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a b s t r a c t

‘Cut-offs’ were introduced tomodel front propagation in reaction–diffusion systems inwhich the reaction
is effectively deactivated at points where the concentration lies below some threshold. In this article,
we investigate the effects of a cut-off on fronts propagating into metastable states in a class of bistable
scalar equations. We apply the method of geometric desingularization from dynamical systems theory
to calculate explicitly the change in front propagation speed that is induced by the cut-off. We prove
that the asymptotics of this correction scales with fractional powers of the cut-off parameter, and
we identify the source of these exponents, thus explaining the structure of the resulting expansion.
In particular, we show geometrically that the speed of bistable fronts increases in the presence of a
cut-off, in agreement with results obtained previously via a variational principle. We first discuss the
classical Nagumo equation as a prototypical example of bistable front propagation. Then, we present
corresponding results for the (equivalent) cut-off Schlögl equation. Finally, we extend our analysis to a
general family of reaction–diffusion equations that support bistable fronts, and we show that knowledge
of an explicit front solution to the associated problem without cut-off is necessary for the correction
induced by the cut-off to be computable in closed form.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Front propagation in reaction–diffusion systems constitutes a
fundamental topic in non-equilibrium physics. Central questions
concern the propagation speed that is selected by traveling fronts,
as well as the factors that influence this selection process. The
subject is vast and complex, as one has to distinguish between
bistable fronts propagating into metastable states versus fronts
that propagate into unstable states, which may be of either the
‘pulled’ or ‘pushed’ type. For a comprehensive review of these and
related issues, the reader is referred to [1].
The characteristics of propagating fronts in such systems are

altered substantially when ‘cut-off’ functions are placed on the
reaction kinetics. These cut-offs, which decrease the reaction
amplitude at all points in the domain at which the concentration
lies below a certain threshold, were introduced by Brunet and
Derrida in the pioneering study [2] to model fluctuations that arise
in the large-scale limit of discreteN-particle systems, among other
phenomena: with the threshold set to ε = N−1, the reaction terms
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are cut-off (and often set to zero) at pointswhere the concentration
is below ε, as such concentrations are not attainable when the
particles are assumed to be indivisible.
In particular, in [2], Brunet and Derrida investigated the effects

of a cut-off on the dynamics of pulled fronts in the classical
Fisher–Kolmogorov–Petrowskii–Piscounov (FKPP) equation,

φt = φxx + φ(1− φ2)H(u− ε), (1.1)

by introducing a Heaviside cut-off, which is defined by

H(u− ε) ≡ 0 if u < ε and H(u− ε) ≡ 1 if u > ε, (1.2)

at the zero rest state in (1.1). One of their principal findings was
that the selected front speed in the cut-off equation (1.1) is given
by

cFKPP(ε) ∼ 2−
π2

(ln ε)2
as ε→ 0+, (1.3)

to leading order in ε, which represents a substantial reduction
compared to the classical propagation speed cFKPP(0) = 2
in the corresponding equation without cut-off, even when ε is
small. Moreover, it was observed numerically in [2] that the
approximation provided by (1.3) is in good agreement with the
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front propagation speed found in discrete N-particle systems for
N large, and it was conjectured that (1.3) is valid for a wide variety
of cut-offs in (1.1).
In [3], we proved the existence of traveling front solutions that

propagate between the rest states at 1 and 0 in Eq. (1.1), and we
established the validity of the conjecture of Brunet and Derrida,
including a generalization of it. In particular, we considered the
general class of cut-off functionsΘ that satisfy

Θ

(
φ, ε,

φ

ε

)
< 1 if φ < ε and

Θ

(
φ, ε,

φ

ε

)
≡ 1 if φ > ε,

(1.4)

where, moreover, Θ is bounded at φ = ε and 0 < ε � 1
denotes the cut-off parameter, as before. (Examples include the
Heaviside step function H defined in (1.2) as well as the linear cut-
off, with Θ

(
φ, ε,

φ

ε

)
=

φ

ε
for φ < ε; see [3] for details.) We gave

a rigorous derivation of the leading-order ε-asymptotics of cFKPP
in (1.3), and we showed that the coefficient π2 in that expansion
is universal within the class of cut-off functions that satisfy (1.4).
The asymptotics of cFKPP, as given in (1.3), was subsequently also
confirmed in [4], via a variational approach.
The present article builds on the results obtained in [3], in

that we show how the geometric approach developed there, in
the context of the FKPP equation with cut-off in (1.1), can be
generalized to study front propagation in the broad class of cut-off
reaction–diffusion equations that is given by

φt = φxx + f (φ)Θ
(
φ, ε,

φ

ε

)
. (1.5)

Here, (t, x) ∈ R+ × R, φ(t, x) ∈ R, and f : R → R
denotes a smooth reaction function which vanishes at the three
rest states at φ+, φ◦, and φ− in (1.5). Moreover, we assume that
the corresponding equationwithout cut-off supports bistable front
solutions that propagate from the stable rest state at φ− into
the metastable rest state at φ+, with propagation speed c0; these
assumptions will be made precise in Section 4. (As shown e.g. in
[5,6], the front speed c0 is unique in the bistable case, whereas the
FKPP equation supports traveling front solutions for a continuum
of speeds c in the absence of a cut-off, with c ≥ cFKPP(0) and
cFKPP(0) the ‘critical’ front speed; cf. [3] for a detailed discussion.)
Finally, the cut-offΘ is as defined in (1.4); for clarity of exposition,
we will only discuss the case where Θ = H (the Heaviside cut-
off) in detail here. Other choices of Θ can be treated in a similar
fashion; see [3] and Remark 12.
The propagation of traveling fronts in (1.5) is naturally studied

in the framework of the associated traveling front equation

u′′ + cu′ + f (u)H(u− ε) = 0, (1.6)

where the prime denotes differentiation with respect to the
traveling wave variable ξ = x − ct and u(ξ) = φ(t, x) is the
corresponding front solution; moreover, we have now set Θ = H
in (1.6). In addition to proving the existence of traveling front
solutions, we will calculate explicitly the ε-dependent correction
∆c(ε) to the front propagation speed c0 that is induced by the
cut-off in (1.6). In particular, we will prove that this correction is
positive, i.e., that the propagation speed of bistable fronts increases
in the presence of a cut-off, which is in agreement with results
reported previously in [5,7].Moreover, wewill show that∆c scales
with fractional powers of the cut-off parameter ε, and we will
provide explicit expressions for these exponents, as well as – in
certain cases – for the respective leading-order coefficients in the
expansion for ∆c(ε). Finally, we emphasize that the numerical
values of these coefficients will, in general, depend on the choice
of cut-offΘ in (1.5), in contrast to the situation encountered in the
study of Eq. (1.1) in [2,3]; however, the corresponding powers of ε
will be universal within the family of cut-offs defined in (1.4).
Our analysis of (1.6) relies heavily on the blow-up technique

fromdynamical systems theory, amethod also knownas geometric
desingularization. To the best of our knowledge, this technique
was first used in the study of limit cycles near a cuspidal loop
in [8]. It has since been successfully applied, including in [9], as
an extension of the more classical geometric singular perturbation
theory to situations in which normal hyperbolicity is lost; a list of
additional references can be found in [3].
Rather than applying geometric desingularization directly to

