
PervasiveCrystal: Asking and Answering Why and
Why Not Questions about Pervasive Computing

Applications
Jo Vermeulen Geert Vanderhulst Kris Luyten Karin Coninx

Hasselt University – tUL – IBBT
Expertise Centre for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek, Belgium.
Email:{jo.vermeulen,geert.vanderhulst,kris.luyten,karin.coninx}@uhasselt.be

Abstract—Users often become frustrated when they
are unable to understand and control a pervasive com-
puting environment. Previous studies have shown that
allowing users to pose why and why not questions
about context-aware applications resulted in better
understanding and stronger feelings of trust. Although
why and why not questions have been used before to aid
in debugging and to clarify graphical user interfaces,
it is currently not clear how they can be integrated
into pervasive computing systems. We explain in detail
how we have extended an existing pervasive computing
framework with support for why and why not ques-
tions. This resulted in PervasiveCrystal, a system for
asking and answering why and why not questions in
pervasive computing environments.

I. Introduction
Pervasive computing systems are generally context-

aware, which means that they act based on context [6] –
implicit input collected from the environment. Since these
systems often act without explicitly involving the user,
users may be surprised as to why the system behaves in a
certain way. Moreover, system actions are usually a result
of complex reasoning about context data which might be
hard for users to understand [9].

However, being difficult to understand is only part of the
problem. Context-aware systems have been shown not to
be infallible. They are bound to sometimes make mistakes
because of the inevitable incompleteness of context infor-
mation [5], [3], [7]. It is therefore important that users are
able to correct the system if it makes a mistake. Failing to
do so will eventually result in users who feel out of control,
and might result in them losing trust in the system [2].

Bellotti and Edwards [3] proposed two design principles
to tackle these problems: intelligibility (also known as
scrutability [4]) and control. They argue that context-
aware systems should be intelligible by informing users
about the system’s understanding of the world and should
offer users control to recover from possible mistakes.

One way to improve the intelligibility of a context-aware
system is to allow users to pose why and why not questions
about its behaviour. Recently, a number of studies [13],
[12] have suggested that supporting these questions would

result in better understanding and stronger feelings of
trust. By asking why and why not questions, arising re-
spectively from unexpected events that occurred or expected
events that did not occur, users gain a better understand-
ing of the internal working of the system they interrogate.
However, there is to date no pervasive computing frame-
work available that supports why and why not questions.
Moreover, existing desktop implementations (e.g. Crys-
tal [14]) cannot be easily integrated into pervasive com-
puting frameworks, since the assumptions underlying these
implementations (e.g. having a single machine from which
events originate) rarely hold in pervasive computing.

In this paper, we describe how we have extended the
ReWiRe pervasive computing framework [15] to allow
users to pose why and why not questions about occurring
events, resulting in the creation of PervasiveCrystal. We
explain how PervasiveCrystal works by means of an exam-
ple scenario (Sect. III). The cornerstone of the Pervasive-
Crystal extension is the behaviour model which allows us
to trace events across distributed components and which
is easy to query (Sect. IV). We use the behaviour model
to generate possible why (not) questions (Sect. V-A)
and provide answers to these questions (Sect. V-B). The
behaviour model also allows us to provide users with three
three simple control mechanisms: undo; do; and task-
specific control user interfaces (Sect. V-C). We discuss the
results of a pilot user study (Sect. VI), give an overview of
PervasiveCrystal’s limitations, and outline opportunities
for future work (Sect. VII).

II. Related Work
Existing work has demonstrated the potential of allow-

ing users to ask questions about the behaviour of their soft-
ware. This approach has been successful in decreasing the
time programmers spend debugging their programs [10],
[11] and in improving end-user understanding and control
in desktop applications [14]. Crystal [14] is an application
framework that provides developers with an architecture
and a set of interaction techniques to build desktop
applications that answer why questions. It is targeted
at explaining complex behaviours and interdependencies



Figure 1. Posing a why question: PervasiveCrystal shows a list of available questions, based on events that recently took place in the
environment (4.A). Answers are generated by linking events to what caused them to happen (4.B.1 ). Additionally, users have two means
for correcting the environment’s behaviour: they can undo operations (4.B.2 ) or invoke fine-grained control user interfaces (4.B.3 ), in this
case: a light control user interface (4.B.4 ).

among the various features of an application to end-users.
Crystal’s interaction techniques not only improve end-
users’ understanding of the software, but also help users
in determining how they can fix unwanted behaviour.

