignored, then the 

bias of the point estimates and the problem with the coverage probabilities of the 

confidence intervals seem to aggravate in this scenario, stemming from the more 

complicated random-effects structure. The second half of the table shows the 

results when the correct model was fitted to the data. Here again, there is no bias 

in the point estimate and the coverage probabilities are close to their nominal 

value. Only when the serial correlation was largest a moderate under-coverage 

was observed for the confidence intervals of both TR and ΛR . Nevertheless, 

some additional simulations (details not shown) proved that the problem 

completely disappears when the sample size is increased to 500 patients. 

 

A Case Study 
 

In this section, we will use TR and ΛR  to evaluate the reliability of two widely 
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used rating scales in a longitudinal setting. The case study consists of two 

randomized double blind clinical trials that were set up to investigate treatment 

efficacy on major depressive disorder (Studies 5 and 6 in Mallinckrodt et al., 

2003). The studies contain a total of 354 and 353 patients, respectively, 

randomly allocated to four treatment groups. The primary efficacy measure was 

the HAMD17 total score, whereas the MADRS total score was used as secondary 

measure. The HAMD or Hamilton Rating Scale for Depression (Hamilton, 1960) 

was developed to assess the effectiveness of the first generations of anti-

depressants. The scale quickly became the standard measure of depression 

severity for clinical trials of anti-depressants. It is until now the most commonly 

used measure for depression, even though several conceptual and psychometric 

problems have been described in the literature (Bagby, Ryder, Schuller & 

Marshall, 2004). The MADRS or Montgomery-Asberg Depression Rating Scale 

(Montgomery & Asberg, 1979) is a 10-item scale that was designed to address 

the limitations of the HAMD, and was supposed to capture contemporary 

definitions of depression and to be more sensitive to change. Ratings on both 

scales were taken at baseline and weeks 1, 2, 4, 6, 8, and 10.  

Our simulations have clearly illustrated that a meticulous model building step 

is crucial to avoid bias in the variance-components and thence reliability 

estimates. In general, when estimating reliability, the main interest primarily lies 

in the covariance structure, and therefore, an elaborate fixed-effects structure 

was adopted, containing categorical time, treatment, investigator, and treatment 

by time interaction. This minimizes the risk of miss-specifying the mean structure 
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and hence of bias resulting there from (Diggle, Liang & Zeger, 2002).  

The selection of the best fitting covariance structure for the data was based 

on model building guidelines laid out in Verbeke and Molenberghs (2000). 

Regarding the random effects we considered models with: (a) constant true 

scores over time, i.e., a subject-specific intercept; (b) true scores varying linearly 

over time, i.e., subject-specific intercept and slope; and (c) true scores varying as 

a quadratic function over time, i.e., subject-specific intercept, linear slope and 

quadratic slope. Additionally, for the measurement-error terms, the correlation 

structures considered are: (a) autoregressive; (b) exponential; (c) serial 

Gaussian; (d) power; and (e) banded unstructured. The latter structure, in 

contrast to the other four, only allows correlation between errors of 

measurements taken at adjacent occasions and assumes zero correlations for 

other pairs of measurements. Structure (e) further assumes heterogeneity of the 

error variances, whereas the structures (a)–(d) were fitted with homogeneous as 

well as heterogeneous error variances. This distinction can also be found in the 

two remaining error variance-covariance structures without error correlation: (f) 

features an unstructured main diagonal, while (g) is a so-called ‘simple’ or 

‘variance-components’ structure, both with the off-diagonal elements equal to 

zero. For details and examples on the covariance structures we refer to Verbeke 

and Molenberghs (2000).  

Akaike’s Information criterion was used for model selection. The parameter 

estimates were calculated using restricted maximum likelihood (REML). Table 4 

shows the best fitting models for the two scales, for both trials separately. Note 
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that, within each trial, the same model was selected for the two different scales 

HAMD and MADRS. In trial 1 a linear random effects model was selected 

whereas in trial 2 a quadratic model resulted in the best fit. Further, in all four 

cases, a heterogeneous auto-regressive correlation structured was selected. 