(1.6), we rewrite that equation as the equivalent first-order system

u′ = v, (1.7a)

v′ = −cv − f (u)H(u− ε), (1.7b)

ε′ = 0, (1.7c)

where we have appended the trivial ε-dynamics. In the context of
(1.7), traveling front solutions of (1.5) that connect the rest states
at φ− and φ+ correspond to heteroclinic connections between
the associated equilibrium points of (1.7), which are found at
(φ∓, 0, ε).Wewill denote these points byQ−ε andQ

+
ε , respectively,

where ε ∈ [0, ε0], with ε0 > 0 sufficiently small. (The third
equilibrium point, with u = φ◦, is of no interest to us here.)
Without loss of generality,wewill assumeφ+ = 0 in the following.
Now, the equilibrium point Q+ε = (0, 0, ε) corresponding to

φ+ = 0 in (1.6) is degenerate (non-hyperbolic), with a double
zero eigenvalue, which is due to the presence of the cut-off H . This
degeneracy can be removed by desingularizing (‘blowing up’) the
origin to an invariant two-dimensional manifold. As will become
clear in the following, the blow-up regularizes the dynamics in a
neighborhood of the degenerate equilibriumatQ+ε , which can then
be studied using standard techniques from dynamical systems
theory.
In the context of (1.7), the required blow-up transformation

takes the form

u = r̄ ū, v = r̄ v̄, and ε = r̄ ε̄; (1.8)

see also [3]. Here, (ū, v̄, ε̄) ∈ S2 =
{
(ū, v̄, ε̄) | ū2 + v̄2 + ε̄2 = 1

}
,

with r̄ ∈ [0, r0] for r0 > 0 sufficiently small; in other words, the
transformation in (1.8) maps the origin to the two-sphere S2 in
R3. (In fact, it suffices to consider the blown-up dynamics on the
quarter-sphere S2

+
which is defined by restricting S2 to ε̄ ≥ 0 and

ū ≥ 0.)
To study the dynamics on (and near) S2

+
in the blown-up phase

space that is induced by the flow of (1.7), we introduce (local)
coordinate charts: we will define a phase-directional chart K1,
corresponding to ū = 1 in (1.8), and a rescaling chart K2, with
ε̄ = 1. In particular, we observe that S2

+
will be invariant under

the induced dynamics in each of these charts, which will result in
a regularization of the singular limit as ε→ 0+ in (1.7).

Remark 1. Given any object � in the original (u, v, ε)-variables,
we will denote the corresponding blown-up object by �. In charts
Ki (i = 1, 2), that object will be denoted by �i, as required. �

For future reference, we note that the change of coordinates κ21
between charts K2 and K1 on their domain of overlap is given by

r1 = r2u2, v1 = v2u−12 , and ε1 = u−12 ; (1.9)

similarly, the inverse change κ12 : K1 → K2 satisfies

u2 = ε−11 , v2 = v1ε
−1
1 , and r2 = r1ε1. (1.10)
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Remark 2. While the blow-up transformation defined in (1.8) is
homogeneous in r̄ , we remark that onemay, more generally, make
a quasi-homogeneous Ansatz of the form u = r̄α ū, v = r̄β v̄, and
ε = r̄γ ε̄, where α, β , and γ are positive integers; see e.g. [10].
These integers are then determined by the requirement that the
leading-order terms in the resulting equations for ū, v̄, and ε̄ scale
with the same power of r̄ . In the context of (1.7), we thus recover
(1.8), since α = β by (1.7a), as well as α = γ , due to the linear
dependence in the argument of H on u and ε. �

Finally, we outline our strategy for proving the existence
of traveling fronts in (1.6), using geometric desingularization.
Substituting the blow-up transformation in (1.8) into (1.7), one
finds that the phase space of the resulting blown-up equations is
naturally decomposed into three regions: an outer region, where
u = O(1), an inner region defined by u < ε, and an intermediate
region, where ε < u < O(1). The corresponding analysis will
be carried out in two steps. First, we will construct a singular
heteroclinic connection Γ in the singular limit as ε → 0+ in
(1.7). Then, we will demonstrate that there exists a unique value
c(ε) of c so that Γ persists, for ε ∈ (0, ε0] sufficiently small.
We remark that Γ and the persistent heteroclinic will lie on
and near S+2 , respectively, and that they will traverse all three
regions (outer, intermediate and inner) in connecting Q−ε to Q

+
ε .

Our persistence proof will be constructive, in that we will track
the unstable manifold Wu(Q−ε ) and the stable manifold W s(Q+ε )
through the outer and inner regions, respectively. Then, we will
show that these twomanifolds coincide in the intermediate region,
for c = c(ε), to form the desired persistent heteroclinic connection
in (1.7). The required ‘matching’ procedure will also directly yield
the leading-order ε-asymptotics of c(ε), completing our argument.
In particular, it will follow that the fractional powers of ε arising in
that asymptotics are given by the ratio of two of the eigenvalues of
the linearized blown-up dynamics at an equilibrium point on the
equator of S2

+
, i.e., in chart K1.

This article is organized as follows. In Section 2, we discuss
the propagation of bistable fronts in the presence of a cut-off
in the Nagumo equation, with f (φ) = φ(1 − φ)(φ − γ ) for
γ ∈

(
0, 12

)
in (1.5), which represents a prototypical example of a

reaction–diffusion system that supports bistable front propagation
into a metastable state. Then, in Section 3, we apply the results
obtained in the previous section to the Schlögl equation with cut-
off,which is equivalent to theNagumoequation under a coordinate
transformation, to calculate the asymptotics of the corresponding
front speed c(ε) to leading order. Finally, in Section 4, we
generalize the results of Sections 2 and 3: we study bistable fronts
propagating into metastable states in the general family of cut-
off reaction–diffusion equations in (1.5). In particular, we show
that knowledge of an exact solution to the corresponding problem
without cut-off is necessary for the correction induced by the cut-
off to be computable in closed form.