Lim, Dey and Avrahami [13] investigated if why (not)
questions could be used to improve understanding of
context-aware systems. Their results suggest that allowing
users to pose why (not) questions about the behaviour
of a context-aware system would result in better under-
standing and stronger feelings of trust. In the study, a
comparison was made between different types of questions
users could ask about a context-aware system. Why and
why not questions were found to be the most effective,
as opposed to what if and how to questions that did not
contribute much to users’ understanding of the system or
their perception of trust. In a later study, Lim and Dey
investigated the different information demands users have
for context-aware applications under various situations
[12]. They recommend that why questions should be made
available for all context-aware applications, while why not
questions are more useful for specific contexts (e.g. goal-
supportive tasks, high risk tasks).

Although previous work suggests that it is useful to
provide support for why and why not questions, there is
to date no pervasive computing framework available that
makes it easy to build applications that can answer these
questions. Unfortunately, developers cannot rely on exist-
ing implementations for different target domains either,
since these are often based on underlying assumptions
that do not hold in pervasive computing. Crystal [14], for
example, assumes that it runs on a single machine and that
it has access to an in-memory tree of command objects.
In pervasive computing, however, applications are often
distributed over several devices, and events can originate

from different networked components (e.g. sensor nodes),
making it challenging to construct correct cause-effect
chains.

III. Usage Scenario
We illustrate how our approach works in practice by

means of an example scenario. In this walkthrough, we will
follow Bob, one of the visitors of a smart museum equipped
with PervasiveCrystal. As Bob enters, he receives a mobile
museum guide that can be used to interrogate and control
the environment.

A. Why Questions
Bob was told that the museum features interactive

screens that react to motion. When Bob approaches one
of these displays during his visit, he waves in front of
the screen to play a movie, as shown in Fig. 1 (scene 1 ).
However, at that time, the lights also go out. Bob does not
understand why this happens, and is confused (scene 2 ).
Behind the scenes, the system uses a rule-based system to
react to context changes (scene 3 ). One of the rules plays a
movie when motion is detected by a camera. There is also
another rule that turns off the lights whenever a movie is
playing to provide users with a better viewing experience.
When the first rule executes, its effect (playing a movie)
causes the second rule to execute and turn off the lights.

Bob remembers he can use the why menu to ask ques-
tions about the smart museum’s behaviour (scene 4 ).
As seen in Fig. 1 (4.A), the why menu shows a list of
available questions about events together with a repre-
sentative icon. PervasiveCrystal automatically generates
the list of questions by tracking events that occurred (e.g.
lights that are switched off). The questions are presented
in reverse chronological order (questions about the most



recent events come first). Bob then selects the question
“Why did the lights go out?”, and receives an answer
that briefly explains what caused both rules to fire (4.B).
PervasiveCrystal can generate these answers by linking
events to what caused them to happen. In this case, the
system knows that the lights went out because a movie
started playing. When enough information is available, the
system will explain the entire execution trace of the event
(4.B.1 ). Here, the system also includes an explanation
of why the movie started playing in its answer: “because
motion was sensed”. Explanations for chains of interacting
rules can be of arbitrary length.

Besides helping Bob to understand why the system has
taken a certain action, PervasiveCrystal also allows Bob to
intervene and correct unwanted behaviour. Within answer
dialogs, such as the one of scene 4.B in Fig. 1, users have
two ways of controlling the system. First, the left button
allows users to undo unwanted actions (4.B.2 ). In Bob’s
case, clicking the button will turn the lights back on again,
thereby undoing the action taken by the system. Secondly,
PervasiveCrystal provides users with more fine-grained
control user interfaces to correct undesired behaviour. The
second button from the left (4.B.3 ), allows users to invoke
a task-specific control user interface. Here, Bob can bring
up the light control user interface, providing him with
more options such as the specific intensity of each of the
lights in the museum (4.B.4 ). PervasiveCrystal achieves
this by annotating events with related user tasks (e.g.
controlling lights, playing media) and their respective user
interfaces.