Graphical exploration (not shown) indicated that the models capture the most 

important data features reasonably well.  

Table 4 further presents the reliability estimates for each of the four cases. 

SAS macro’s for the calculation of TR , ΛR  and the corresponding confidence 

intervals can be obtained from the first author. We observe that, within each of 

the trials, both scales HAMD and MADRS perform very similarly. In the first trial, 

the point estimates of TR and ΛR  are slightly higher for HAMD, while in the 

second trial we observe the opposite. In both trials, the confidence intervals 

around the reliability estimates for the two rating scales largely overlap. Hence, 

we do not find evidence of MADRS being a more reliable scale than HAMD, or 

vice versa. Similar results were found by Maier et al. (1988) for inter-rater 

reliabilities. They compared the HAMD and MADRS based on three different 

studies, but did not find differences in reliabilities in any of them. 

Further, note that the reliability estimates for the two scales are clearly higher 

in the second trial than in the first one. Reliability is known to be a population-

dependent concept, and will generally be estimated higher in more 

heterogeneous groups. However, it is highly unlikely that this can explain the 

observed difference between the two trials since both studies were developed 

from one protocol and they were identical in every way. Other factors might have 
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had an influence as well, such as training, experience, and quality of the raters. 

Also on this matter, equality of the two trials was aimed for. At a single start up 

meeting, all sites in both studies were present to be trained on the protocol and 

to qualify raters. Investigative sites were randomly selected to be part of either 

trial, but there is no guarantee that this random assignment truly equalized 

quality of sites and raters. 

Even though it is difficult to identify the reasons for the differences in reliability 

between the two trials, it is very interesting to relate this finding to the clinical 

outcomes of the studies. Both studies tested 3 treatments with what are now 

proven to be effective doses of anti-depressants. Trial 1, however, had worse 

separation from placebo than trial 2 (Mallinckrodt et al., 2003). The finding that 

the reliability of the measurements was also lower in the first trial might explain 

why the clinical effects were stronger in the second trial. This finding illustrates 

that measurement error or low reliability can have an effect on the results found 

in clinical studies, as emphasized by Fleiss (1987) and Lachin (2004). 

The average reliabilities per time point ( TR ) that were found for HAMD and 

MADRS for the two trials are lower than the reliabilities generally mentioned in 

the literature (Bagby et al., 2004). Also Zimmerman, Posternak and Chelminski 

(2005) report that, in spite of other psychometric flaws of HAMD, the inter-rater 

and test-retest reliabilities are mostly good. The fact that the obtained TR values 

are lower than their counterparts reported in the literature can have several 

reasons. As indicated before, reliability is a population-dependent concept and 

tends to be lower in more homogeneous populations. The studies, on which the 
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present estimates are based, only included patients suffering from a major 

depressive disorder, likely reducing variability between the patients. It is not 

always clear on which populations the reliability estimates in the literature are 

based. 

Note also that, in our case study, a serial correlation term was present for all 

scales in both trials. Our simulations showed that ignoring this type of correlation 

can lead to a serious overestimation of the reliability parameters, what can be a 

plausible explanation for the relatively higher values reported in the literature. 

Finally, the results illustrate that a scale with poor performance, in general or 

in a certain population, can still be used to obtain reliable information if the 

measurement is repeated over time. Of course, the lower the average reliability 

per time point, the more repeated measurements will be necessary to achieve a 

sufficiently high level of global reliably. In the first trial of the case study, seven 

repeated measurements were needed to obtain a cumulative reliability ΛR of 

around 0.80. In the second trial, 4 and 3 measurements, respectively, sufficed to 

reach the same target for HAMD and MADRS. 