2. The cut-off Nagumo equation

In this section, we study bistable front propagation into a
metastable state in the cut-off Nagumo equation

φt = φxx + φ(1− φ)(φ − γ )H(φ − ε). (2.1)

Here, 0 < γ < 1
2 is a fixed parameter and H denotes the Heaviside

cut-off, as before.
The following theorem is the main result of this section:

Theorem 2.1. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small, and let
γ ∈

(
0, 12

)
. Then, there exists a unique value c(ε) of c (dependent

on γ ) such that Eq. (2.1) possesses a unique traveling front solution
propagating between φ− = 1 and φ+ = 0. Moreover, c(ε) =
c(0) + ∆c(ε), where c(0) = 1
√
2
−
√
2γ (the propagation speed

in the absence of a cut-off) and ∆c is a positive, C1-smooth function
in ε (including at ε = 0) and γ that satisfies

∆c(ε) = Kγ ε1+2γ + o(ε1+2γ ), (2.2)

with

Kγ =
Γ (4)

Γ (1+ 2γ )Γ (3− 2γ )

√
2γ

(1+ 2γ )2γ
(2.3)

a positive constant.
(Here and in the following, Γ (·) denotes the standard Gamma
function [11, Section 6.1];moreover, the dependence of c(ε) on the
parameter γ ∈

(
0, 12

)
is suppressed for convenience of notation.)

Remark 3. In fact, the function ∆c(ε) will be obtained as the
solution of a relation of the form Kγ ε1+2γ = ∆c[1 + θ(ε,
∆c,∆c ln(∆c), γ )]; cf. Eq. (2.30). Here, θ is C∞-smooth in
∆c,∆c ln(∆c), ε, and γ , including at (0, 0, 0, γ ), with θ(0, 0, 0,
γ ) = 0. In particular, the logarithmic ∆c-dependence translates
into C1-smoothness when ∆c is considered as a function of ε and
γ alone; see the proof of Proposition 2.2. �

The proof of Theorem 2.1 will follow the general procedure
outlined in the previous section. The traveling front equation
corresponding to (2.1) may be expressed as the equivalent first-
order system

u′ = v, (2.4a)

v′ = −cv − u(1− u)(u− γ )H(u− ε), (2.4b)

ε′ = 0; (2.4c)
cf. (1.7). The points Q−ε = (1, 0, ε) and Q+ε = (0, 0, ε) are
hyperbolic saddle equilibria, in (u, v), of the system of equations

u′ = v, (2.5a)

v′ = −cv − u(1− u)(u− γ ) (2.5b)
that is obtained from (2.4) in the absence of a cut-off. (The
eigenvalues of the corresponding linearization are given by λ−± =
−
c
2±

1
2

√
c2 + 4(1− γ ) andλ+± = −

c
2±

1
2

√
c2 + 4γ , respectively.)

In a first step, we desingularize the origin in (2.4) by applying
the blow-up transformation defined in (1.8). Then, we construct a
singular heteroclinic connection Γ between Q−0 and Q

+

0 in (2.4);
the construction is performed in the blown-up vector field that
is induced by (2.4) on S2

+
. The phase space of (2.4) naturally

decomposes into three regions, an outer region, an inner region,
and an intermediate region that represents the transition between
the former two.
Finally, we prove that the singular heteroclinic orbit Γ will

persist as a heteroclinic connection between Q−ε and Q
+
ε for a

unique value c(ε) of c in (2.4) and each ε > 0 sufficiently small.
That connectionwill correspond precisely to the sought-after front
solution of (2.1) propagating with speed c(ε). The corresponding
persistence proof will also yield the leading-order ε-asymptotics
of c(ε), thus showing (2.2), as claimed.

Remark 4. The expansion for ∆c(ε) in (2.2) agrees with results
obtained previously, via a variational principle, in Section V.A
of [7] and in [5]. In particular, [5, Eq. (9)], which implies ∆c ∼
−Kf ′(0)ε1+λ, is equivalent to (2.2), with f ′(0) = −γ and λ =
2γ . However, the numerical value of Kγ , as stated in (2.3), differs
from that reported for K in [5] by a multiplicative factor of (1 +
2γ )−2γ . While the reason for this discrepancy warrants further
investigation, we are confident that (2.3) is correct. Our analysis is
also supported by numerical simulations of the first-order system
in (2.4): evaluating (numerically) the distance between Wu(Q−ε )
andW s(Q+ε ) in the hyperplane {u = ε} for a range of values of K
and ε, we found that the minimum of that distance is attained for
K = Kγ , as expected (data not shown). �
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2.1. Construction of Γ

In this section, we perform the construction of the singular
heteroclinic connection Γ between Q−0 and Q

+

0 , as outlined above.

2.1.1. ‘Outer’ region
In the outer region, where u = O(1), the system in (2.4) reduces

precisely to (2.5), asH ≡ 1 there. The corresponding solution of the
equivalent traveling front equation u′′+ cu′+u(1−u)(u−γ ) = 0
(without cut-off) that connects the rest states at 1 and 0 is known
explicitly in this case:

u(ξ) =
1

1+ e
1√
2
(ξ−ξ−)

, (2.6)

with arbitrary phase ξ−. (We note that, for ξ ≥ ξ− large, u ∼

u(ξ−)e
−
1√
2
(ξ−ξ−)

, in agreement with classical ‘mode counting’
arguments which require that (2.6) can have no linearly growing
modes [6].)
The propagation speed of the front solution defined in (2.6) is

given by c0 = 1
√
2
−
√
2γ [12]. The associated orbit in the context

of the first-order system in (2.5) can then be written as

v(u, c0) =
1
√
2
u(u− 1), (2.7)

as can be seen directly from (2.6). In the framework of (2.5), that
orbit is precisely the unstable manifold Wu(Q−ε ) of the point Q

−
ε ,

for ε = 0, since (2.6) implies that (u, u′)→ (1, 0) as ξ →−∞.
We now write c = c0 + (c − c0) = 1

√
2
−
√
2γ + ∆c , with

∆c = o(1). Then, noting that the manifoldWu(Q−ε ) is analytic in
the state variables u and v (at least as long as u ≥ ε), as well as in
the parameter c , we may assume an expansion of the form

v(u, c) =
∞∑
j=0

1
j!
∂ jv

∂c j
(u, c0)(∆c)j (2.8)

forWu(Q−ε ).

Remark 5. While the expansion in (2.8) depends explicitly on u
and ∆c , it is only implicitly ε-dependent: the structure of (2.5)
implies that any ε-dependence in v can only enter through c.
Correspondingly, the unstable manifold Wu(`−) of the line `− =
{(1, 0, ε) | ε ∈ [0, ε0]}, which is a foliation in εwith fibersWu(Q−ε ),
only depends on ε in a trivial fashion. �

As will become clear in the following, only the first two terms
in (2.8) play a role to the order considered here: the leading-order
term v(u, c0) is again given by (2.7), while the next-order term
in ∆c can be found from the variational equation associated to
(2.5), taken along v(u, c0). That equation is obtained as follows:
we first rewrite (2.5) with u as the independent variable; then, we
differentiate the resulting equationwith respect to c and substitute
in c0 and v(u, c0), cf. (2.7), which gives

∂

∂u

(
∂v

∂c
(u, c0)

)
= −1+ 2

u− γ
u(1− u)

∂v

∂c
(u, c0). (2.9)

Eq. (2.9) can be solved in closed form:

Lemma 2.1. For u ∈ (0, 1], the unique solution ∂v
∂c (u, c0)

to (2.9) that satisfies ∂v
∂c (1, c0) = 0 is given by

∂v

∂c
(u, c0) =

1
3− 2γ

u−2γ (1− u)

× F(3− 2γ ,−2γ ; 4− 2γ ; 1− u), (2.10)

where F(·, ·; ·; ·) denotes the hypergeometric function [11, Sec-
tion 15]. In particular, ∂v

∂c (u, c0) is strictly positive for any u ∈ (0, 1).
The proof of Lemma 2.1 can be found in the Appendix.