B. Why Not Questions
Later, Bob returns to the display and tries to start the

movie again, as shown in Fig. 2 (scene 1 ). However, this
time, nothing happens. Bob does not understand why the
system acts differently now (scene 2 ). Behind the scenes,
the camera motion sensor never reported that it detected
motion and as a result, the rule that is responsible for
playing the movie never got executed (scene 3 ). Bob then
remembers that he can also pose why not questions. For
this, Bob uses the why not menu (see Fig. 1 4.A), which
works in a similar way as the why menu that was discussed
in Sect. III-A. However, instead of listing questions about
events that did occur, the why not menu presents users
with a list of questions about expected events that did not
occur.

When expected events do not take place, the cause is
often an unexecuted rule which was supposed to trigger
the event. PervasiveCrystal keeps track of which rules
can trigger which events, and analyses unexecuted rules
to fill the why not menu with a list of questions about
events could have taken place (but did not). Based on
the available information about a rule, it then tries to
determine why these rules did not execute.

Bob proceeds by selecting the appropriate question
in the why not menu: “Why didn’t the movie play?”

(scene 4 ). The system responds by saying that no motion
was sensed (4.A). Bob then figures that something must
be wrong with the motion detection, and notices that the
camera cable is unplugged.

The why not answer dialogs again provide users with
two means for controlling the system behaviour. Just as
with why questions, users can invoke a fine-grained control
user interface (4.C-4.D). The undo command, however,
has been replaced by a do command that allows users
to force the system to execute an action (4.B). Undo is
available for why questions, while do is available for why
not questions. Bob decides that he wants to see the movie
anyway, and forces the system to do the operation anyway
by clicking the “Play movie” button (4.B).

Figure 2. Posing a why not question: This time, nothing happens
when Bob moves in front of the display. By asking a why not question,
Bob is able to figure out that the system did not sense motion (4.A).
He then notices that the camera cable is unplugged. Bob is again
provided with different ways to control the environment. He can use
the do command to force the system to play the movie anyway (4.B),
or bring up the media control user interface (4.C-4.D).

IV. Behaviour Model
We capture the behaviour of an environment in a model

built up from rules that connect actions and events. An
action is caused either by an end-user who is interact-
ing with the environment or by the system itself, for
example as a reaction to a context change. A change in
the environment’s configuration results in an event which
in turn can cause the system to execute new actions as
specified by the rules currently defined in the model. These
rules are implemented according to the Event-Condition-
Action (ECA) paradigm [1], and are extended with inverse



actions (ECAA−1) as shown in Fig. 3(a). Rules with
inverse actions can be undone, making it possible to return
to a former state. This is achieved by caching the execution
context of a rule’s action (i.e. environment properties
relevant for the rule) and passing this context as input
to a rule’s inverse action.

(a) An annotated ECAA−1 rule.

(b) Editor for scripting behaviour rules.

Figure 3. The behaviour model is composed of annotated ECAA−1

rules. Rules can be created and annotated in code using ReWiRe’s
behaviour script editor.

To generate accurate and complete explanations of why
the system behaves in a certain way, we adopt the be-
haviour model in both scripts and control user interfaces.
Scripts enable developers to quickly prototype and cus-
tomize the overall behaviour of the environment while
control user interfaces focus on end-users and specific
application domains (e.g. Fig. 1 (4.B.4): a user interface
for controlling the different lights in the environment).

Fig. 3(b) shows how behaviour rules can be defined
and added to the model with ReWiRe’s script editor.
This specific script creates the rule from the museum
scenario that turns off the lights when a movie is playing
(see Sect. III). Scripts allow developers to change the
environment’s behaviour in just a few lines of JavaScript.

Additionally, control user interfaces create underlying
behaviour rules so that the system can track what happens
in these user interfaces as well (e.g. explaining that the
lights were turned off because the user did this in the
lights control user interface). Dey and Newberger took a
similar approach with Situations [8] which allows designers
to provide domain-specific intelligibility and control user
interfaces. We support why (not) questions as follows:

• Logging user actions: Control user interfaces are pro-
grammed to log every user action that occurs and
optionally define inverse actions to undo unwanted
side effects. Since a mix of user-driven and system-
driven behaviour is typical for a pervasive computing

environment, past user actions help to provide insight
in the current state of the environment.