 

Discussion 
 
Longitudinal studies are becoming a standard tool in psychiatric clinical 

practice as well as in research. Therefore, it is important to evaluate the reliability 

of rating scales within a longitudinal framework. Laenen et al. (2007, 2009) 

introduced two measures of reliability, the so-called TR and ΛR , that allow 

quantification of reliability in such a longitudinal scenario. However, measures of 
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reliability are model-based quantities and their scope and applicability will never 

venture beyond these of the model they are based on. One of the characteristic 

issues of longitudinal studies is the presence of intra-subject correlation. This 

correlation can emanate from many different sources, including the presence of a 

rater’s memory effects. In the present paper, we have studied the impact of 

ignoring this intra-subject correlation on TR and ΛR . 

Our conclusions fully coincide with the results found by Smith and Luecht 

(1992) and Bost (1995) in their study about the effect of ignoring a stationary 

correlated error structure on the estimation of the G-coefficients. This 

misspecification can seriously affect both, the point estimates of the reliability 

parameters and the inferential procedures related to TR and ΛR . However, the 

more general modeling framework on which they are based allows us to adjust 

for the presence of such a correlation structure. Clearly, our results together with 

the findings of Smith and Luecht (1992) and Bost (1995) suggest the use of 

linear mixed models and TR and ΛR  as a very appropriate choice for the 

evaluation of reliability in a longitudinal scenario. At the same time, our 

simulations have illustrated the importance of a very careful model building 

exercise. 

In general, the mean structure can be treated as a nuisance within reliability 

research. However, an inappropriate mean structure can result in biased 

estimates for the variance components (Diggle et al., 2002; Verbeke & 

Molenberghs, 2000) and, as a consequence, it can introduce bias in the reliability 

coefficients as well. It is therefore advisable to consider sufficiently versatile 
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mean structures in this setting. This can be done using linear mixed models, for 

instance, by modeling the systematic evolution over time with fractional 

polynomials (Royston & Altman, 1994) or via non-parametric approaches such 

as, for example, smoothing splines (Verbyla, Cullis, Kenward, & Welham, 1999). 

Another possibility is to model the time evolution in a fully unstructured way, 

including a parameter for each time-by-group combination, exactly as in our case 

study. 

Further, the covariance structure needs to be modeled carefuly. Here again, 

linear mixed models offer a lot of flexibility, allowing for correlated error terms, 

including different types of serial correlation (Gaussian, first-order auto-

regressive, exponential, m-dependent structures, to name but a few), and 

heteroscedastic error components. 

Finally, we put a strong focus on the problem of memory effect. In presence 

of such an effect, the condition of the subject at consecutive and/or close 

measurement times will appear more similar than they actually are. This effect is 

one typical source of serial correlation, providing the opportunity to accommodate 

it into the model by using the serial correlation structure. 

It is useful to recall that the terms ‘memory effect’ and ‘serial correlation’ are 

not fully interchangeable. In fact, a memory effect is but one of the possible 

causes leading to serial correlation. Our simulations have shown that, regardless 

of the actual source of serial correlation, it will distort the reliability estimates and 

should therefore always be taken into account. Therefore, the results of this 

paper are, broadly, applicable to serial correlation. The reason we chose to 
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emphasize memory effect is because it has permeated reliability research for the 

longest time. Many attempts to solving this problem were circumscribed to finding 

an optimal length for the interval between two consecutive observations. The 

issue of finding this optimal length has been largely based on knowledge specific 

to the area of application and is only applicable when solely two repeated 

measurements per subject are taken. In the present work, we approached the 

problem from a statistical modeling perspective by considering more general 

hierarchical models that can account for both the time evolution of the patients, 

as well as a potential memory effect. 
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Table 1 
Instability and serial correlation on reliability measures: correlation coefficients. RI refers 
to random-intercept model, RIS refers to model with random intercepts and random 

slopes. ρ  is the serial correlation parameter and ( ikij YY , ) refer to pairs of measurement 

occasions. 