Remark 6. The hypergeometric function F also occurs in the
bounds for the front propagation speed in the cut-off Nagumo
equation that were obtained by Méndez, et al., via a ‘generalized
variational approach’; see [7, Section V]. However, the precise
relationship between their analysis and ours remains to be
clarified. �

Remark 7. The result of Lemma 2.1 implies that the solution
∂v
∂c (u, c0) of the variational equation in (2.9) has a branch point at
u = 0 and, hence, that it becomes unbounded at that point, for
any γ ∈

(
0, 12

)
. In the limit as γ → 0+ in (2.9), the singularity

disappears, i.e., it follows from (2.10) that the solution of the
corresponding equation remains bounded at 0. �

Finally, we introduce the following notation: for ρ positive and
small, with ρ ≥ ε0, we denote the hyperplane {u = ρ} in (u, v, ε)-
space by Σ−, and we write P−0 for the point of intersection of
Wu(Q−0 )withΣ

−. (Here and in the following, wewill suppress the
ρ-dependence of Σ− and P−0 , for the sake of brevity.) We remark
thatΣ− defines a section for the flow of (2.4), and that the segment
ofWu(Q−0 ) located between Q

−

0 and P
−

0 , which we label Γ
−, gives

precisely the portion of the singular heteroclinic connectionΓ that
lies in this outer region, i.e., in {u ≥ ρ}.

2.1.2. ‘Inner’ region
In the inner region, the dynamics of (2.4) is governed by the

corresponding cut-off equations, since H ≡ 0 for u < ε. We
study these equations in the rescaling chart K2, where the blow-
up transformation in (1.8) is given by

u = r2u2, v = r2v2, and ε = r2. (2.11)

Substituting (2.11) into (2.4), we find the equivalent system

u′2 = v2, (2.12a)

v′2 = −cv2, (2.12b)

r ′2 = 0 (2.12c)

in (u2, v2, r2)-space. We note that, for r2 (=ε) fixed, all points on
the u2-axis are equilibria of (2.12). However, since only points on
the line `+2 = {(0, 0, r2) | r2 ∈ [0, r0]} can correspond to Q

+
ε , for

ε > 0, after blow-down (i.e., after transformation to the original
(u, v, ε)-variables), we will only consider those points here, and
we will collectively denote them by Q+2 .
In the singular limit as r2 → 0, the front propagation speed

c0 = 1
√
2
−
√
2γ in (2.12) is known explicitly; see Section 2.1. The

unique solution of the resulting singular equation

dv2
du2
= −c0, with v2(0) = 0, (2.13)

is given by v2(u2) = −c0u2; the orbit Γ +2 corresponding to that
solution yields precisely the stable manifold W s

2(Q
+

02
) of Q+02 =

(0, 0, 0).
Finally, we define the sectionΣ+2 for the flow of (2.12) by

Σ+2 = {(1, v2, r2) | (v2, r2) ∈ [−v0, 0] × [0, ρ]} , (2.14)

for v0 > c0 > 0 fixed, and we note that Σ+2 represents a natural
boundary for the inner region: since u = ε is equivalent to u2 =
1, after blow-up and transformation to chart K2,Σ+2 marks the
transition between the regime where the dynamics of the first-
order system in (2.4) is unaffected by the cut-off and the cut-off
regime. The orbit Γ +2 intersectsΣ

+

2 in the point P
+

02
= (1,−c0, 0),

as v2(1) = −c0; therefore, Γ +2 gives the portion of the singular
orbit Γ that lies in this inner region. The geometry in chart K2 is
illustrated in Fig. 1.
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Fig. 1. The geometry in chart K2 .

2.1.3. ‘Intermediate’ region
The intermediate region, where ε < u < O(1), provides the

connection between the outer and inner regions discussed in the
previous two sections and ismost conveniently studied in chart K1.
Here, the blow-up transformation in (1.8) is given by

u = r1, v = r1v1, and ε = r1ε1. (2.15)

Correspondingly, in the new (r1, v1, ε1)-coordinates, (2.4) be-
comes

r ′1 = r1v1, (2.16a)

v′1 = −cv1 − v
2
1 + γ − (1+ γ )r1 + r

2
1 , (2.16b)

ε′1 = −ε1v1. (2.16c)

Since c reduces to c0 = 1
√
2
−
√
2γ for ε(=r1ε1) = 0, it follows

that the two equilibria of (2.16) are located at P s1 =
(
0,− 1

√
2
, 0
)

and Pu1 =
(
0,
√
2γ , 0

)
. These equilibria correspond to the stable

eigendirection and the unstable eigendirection, respectively, of
the linearization at Q+0 of the first-order system without cut-
off in (2.5). (In other words, the blow-up transformation in (1.8)
teases apart the asymptotics of solutions in a neighborhood of
Q+ε and, hence, desingularizes the cut-off dynamics of (2.4) down
to ε = 0.) Both P s1 and P

u
1 are hyperbolic saddle equilibria for

(2.16), with eigenvalues − 1
√
2
, 1√

2
(1 + 2γ ), and 1

√
2
, respectively,

√
2γ ,− 1

√
2
(1+2γ ), and−

√
2γ . The relevant equilibrium for us is

P s1, since v1 =
v
u →−

1
√
2
as u→ 0+; recall (2.6).

Remark 8. We remark that the exponent of ε in the leading-order
ε-asymptotics of∆c in (2.2) is given by the ratio of the second and
third eigenvalues of the linearization of (2.16) at P s1. Moreover, we
note the presence of a potential (1,−1)-resonance in (2.16) which
involves the factor 1 + 2γ . This resonance manifests itself e.g. for
γ → 0+, in which case the Nagumo equation in (2.1) reduces to
the so-called Zeldovich equation. The effects of a cut-off in that
case were analyzed in detail in [13, Section 4], where it was also
shown that the resulting asymptotics of ∆c contains logarithmic
‘switchback’ terms in ε; see [14] for a more general discussion of
logarithmic switchback and resonance, from a geometric point of
view. �
Fig. 2. The geometry in chart K1 .