• Semantic annotations: We annotate behaviour rules
with additional information about the events and
actions they might trigger (see the bubbles in Fig. 3(a)
and line 4-7 of Fig. 3(b)). By analysing and simulating
the execution of rules, we can predict what might
happen when an event occurs or when the user ex-
ecutes a certain action. Although we are dealing with
uncertainty when simulating rules – a rule’s condition
might evaluate differently when a rule is effectively
executed due to changes in the environment – a better
understanding of the pervasive computing system can
be achieved. Moreover, annotations help to filter the
events and actions that gave rise to the behaviour that
is questioned by the user. The chain of events and
actions is crucial information for accurate answers to
why and why not questions.

V. Allowing Users to Understand and
Intervene

A. Generating Questions
Fig. 4(a) shows how generated questions about events

are listed in a pop-up menu, together with a representative
icon, and are sorted from on the time at which they
occurred (most recent first). When a user selects one of the
questions, an answer dialog is shown, as seen in Fig. 4(b).
To make this possible, all events, actions and conditions
are expected to have a short descriptive label. Events
that affect end-users, are enriched with why and what
descriptions (see Fig. 3(a)). These are plain text strings in
which grammatical constructs (e.g. auxiliary verbs) have
been annotated to be able to negate the question in case of
a why not form. The why descriptions are used to generate
questions for events in the why menu. Only questions for
events with why and what descriptions are shown in the

(a) The why menu.

(b) An answer to a why question.

Figure 4. The why menu allows users to pose why and why not
questions about the things that happen in the environment. Users
receive answers to their questions, and are offered a means to recover
from undesired behaviour.



menu. Other questions are assumed to only be of use to
the system, and will not be of interest to end-users.

B. Generating Answers
Answers to questions mainly depend on what descrip-

tions and annotated ECA rules. In the scenario of Sect. III,
Bob poses the question “Why did the lights go out?” and
is shown a corresponding explanation dialog (Fig. 4(b)).
The what description of this particular event would then
be the lights did go out. This description is used by
the system to provide the first part of the answer, as
shown in Fig. 4(b). The rest of the answer is automatically
generated from analyzing the ECA rules. The event about
which Bob asks a question is traced back to the ECA
rule that caused it to happen (see Fig. 1 scene 3 ). Perva-
siveCrystal looks for the responsible rule by querying the
behaviour model for actions that have a mightTrigger an-
notation for the event the user asks a question about (see
Fig. 3(a)), and which were recently executed. When the
system knows which rule is responsible, it completes the
answer by explaining which event caused the responsible
rule to execute. The responsible event’s what description
(a movie started playing in this case) is added to the
answer, as seen in Fig. 4(b). When the system notices
that the responsible event was again the effect of another
rule, it repeats the process for that rule and adds the
corresponding answer below the first answer. In Fig. 4(b),
the system adds a new paragraph with the explanation
of why the movie started playing. When an executed rule
required a condition to be true, this condition is also added
to the explanation using its short descriptive label. If the
chain of ECA rules eventually traces back to a user action
(e.g. in a control user interface), the explanation would
describe this with “because you did . . . ”.

Answers to why not questions are generated in a similar
way, but are are more difficult to trace. PervasiveCrystal
currently supports why not questions in two ways. First,
why not questions are possible about events resulting
from rules which fired but did not execute because their
condition was false. The corresponding answer will then
explain that the event did not occur because the condition
was false. Secondly, we allow why not questions about
events resulting from rules which never executed because
their triggering event never fired. This kind of why not
question is posed in Fig. 2 (scene 4 ). There is typically
more uncertainty in answering why not questions than in
answering why questions. Since a why not question asks
about an event which never occurred, the system cannot
rely on tracing and has to reason about what could hap-
pen. It is important to ask about why not questions about
events within a certain time frame, to avoid overwhelming
the user with possible answers. Currently, we use a brute
force approach that enumerates all possible causes. The
next step is to include a better estimation of timeliness
(related with the type of event and condition) and the
likelihood of the candidate answers.