Model  ρ  (
20

, ii YY ) (
40

, ii YY ) (
60

, ii YY ) (
80

, ii YY ) (
100

, ii YY ) 

RI 0.1 0.770 0.751 0.748 0.748 0.748 

RI 0.5 0.871 0.810 0.779 0.764 0.757 

RI 0.8 0.948 0.908 0.875 0.850 0.830 

RIS 0.1 0.746 0.683 0.617 0.553 0.492 

RIS 0.5 0.845 0.734 0.641 0.564 0.498 

RIS 0.8 0.921 0.822 0.718 0.624 0.544 
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Table 2  
Effect of ignoring intra-subject correlation on reliability measures: random intercept model. 

ρ  is the correlation coefficient; both reliability measures are considered, with 
T

R  and ΛR  

the true values, 
T

R
)

 and ΛR
)

 the simulation averages, and CP referring to coverage 

probability. 
Correlation structure ρ  

T
R  

T
R
)

 CP(
T

R ) ΛR  
ΛR
)

 CP( ΛR ) 

variance components 0.1 0.750 0.757 90.4 0.939 0.949 50.0 

variance components 0.5 0.750 0.815 3.2 0.889 0.963 0 

variance components 0.8 0.750 0.902 0 0.824 0.982 0 

auto-regressive 0.1 0.750 0.748 95.2 0.939 0.938 96.4 

auto-regressive 0.5 0.750 0.746 95.2 0.889 0.886 96.0 

auto-regressive 0.8 0.750 0.734 95.2 0.824 0.808 96.0 
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Table 3 
Effect of ignoring intra-subject correlation on reliability measures: random intercept model 
and slope model. ρ is the correlation coefficient; both reliability measures are considered, 

with 
T
R  and ΛR  the true values, 

T
R
)

 and ΛR
)

 the simulation averages, and CP referring to 

coverage probability. 

Correlation structure ρ  
T
R  

T
R
)

 CP(
T
R ) ΛR  

ΛR
)

 CP( ΛR ) 

variance components 0.1 0.826 0.837 83.2 0.986 0.990 35.2 

variance components 0.5 0.826 0.900 0 0.972 0.997 0 

variance components 0.8 0.826 0.960 0 0.965 0.999 0 

auto-regressive 0.1 0.826 0.825 97.6    0.986 0. 986 96.8 

auto-regressive 0.5 0.826 0.821 96.8    0.972 0. 968 97.2 

auto-regressive 0.8 0.826 0.812 88.1  0.965 0. 955 91.9 
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Table 4 
Selected models and reliability estimates [95% confidence intervals] for HAMD and 
MADRS for trial 1 and trial 2. 

 Scale Rand. eff. Structure of Σ  T
R    

Λ
R  

HAMD linear heterog. auto-regressive 0.493 

[0.405; 0.581] 

0.829 

[0.734; 0.895] 
1 

MADRS linear heterog. auto-regressive 0.474 

[0.378; 0.571] 

0.812 

[0.704; 0.886] 

HAMD quadratic heterog. auto-regressive 0.629 

[0.513; 0.731] 

0.932 

[0.872; 0.966] 
2 

MADRS quadratic heterog. auto-regressive 0.692 

[0.603; 0.769] 

0.977 

[0.957; 0.988] 
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Response to the Editor 

 

We thank the editor, once more, for his/her useful comments and remarks and 

for giving us the opportunity of resubmitting and improving our manuscript. We 

fully agree with the Editor that the previous version of the manuscript was lacking 

clarity in some aspects. Most of the problems pointed out by the Editor were 

direct consequences of a lack of clarity regarding the definition of true scores in 

our modeling framework. We have now explicitly stated what we mean by true 

scores in our models and their relationship with the proposed measures of 

reliability. In general, taking into account all the comments, we have now 

substantially rewritten many sections of the paper. 

Below we provide point-to-point answers to all the comments and questions 

raised by the editor. We further indicate where we have made corresponding 

changes in the manuscript. 

Finally we would like to thank as well reviewer 1 for the positive comments and 

for constructive comments in the previous report. 