Next, we observe that the hyperplanes {r1 = 0} and
{ε1 = 0} are invariant for (2.16), as well as that both
hyperplanes correspond to the singular limit as ε → 0+ in
(2.4). The resulting, reduced dynamics determines the location
of the singular heteroclinic orbit Γ in this intermediate region.
Specifically, in {ε1 = 0}, the orbit passing through P−01 (which is the
image of the point P−0 under the blow-up transformation in (1.8))
is asymptotic to P s1 as ξ →∞. We denote this orbit by Γ

−

1 , and we
note that Γ −1 corresponds to the unstable manifoldWu(Q−0 ) of the
point Q−0 , after blow-up and transformation to K1. (Alternatively,
Γ −1 can be interpreted as the equivalent, in K1, of the ‘tail’ of the
traveling front solution in (2.6), in the absence of a cut-off.)
Similarly, in the invariant hyperplane {r1 = 0}, the orbit

through P+01 (which is the image of the point P
+

02
in Σ+2 under

the coordinate transformation κ21 between charts K2 and K1)
asymptotes to P s1 in backward ‘time,’ i.e., as ξ → −∞. We
denote that orbit by Γ +1 , and we remark that it can be determined
explicitly as follows: dividing (2.16b) (formally) by (2.16c) and
setting r1 = 0 in the resulting equation, we obtain

dv1
dε1
=
c0v1 + v21 − γ

ε1v1
.

The solution (in implicit form) can be found by separation of
variables:

ln ε1 −
1
2
ln |c0v1 + v21 − γ |

−
c0√
4γ + c20

arctanh

 2v1 + c0√
4γ + c20

 ≡ constant, (2.17)

which can in principle be solved for v1(ε1), taking into account
that v1(1) must equal v+01 = −c0 (the v1-coordinate of P

+

01
). Thus,

we conclude that the union of Γ −1 and Γ
+

1 constitutes the portion
of Γ that is found in the intermediate region; see Fig. 2 for an
illustration.

2.1.4. Summary
In sum, the singular heteroclinic connection Γ (or, rather,

the corresponding orbit Γ in blown-up phase space) is therefore
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Fig. 3. The global geometry of the blown-up vector field.
defined as the union of the orbits Γ − and Γ + and of the
singularities at Q

−

0 , P
s
, and Q

+

0 , which completes our discussion
of the singular dynamics of (2.4). The resulting global geometry (in
blown-up coordinates) is summarized in Fig. 3.

2.2. Existence and asymptotics of c(ε)

In this section, we establish the persistence of the singular
heteroclinic orbit Γ constructed in the previous section for ε
positive and sufficiently small. To that end, we combine the
dynamics obtained separately in the three regions (inner, outer,
and intermediate) in Section 2.1.
In the outer region, the unstable manifold Wu(Q−0 ) of Q

−

0 will
persist, in an analytic fashion, as the unstable manifold Wu(Q−ε )
of Q−ε (at least as long as u ≥ ε, for ε > 0 sufficiently small);
cf. Section 2.1.1. Given ε fixed, Wu(Q−ε ) corresponds precisely to
the sought-after persistent heteroclinic in that region. The unstable
manifold Wu(`−) of `− is then obtained as

⋃
ε∈[0,ε0]

Wu(Q−ε ). (In
other words, that manifold is defined as a foliation in ε ∈ [0, ε0],
with fibersWu(Q−ε ).)
Similarly, in the inner region, the stable manifold W s

2(Q
+

02
) of

Q+02 , which is given explicitly by v2(u2) = −c0u2, cf. (2.13), will
perturb analytically, for r2 (=ε) > 0 small and u2 ≤ 1, to the
manifold W s

2(Q
+

2 ) of Q
+

2 , as defined in Section 2.1.2. (In fact, the
persistent manifold is also known explicitly in this chart, and is
given by the graph of v2 = −cu2, for c = c0[1+ o(1)].) For ε fixed,
W s(Q+ε ) corresponds to the segment of the persistent heteroclinic
that is located in the inner region (after blow-down). As before, the
corresponding stable manifoldW s

2(`
+

2 ) of the line of equilibria `
+

2
is retrieved as the union of these manifolds over ε ∈ [0, ε0].
It remains to show that the two manifoldsWu(`−) andW s(`+)

connect in the intermediate region for a unique value of c in (2.4)
and each ε sufficiently small; the existence of that connection is
equivalent to the persistence of the singular heteroclinic orbit Γ .
We will henceforth denote the corresponding c-value by c(ε); in
particular, sincewewill show that c(ε) reduces to c0 in the singular
limit as ε→ 0+, we will identify c(0) and c0 once the existence of
c(ε) has been proven in Proposition 2.2. That proof will be carried
out entirely in the intermediate region, i.e., in chart K1. In a first
step, we introduce two sectionsΣ−1 andΣ
+

1 for the flow of (2.16),
as follows:

Σ−1 = {(ρ, v1, ε1) | (v1, ε1) ∈ [−v0, 0] × [0, 1]} , (2.18a)

Σ+1 = {(r1, v1, 1) | (r1, v1) ∈ [0, ρ] × [−v0, 0]} , (2.18b)

where v0 > 0 is defined as before. (The restriction to the negative
v1-axis is possible due to the fact that we are only interested in the
dynamics of (2.16) in a neighborhood of P s1; recall the discussion
in Section 2.1.3.) We note that Σ−1 corresponds to the section Σ

−

introduced in Section 2.1.1, after blow-up and transformation to
chart K1; moreover, we again suppress the ρ-dependence of that
section, for convenience of notation. Similarly, Σ+1 is equivalent
to Σ+2 under the change of coordinates κ12; see (1.10) and (2.14).
Clearly, Σ−1 separates the outer region from the intermediate
region, whileΣ+1 defines the boundary between the intermediate
and inner regions.
Now, the crucial step in showing the existence and uniqueness

of c(ε) consists of describing the transition map Π1 : Σ−1 7→
Σ+1 sufficiently accurately to the order considered here. In other
words, we will require that, for ε > 0 small enough, the point
of intersection ofWu(Q−ε ) with the section Σ

−, which we denote
by P−, is mapped to the point of intersection P+2 of W

s
2(Q
+

2 ) with
Σ+2 in the transition through the intermediate region. (Here, we
note that the corresponding orbit constitutes the portion of the
persistent heteroclinic that lies in this region; moreover, we omit
the parameter dependence of the points P− and P+2 , for brevity.)
The required persistence proofwill also reveal that∆c(ε) = c(ε)−
c0 must be positive. Finally, it will provide us with the leading-
order ε-asymptotics of c(ε), as stated in Theorem 2.1.