C. Giving Users Control
When users have understood why the system acted in

a certain way, they can choose to intervene and correct
the system, if necessary. The explicit undo operation is
supported by calling the inverse action of an ECAA−1

rule (see Sect. IV and Fig. 3(a)). Do will just execute the
action of an ECA rule, regardless of the event or condition.
Besides explicit undo and do operations, we also provide
more fine-grained control user interfaces to correct the
behaviour of the system. As shown in Fig. 4(b), there is a
second button allowing Bob to invoke the light control user
interface. This is achieved by further annotating an action
with the different user goals the action can contribute to
(e.g. controlling lights, playing media).

VI. Preliminary User Study
A. Participants and Method

We conducted a pilot user study with a first iteration
of PervasiveCrystal [17] to get an idea of its ease of use.
We asked five volunteers (4 male, 1 female) to use our
system to understand and control the behaviour of a
pervasive computing environment in different situations.
Four out of five participants had programming experience,
while the fifth participant had a background in social
sciences. The experiment was carried out in a realistic
pervasive computing environment: an interactive museum
room which next to museum artefacts also features differ-
ent kinds of sensors, and various means to provide visitors
with information. Subjects used a networked Ultra-Mobile
PC (a Samsung Q1 Ultra running Windows XP and the
PervasiveCrystal client software) to ask why questions and
view the corresponding answers.

Participants were presented with three situations in
which something happened that they had to explain and
control using PervasiveCrystal. In the first task, partic-
ipants were told to sign in to the system after which a
song would start playing. For the second task, participants
were asked to go and stand in front of a display that used
a webcam to perform motion detection as an indicator
of the user’s presence. When subjects would walk up to
the display, a movie would start playing. The third and
final task was similar to the second one, but here the
movie would only play while motion was detected and
immediately stop otherwise. Participants were asked to
try to understand what was different compared to the
previous situation. Additionally, they had to use one of
our control mechanisms to find a way to keep playing the
movie without having to move in front of the display all the
time. Finally, we conducted a semi-structured interview in
which participants were asked to comment on the features
of our system.

B. Results
All subjects were able to use the questions interface

to find the cause of events in these three tasks. Overall,
participants found that the answers to the why and why



not questions were what they wanted to know, although
most participants argued that the way they were presented
could be improved. Each participant agreed strongly on
the fact that these techniques are useful to allow users to
understand what happens in their environment and offer
them control over this behaviour.

One of the major problems users faced was the fact that
the why-menu quickly became cluttered when many events
were firing in a short time span. This made it hard for
subjects to find the question they wanted to ask. Especially
in the third task, users would several times trigger the
motion sensor, causing a clutter of why questions in the
user interface. There are a number of ways to overcome
this problem: users could be offered a way to filter events
(e.g. only questions about music or video), or events that
occur very often in a short time period could be clustered
in one why question (e.g. “Why did a movie stop playing
(10x in the last 20 seconds)”).

Three out of five subjects were able to successfully use
our control mechanisms to achieve the desired effects. The
remaining two participants were given a few cues, but did
not require much assistance to complete the tasks either.
The majority of participants used the fine-grained control
user interfaces. Subjects found this mechanism useful and
could quickly figure out how to use it to control the
environment. However, subjects were less positive about
the ease of use of our undo and do commands. In the first
iteration, we used generic labels (“undo” and “do”) for
these commands, which made it hard for users to predict
their effect. Based on this observation, we later changed
our implementation to use more specific labels for the undo
and do buttons based on the label for the corresponding
action – such as “Stop video” and “Turn on lights”.

VII. Discussion
This paper explained how an existing pervasive com-

puting framework was extended with support for why and
why not questions. This requires a behaviour model that
can easily be queried to reason about the environment’s
behaviour. Besides being a feasibility demonstration, we
believe that PervasiveCrystal can help developers to create
pervasive applications that are more usable, predictable
and safe for end-users [3].