 

Meaning of various terms, including three coefficients and true score  

As the Editor rightly points out a clear definition of what was considered true 

scores was not explicitly given in the previous version. Obviously, this is a very 

important issue and needed a more careful consideration. We have now 

substantially rewritten the Methodology section of the paper and explicitly stated 

what we mean by true scores in our modeling framework.  

Essentially, the true scores are subject-specific effects that determine their 

individualized responses. Clinical practice clearly shows that some individuals 

tend to score very similar to the average in the population whereas others score 

higher or lower than the average. This subject-specific behavior is captured by 

the so-called individual true scores. On of the complications associated with 

longitudinal studies is that these true scores may vary over time.  Indeed, similar 

to the previous cross-sectional example, some individuals tend to evolve over 
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time like the average in the population whereas others have personalized 

evolutions that differ from the average.   

To explain this issue further let us denote by ijτ the true score of subject i at time 

point j. Note that this true score can change over time. If one focuses on a fixed 

time point, say jt , then one is back to the cross-sectional setting and the 

classical definition of reliability can be applied. However, if one wants to study 

reliability in a longitudinal way, then we are forced to take into account the time 

evolution of ijτ . Within the linear mixed model framework one can explicitly 

model the true scores as linear functions of time by considering ijij bz=τ  

where jz  is a row-vector that may depend on time and ib  is a vector of subject-

specific coefficients. Similarly to classical linear regression, this function is linear 

in the subject-specific parameters ib  but it does not need to be linear in time. 

For example, one could consider the following expression to model the true 

scores as a function of time )log(10 jjiiij ttbb +=τ . In the previous formula 

))log(1( jjj tt=z   and 







=

1

0

i

i

i
b

b
b . One of the biggest advantages of this 

approach is that the time evolution of the subject-specific true scores ijτ is now 

entirely characterized by a vector of subject-specific coefficients ib  that does not 

vary over time. Basically, the ijτ s and  ib  are equivalent quantities and, 

therefore,  ib  can be treated as a vector of true scores itself. 

We have fully clarified this point in the new version of the manuscript and also 

clearly stated the relationship between the true scores and the different 

measures of reliability used in the paper. 
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Equation 2: elements of Yi 

We followed the editors’ advice by making this clearer in the text. In the 

description of model 1 we now refer to Yi as follows:  

“Yi is a p-dimensional vector of repeated measurements on certain trait for 

subject i” 

 

Use of subscripts  

We agree with the editor that clarity can be gained by dropping the subscript i 

from the beginning. We have adapted the manuscript accordingly.  

 

Time function of reliabilities 

This remark of the editor is also related to his/her first comment. In the previous 

version of the manuscript we had not clarified sufficiently what we understood by 

true scores and this made unclear the meaning of this function of reliability over 

time. We believe this issue is now much clearer. Essentially, as previously said, 

in a longitudinal framework the true scores may vary over time. If one focuses on 

a single fixed time point then one is back into a cross-sectional scenario and the 

classical definition of reliability can be applied. Repeating this exercise at each 

time point leads to a function of reliability over time. This has now been clearly 

stated in the new version of the manuscript. 

 

Generalizability coefficients 

The editor correctly points at one of the essential assumptions of G-theory when 

applied to a longitudinal setting: the assumption that a subject’s true score does 

not change over time. 

We have only compared our coefficients to the G-coefficients in a setting where 

the data satisfy this and other (e.g. equal error variances at different 

measurement occasions) assumptions that are posed by G-theory. 

In our approach we have simulated this situation by assuming in model 2 that 

there is only a random intercept and no random slope for time. In such a 

situation, the true score of a subject would be constant over time. 
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In case we have longitudinal data that satisfy the assumptions posed by G-

theory, it can be shown that the coefficients TR  and ΛR  equal the G-coefficients 

and have the same interpretation.  

We have made this more clear in the present version of the manuscript by giving 

two examples of G-theory assumptions. On p. 14 we have introduced the 

following sentence: 

“Furthermore, when applied in a setting where G-theory assumptions are met, 

such as non-changing true scores or equal error variances at different time 

points, the two measures reduce to the index of dependability, and after 

conditioning on the time points they equal the generalizability coefficient. Both G-

coefficients are commonly used to quantify reliability in a longitudinal scenario 

(Brennan, 2001; Laenen et al., 2009).” 