2.2.1. Preparatory analysis
We now set out to describe the asymptotics ofΠ1, as indicated

above. To that end, we first recast (2.16) in a form that is more
convenient, via a sequence of coordinate transformations: we
write c = c0 + (c − c0) = 1

√
2
−
√
2γ + ∆c; then, we introduce

the new variable z = v1 + 1
2 c0 = v1 +

1
2
√
2
(1 − 2γ ). With these
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transformations, the equations in (2.16) become

r ′1 = −
[
1

2
√
2
(1− 2γ )− z

]
r1, (2.19a)

z ′ =
[
1

2
√
2
(1− 2γ )− z

]
∆c − z2 +

1
8
(1+ 2γ )2

− (1+ γ )r1 + r21 , (2.19b)

ε′1 =

[
1

2
√
2
(1− 2γ )− z

]
ε1. (2.19c)

(Here, we observe that the linear v1-terms in (2.16b) cancel due to
our choice of constant in the definition of z.) Next, we divide out
the factor of 1

2
√
2
(1 − 2γ ) − z, which is positive in the z-regime

considered here, cf. Section 2.1.3, from the right-hand sides of the
vector field in (2.19):

r ′1 = −r1, (2.20a)

z ′ = ∆c −
z2 − 1

8 (1+ 2γ )
2

1
2
√
2
(1− 2γ )− z

+
−(1+ γ )r1 + r21
1
2
√
2
(1− 2γ )− z

, (2.20b)

ε′1 = ε1. (2.20c)

This transformation corresponds to a rescaling of ξ that leaves the
phase portrait of (2.19) unchanged; correspondingly, the prime
now denotes differentiation with respect to a new independent
variable ζ .Moreover, since the equations in (2.20) are autonomous,
we may assume without loss of generality that ζ− = 0 in Σ−1 ,
independent of the choice of ξ− in (2.6).
Now, the desired expression for the transition mapΠ1 may be

obtained by simplifying the equations in (2.20) appropriately. To
that end, we derive a normal form system for (2.20), as follows:

Proposition 2.1. Let V := {(r1, z, ε1) | (r1, z, ε1) ∈ [0, ρ] ×
[−z0, 0]×[0, 1]}, where z0 = v0+ 1

√
2
(1−2γ ), with v0 as in (2.18).

Then, there exists a C∞-smooth coordinate transformation

ψ :

{
V → ψ(V),
(r1, z, ε1) 7→ (r1, ẑ, ε1),

with ẑ(z, r1) = z + O(r1), such that (2.20) can be written as

r ′1 = −r1, (2.21a)

ẑ ′ = ∆c −
ẑ2 − 1

8 (1+ 2γ )
2

1
2
√
2
(1− 2γ )− ẑ

, (2.21b)

ε′1 = ε1. (2.21c)

Proof. The result follows from standard normal form theory; see
for example [15] and the references therein. In particular, we
note that the r1-dependent terms in (2.20b) are non-resonant
and that they can hence be removed completely via a near-
identity coordinate change ψ . Moreover, ψ can only depend on
the variables r1 and z, as (2.20b) is independent of ε1. Therefore,
ẑ = z + O(r1), as claimed. �

2.2.2. Uniqueness of∆c
Let P−1 and P

+

1 denote the points that correspond to P
− and P+2 ,

respectively, after transformation to chart K1, and let P̂−1 and P̂
+

1 be
the respective corresponding points after application of the normal
form transformation ψ defined in Proposition 2.1. Finally, let ẑ−
and ẑ+ denote the associated ẑ-values that are obtained from z−
and z+, respectively. We find
Lemma 2.2. For any ρ ∈ (ε, 1), with ε ∈ (0, ε0] and∆c sufficiently
small, the points P̂−1 = (ρ, ẑ

−, ερ−1) and P̂+1 = (ε, ẑ
+, 1) satisfy

ẑ− = ẑ−(ρ,∆c) = −
1

2
√
2
(1+ 2γ )+ ν(ρ,∆c)∆c, with

ν(ρ, 0) =
1
ρ

∂v

∂c
(ρ, c0)[1+ ν1(ρ)] > 0,

(2.22)

and

ẑ+ = ẑ+(∆c, ε) = −
[
1

2
√
2
(1− 2γ )+∆c

]
+ ω(∆c, ε)ε. (2.23)

Here, ν(ρ,∆c) is aC∞-smooth function in ρ and∆c, while ν1 isC∞-
smooth down to ρ = 0, with ν1(0) = 0. Finally, ω(∆c, ε) is C∞-
smooth in∆c and ε, including in a neighborhood of (0, 0).

Proof. Given that u (=r1) = ρ in Σ−1 , cf. (2.18a), we evaluate the
expansion in (2.8) to find

v− := v(ρ, c) = v(ρ, c0)+
∂v

∂c
(ρ, c0)∆c + O[(∆c)2] (2.24)

for the v-coordinate of P−, where the O[(∆c)2]-terms are C∞-
smooth as long asρ is positive. Substituting in v(ρ, c0) = 1

√
2
ρ(ρ−

1), see (2.7), and noting that v− = ρv−1 , we have

z− = v−1 +
1

2
√
2
(1− 2γ )

= −
1

2
√
2
(1+ 2γ )+

ρ
√
2
+
1
ρ

∂v

∂c
(ρ, c0)∆c + O[(∆c)2].

It remains to transform that expression into (r1, ẑ, ε1)-coordinates:
applying the normal form transformation ψ from the proof of
Proposition 2.1 and taking into account thatψ is near-identity and
C∞-smooth, we obtain a transformed value ẑ− = ẑ−(ρ,∆c) from
z−, where

ẑ− = −
1

2
√
2
(1+ 2γ )+ ν0(ρ)+

1
ρ

∂v

∂c
(ρ, c0)[1+ ν1(ρ)]∆c

+ ν2(ρ,∆c)(∆c)2,

for ∆c sufficiently small. Here, νj, j = 0, 1, 2, are C∞-smooth
functions in their respective arguments; in particular, ν0 and ν1
are smooth down to ρ = 0, with ν0(0) = 0 = ν1(0). Next,
we note that ν0(ρ) ≡ 0 must hold, since ẑ = ± 1

2
√
2
(1 + 2γ ) is

invariant for ∆c = 0 in (2.21b). (Here, we remark that these ẑ-
values correspond precisely to the (rectified) stable and unstable
manifolds W s

1(̂P
s
1) and Wu

1 (̂P
u
1 ) of P̂

s
1 and P̂

u
1 , respectively, after

transformation to (r1, ẑ, ε1)-coordinates.) Hence, we may express
ẑ− as stated in (2.22), with ν(ρ,∆c) = 1

ρ
∂v
∂c (ρ, c0)[1 + ν1(ρ)] +

ν2(ρ,∆c)∆c; in particular, the smoothness of ν1 implies that
ν(ρ, 0) is a C∞-smooth function in ρ. Finally, ν(ρ, 0) is positive
for ρ ∈ (0, 1) small enough, as claimed, since ∂v