Our current implementation has a few limitations. First,
it is yet unclear whether the system is scalable to large and
complex applications. Especially why not questions pose
scalability challenges since the number of possibilities that
have to be examined for these questions rises exponentially
when the complexity of the environment increases. It
will be necessary to find a balance between adequate
memory and performance on the one hand, and sufficiently
accurate information on the other hand. Nevertheless, we
believe the biggest challenge lies not in optimizing CPU
or memory usage, but in providing users with detailed
and complete information about the system’s behaviour
without overwhelming them. Second, PervasiveCrystal can

only handle rule-based systems. It was not designed to
deal with machine learning algorithms (e.g. decision trees,
neural networks). Finally, we assume that the annotations
that developers provide are correct and consistent with the
actual behaviour of the application.

In future work, we would like to conduct a larger user
study to evaluate the questions interface. Moreover, we are
looking into improving support for why not questions and
further reducing the required developer effort in providing
annotations for the questions. Finally, as textual explana-
tions might not be suitable in all situations [12], we are
also exploring ways to provide a graphical representation
of the environment’s behaviour [16].

References
[1] C. Act-Net Consortium. The active database management

system manifesto: a rulebase of adbms features. SIGMOD Rec.,
25(3):40–49, 1996.

[2] L. Barkhuus and A. K. Dey. Is context-aware computing
taking control away from the user? three levels of interactivity
examined. In Proc. Ubicomp ’03, volume 2864 of Lecture Notes
in Comput. Sci., pages 149–156. Springer, 2003.

[3] V. Bellotti and W. K. Edwards. Intelligibility and account-
ability: human considerations in context-aware systems. Hum.-
Comput. Interact., 16(2):193–212, 2001.

[4] K. Cheverst, H. E. Byun, D. Fitton, C. Sas, C. Kray, and
N. Villar. Exploring issues of user model transparency and
proactive behaviour in an office environment control system.
User Modeling and User-Adapted Interaction, 15(3-4):235–273,
2005.

[5] K. Cheverst, N. Davies, K. Mitchell, and C. Efstratiou. Using
context as a crystal ball: Rewards and pitfalls. Personal Ubiq-
uitous Comput., 5(1):8–11, 2001.

[6] A. K. Dey. Understanding and using context. Personal Ubiqui-
tous Comput., 5(1):4–7, 2001.

[7] A. K. Dey and J. Mankoff. Designing mediation for context-
aware applications. ACM Trans. Comput.-Hum. Interact.,
12(1):53–80, 2005.

[8] A. K. Dey and A. Newberger. Support for context intelligibility
and control. In Proc. CHI ’09. ACM, 2009.

[9] W. K. Edwards and R. E. Grinter. At home with ubiquitous
computing: Seven challenges. In Proc. UbiComp ’01, pages 256–
272. Springer-Verlag, 2001.

[10] A. J. Ko and B. A. Myers. Designing the whyline: a debugging
interface for asking questions about program behavior. In Proc.
CHI ’04, pages 151–158. ACM, 2004.

[11] A. J. Ko and B. A. Myers. Debugging reinvented: asking and
answering why and why not questions about program behavior.
In Proc. ICSE ’08, pages 301–310. ACM, 2008.

[12] B. Y. Lim and A. K. Dey. Assessing demand for intelligibility in
context-aware applications. In Proc. Ubicomp ’09, pages 195–
204. ACM, 2009.

[13] B. Y. Lim, A. K. Dey, and D. Avrahami. Why and why
not explanations improve the intelligibility of context-aware
intelligent systems. In Proc. CHI ’09, pages 2119–2128. ACM,
2009.

[14] B. A. Myers, D. A. Weitzman, A. J. Ko, and D. H. Chau.
Answering why and why not questions in user interfaces. In
Proc. CHI ’06, pages 397–406. ACM, 2006.

[15] G. Vanderhulst, K. Luyten, and K. Coninx. ReWiRe: Creating
interactive pervasive systems that cope with changing environ-
ments by rewiring. In Proc. IE ’08, pages 1–8, 2008.

[16] J. Vermeulen, J. Slenders, K. Luyten, and K. Coninx. I bet you
look good on the wall: Making the invisible computer visible. In
Proc. AmI ’09, pages 196–205. Springer-Verlag, 2009.

[17] J. Vermeulen, G. Vanderhulst, K. Luyten, and K. Coninx.
Answering why and why not questions in ubiquitous computing.
pages 210–213.