 

Regarding Equation 4  

We believe this point has now been clarified in the Methodology section. 

 

Regarding Equation 5 

In a similar way we have added a description on what we consider in this model 

as true scores.  

 

Equation 5: random intercept and random slope coefficients 

We thank the editor for having discovered this typo. Random intercept and slope 

need indeed to be referred to by different parameters. This has now been 

corrected in the new manuscript. 

 

On page 12, the true value of TR  

The true value of TR  is based on the parameter values that we have chosen for 

the simulation study. We have clarified this by adding the following sentence: 

“Using the parameter values chosen for the simulation study we obtain a value of 

0.826.” 
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Changes in the true scores over time 

In the new manuscript we have made clearer how we conceptualize the true 

scores and how they can change over time.  To do that we have substantially 

rewritten the Methodology section. 

 

Figures 1- 3 

All figures 1 – 3 were added as graphical evaluations of the model fit. We follow 

the suggestion of the editor by deleting the graphs in order to gain space. All 

references to the graphs have been deleted. We now refer in the text to the fact 

that satisfactory model fits were obtained. We have added the sentence: 

“Graphical exploration (not shown) indicated that the models capture the most 

important data features reasonably well.” 

Description of final model  

In the case study we analyzed two different trials and in each trial two different 

scales. This results in four models. The final models can be found in Table 4. In 

this table we summarize the random-effects structure and the structure of the 

measurement error variance covariance matrix. We have now also extended the 

description of the final models in the text. We have added the sentence: 

“In trial 1 a linear random effects model was selected whereas in trial 2 a 

quadratic model resulted in the best fit.” 

 

Footnotes in Tables 2 and 3 

The footnotes are correct; however we agree that they may provoke confusion.  

We will first explain how they should be interpreted; thereafter we indicate how 

we have acted to avoid this confusion. 

In the simulation study we simulate 250 data sets per setting. For each data set 

we obtain a point estimate for the measures TR  and ΛR  as well as a 95% 

confidence interval. This means that we have for each simulation setting 250 

confidence intervals. For each confidence interval we analyze whether the true 

value of the measure ( TR or ΛR ) is within the 95% confidence interval or not. The 

percentage of times in which this is the case is the coverage probability (CP). 
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Since we were constructing 95% confidence intervals we would expect this 

coverage probability to be close to 95% if estimation is working fine.  

As a way of testing whether the CP is indeed close to 95% we additionally 

constructed for each setting a confidence interval around the obtained CP. We 

decide that the CP is close to 95% if 95% was included in this confidence 

interval. 

As we said, this can indeed bring confusion. On the other hand we also think that 

the numbers presented in the tables are obvious and can speak for themselves. 

A formal test is not really needed to draw relevant conclusions. For that reason 

we have decided to remove the footnotes as well as the stars in the table. We 

have also removed reference to it in the manuscript. 

 

Confidence bands in Table 4 + software 

The confidence intervals for both measures TR  and ΛR  are based on the delta 

method. The details on their derivation is relatively extensive, and is not retained 

in the original articles on TR (Laenen et al., 2007) or ΛR  (Laenen et al., 2009). 

However, they can be obtained from the authors on request.  

SAS macro’s are available for the calculation of point estimates as well as 

confidence intervals for both TR  and ΛR . With these SAS macro’s a small users 

manual is provided. The macros are available on the following website 

(www.censtat.uhasselt.be/software/ under Reliability) or can be obtained from the 

author. 

In the case study analysis we have further added the following sentence: 

“SAS macro’s for the calculation of TR , ΛR  and the corresponding confidence 

intervals can be obtained from the first author.” 

 

APA style 

We regret to have missed these details and we have followed the advice of the 

editor to make the manuscript more conform the APA style. 
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