∂c is positive for any
u ∈ (0, 1), by Lemma 2.1, which establishes (2.22).
To show (2.23), we first note that P+1 = κ21(P+2 ) must hold

for the singular heteroclinic orbit Γ to persist for some c-value
c(ε), with ε sufficiently small. (Here, the change of coordinates
κ21 : K2 → K1 is as defined in (1.9).) Therefore, we may obtain
the desired estimate for z+ by estimating P+2 first. To that end, we

recall that v+2 = −
(
1
√
2
−
√
2γ
)
− ∆c , as well as that v+2 = v

+

1 ,

since u2 = 1 inΣ+2 , by (2.14). Hence,

z+ = −
1

2
√
2
(1− 2γ )−∆c,
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and application of the near-identity transformation ψ defined in
the proof of Proposition 2.1 to z+ yields a corresponding value ẑ+

that satisfies ẑ+(∆c, ε) = − 1
2
√
2
(1−2γ )−∆c+ω01(∆c, ε), where

ω01 is C∞-smooth in both ∆c and ε, including in a neighborhood
of (0, 0). In particular, since ẑ = z + O(r1), cf. Proposition 2.1, and
since r1 = ε in Σ+1 , it follows that ω01 vanishes in the singular
limit as ε → 0+. Writing ω01(∆c, ε) = ω(∆c, ε)ε for some new
function ω, we obtain (2.23), which completes the proof. �

Remark 9. Since ∂v
∂c (ρ, c0)will become unbounded as ρ → 0+, by

Lemma 2.1, (2.22) implies that ν(ρ,∆c) cannot remain bounded
in that limit, either. As will become clear in the following,
this unboundedness will be resolved in the transition through
the intermediate region, provided the ρ-dependence of Π1 is
accounted for accordingly; see Lemma 2.4.
In general, the function ν2(ρ,∆c) defined above cannot be

expected to remain boundedwhen∆c > 0 andρ → 0+. However,
ν2(ρ,∆c)(∆c)−2will still be uniformly bounded forρ in a compact
subset of (0, 1). Correspondingly, in the statement of Lemma 2.2,
it is assumed that ρ is positive. �

For given∆c small, ε ∈ (0, ε0], andρ ∈ (ε, 1), we now consider
the solution to (2.21) with initial ẑ-value ẑ(0) = ẑ−(ρ,∆c),
where ẑ− is as in (2.22). Let ẑ+− denote the corresponding value of
ẑ(ζ+), where ζ+ = − ln ε

ρ
is the value of ζ in Σ+1 . (Here, ζ

+ can
e.g. be found from r1(ζ ) = ρe−ζ , cf. (2.21a), in combination with
r1(ζ+) = ε.)

Lemma 2.3. For ẑ+− defined as above, there holds
∂ ẑ+
−

∂c (ρ,∆c) >
0. Moreover, there can exist at most one value of ∆c such that
ẑ+−(ρ,∆c) = ẑ+(∆c, ε), where ẑ+ is as in (2.23).

Proof. The first statement can be seen by considering the
variational equations corresponding to (2.21); in particular, along
any orbit with ε = r1ε1 > 0, the equation for ∂ ẑ∂c obtained from

(2.21b) is given by ∂
∂ζ

(
∂ ẑ
∂c

)
= 1+Z(ζ ) ∂ ẑ

∂c , where Z is some smooth

function. Since, by Lemma 2.2, ∂ ẑ
−

∂c > 0 for ρ and ∆c sufficiently
small, any solution of this equation has to remain strictly positive
for all ζ ≥ ζ− = 0. As ∂ ẑ

+

∂c < 0, again by Lemma 2.2, the second
statement then follows trivially. �

Lemma 2.3 implies, in particular, that a connection between the
points P̂− and P̂+ under the flow of (2.21) can exist for at most one
value of∆c in (2.21b). As a consequence, persistence of the singular
heteroclinic orbit Γ constructed in Section 2.1 is also only possible
for at most one value of∆c .

2.2.3. Existence and asymptotics of∆c
We are now in a position to prove that there exists, in fact, a

function ∆c = ∆c(ε) so that the singular heteroclinic orbit Γ
persists, for ε positive and sufficiently small and c = c0+∆c(ε) in
(2.4). To that end,we integrate the normal formequations obtained
in (2.21), taking into account the estimates for ẑ− and ẑ+ found in
Lemma 2.2:

Proposition 2.2. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small, and
let γ ∈

(
0, 12

)
. Then, there exists a function c(ε) = c0 + ∆c(ε),

with ∆c(0) = 0, such that the singular orbit Γ persists if and only
if c = c(ε) in (2.4). Moreover, ∆c is positive, and C1-smooth in ε
(including at ε = 0) and γ .
Proof. Given the normal form system in (2.21), we need to
determine ∆c so that P̂−1 is mapped to P̂

+

1 under Π1. We first
integrate (2.21b), using separation of variables, to obtain

ζ+ − ζ− −
1
2
ln
∣∣∣∣2ẑ2 + 2∆cẑ

−
1
√
2
(1− 2γ )∆c −

1
4
(1+ 2γ )2

∣∣∣∣∣∣∣∣ẑ+
ẑ−

−

1
√
2
(1− 2γ )+∆c√

1
2 (1+ 2γ )

2 +
√
2(1− 2γ )∆c + (∆c)2

× arctanh

 2ẑ +∆c√
1
2 (1+ 2γ )

2 +
√
2(1− 2γ )∆c + (∆c)2

∣∣∣∣∣∣
ẑ+

ẑ−

= 0; (2.25)

see also (2.17). Now, we recall that ζ+ = − ln ε
ρ
and ζ− = 0;

moreover, we make use of ẑ+ = −
[
1
2
√
2
(1− 2γ )+∆c

]
+ω(∆c,

ε)ε and of ẑ− = − 1
2
√
2
(1 + 2γ ) + ν(ρ,∆c)∆c , as given in

(2.23) and (2.22), respectively. Substituting into (2.25), rewriting
the hyperbolic arctangent via

arctanh x =
1
2
ln
1+ x
1− x

,

and expanding the result in terms of∆c and ε, we find

− ln
ε

ρ
−
1
2
ln
∣∣∣−2γ −√2(1− 2γ )ω(∆c, ε)ε + O(2)∣∣∣

+
1
2
ln
∣∣∣−√2[1+ (1+ 2γ )ν(ρ, 0)+ O(1)]∆c∣∣∣

−
1
2

{
1− 2γ
1+ 2γ

+
8
√
2γ

(1+ 2γ )3
∆c + O(2)

}

×

{
ln

∣∣∣∣∣2γ − 4
√
2γ

1+ 2γ
∆c +

√
2(1+ 2γ )ω(∆c, ε)ε + O(2)

∣∣∣∣∣
− ln

∣∣∣∣√21+ (1+ 2γ )ν(ρ, 0)+ O(1)(1+ 2γ )2
∆c
∣∣∣∣
}
= 0. (2.26)

Here, O(1) denotes terms of at least order 1 in∆c , and O(2) stands
for terms of at least order 2 in ∆c and ε; both O(1) and O(2) are
C∞-smooth, and uniform in their respective arguments, if ρ is
restricted to compact subsets of (0, 1). (The uniformity is lost as
ρ → 0+, as before, since ν(ρ,∆c) becomes unbounded in that
limit; recall the proof of Lemma 2.2 and, in particular, Remark 9.)
Since, by Lemma 2.3, (2.26) can have a solution for at most one

value of ∆c , we will restrict ourselves to ∆c > 0 and show that a
solution exists in that case. That solution will then necessarily be
unique.
Hence, taking into account that ν(ρ, 0) > 0, by Lemma 2.2, we

exponentiate (2.26) to obtain(
ε

ρ

)2(1+2γ )
= (2γ )−(1+2γ )

×

{√
2 [1+ (1+ 2γ )ν(ρ, 0)]∆c

}1+2γ
× (2γ )−(1−2γ )

{
√
2
1+ (1+ 2γ )ν(ρ, 0)

(1+ 2γ )2
∆c
}1−2γ

×[1+ O(1)], (2.27)
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where the O(1)-terms are now C∞-smooth in ∆c , ∆c ln(∆c),
and ε. (Here, the occurrence of logarithmic terms in ∆c is
due to the ∆c ln(∆c)-terms in (2.26).) Clearly, the relation in
(2.27) is satisfied at (∆c, ε) = (0, 0); moreover, it is C1-
smooth, in ε,∆c, γ , and ρ, in a uniform fashion, for ε and ∆c
sufficiently small (including at (∆c, ε) = (0, 0)) and γ and ρ in
a compact subset of

(
0, 12

)
and (0, 1), respectively. Finally, since

1+ (1+ 2γ )ν(ρ, 0) > 0, it follows from the Implicit Function
Theorem that (2.27) has a solution∆c(ε, γ , ρ)which isC1-smooth
in ε (down to ε = 0), γ , and ρ, as claimed.
By definition, that solution yields precisely the value of ∆c

for which a heteroclinic connection exists between the points
Q−ε and Q

+
ε in (2.4). Hence, ∆c = ∆c(ε, γ ) must hold, i.e., ∆c

cannot depend on ρ. (In other words, ∆c must be independent
of the definition of the section Σ−, which is arbitrary.) Finally, to
determine the leading-order ε-asymptotics of ∆c(ε) ≡ ∆c(ε, γ ),
we solve (2.27) to leading order:

∆c(ε) = Kγ ε1+2γ + o(ε1+2γ ),

where the constant Kγ is defined by

Kγ =

√
2γ (1+ 2γ )1−2γ

1+ (1+ 2γ )ν(ρ, 0)
1

ρ1+2γ

≡

√
2γ (1+ 2γ )1−2γ

(1+ 2γ )δ(γ )
> 0. (2.28)

Here,

δ(γ ) =

[
1

1+ 2γ
+ ν(ρ, 0)

]
ρ1+2γ (2.29)

denotes a strictly positive function that is C∞-smooth in γ ∈(
0, 12

)
, for any ρ ∈ (0, 1) fixed and sufficiently small. This

completes the proof of Proposition 2.2. �

Remark 10. The proof of Proposition 2.2 implies that∆c is, in fact,
obtained as the solution of an implicit equation of the form

K(γ )ε1+2γ = ∆c[1+ θ(ε,∆c,∆c ln(∆c), γ )], (2.30)

where K(γ ) ≡ Kγ and θ are C∞-smooth in their respective
arguments, with K(γ ) positive, see (2.28), and θ(0, 0, 0, γ ) =
0. Even though ∆c is only C1-smooth when considered as a
function of ε, the relation in (2.30) allows us to calculate the ε-
asymptotics of ∆c to higher order than a mere C1-dependence
might suggest. �

We emphasize that the definition of Kγ in (2.28) has to be
independent of ρ, as∆c(ε) is defined by the global condition that
the singular heteroclinic orbit Γ persists, for ε sufficiently small:
while the Implicit Function Theorem is applied for ρ fixed in the
proof of Proposition 2.2, our argument is valid for arbitrary ρ.
(To state it differently, although the function ν(ρ, 0), as defined
in (2.22), may depend on the definition of Σ−1 and, hence, on ρ,
that dependence must cancel, as a matter of principle, once the
dynamics of (2.4) in the outer region has been taken into account.)
Therefore, the function δ(γ ) also cannot depend on ρ, and wemay
obtain the value of δ by evaluating (2.29) for any ρ ∈ (0, 1); in
particular, wemay pass to the zero-ρ limit. Recalling the definition
of ν(ρ, 0) from (2.22), we have

δ(γ ) = lim
ρ→0+

{
ρ1+2γ ν(ρ, 0)

}
= lim

ρ→0+

{
ρ2γ

∂v

∂c
(ρ, c0)

}
; (2.31)

cf. the proof of Lemma2.2. It remains to evaluate the above limit. To
that end, we make use of the explicit solution ∂v

∂c of the variational
equation that is associated to the first-order systemwithout cut-off
in (2.5), as found in Lemma 2.1:
Lemma 2.4. The function δ defined in (2.29) satisfies

δ(γ ) = lim
ρ→0+

{
ρ2γ

∂v

∂c
(ρ, c0)

}
=
Γ (3− 2γ )Γ (2γ + 1)

Γ (4)
, (2.32)

where ∂v
∂c (u, c0) is as given in (2.10) and Γ (·) denotes the standard

Gamma function, as before.

Proof. Evaluating (2.10) at u = ρ, for ρ positive and small, and
noting that the hypergeometric function F converges absolutely at
ρ = 0 due to<(1+ 2γ ) > 0 [11, Section 15.1.1], we find

ρ2γ
∂v

∂c
(ρ, c0) =

1
3− 2γ

(1− ρ)F(3− 2γ ,−2γ ; 4− 2γ ; 1− ρ).

Making use of the identity [11, Eq. (15.1.20)]

F(a, b; c; 1) =
Γ (c)Γ (c − a− b)
Γ (c − a)Γ (c − b)

for c 6∈ Z− and

<(c − a− b) > 0 (2.33)

and taking the limit asρ → 0+ in the resulting equation,we obtain

δ(γ ) =
1

3− 2γ
Γ (4− 2γ )Γ (2γ + 1)

Γ (1)Γ (4)
. (2.34)

Since Γ (1) = 1 and Γ (4 − 2γ ) = (3 − 2γ )Γ (3 − 2γ ), (2.32)
follows, as claimed, which completes the proof. �

2.2.4. End of proof of Theorem 2.1
We are now in a position to complete the proof of Theorem 2.1:

Proposition 2.3. The constant Kγ introduced in (2.2) is given by

Kγ =
Γ (4)

Γ (1+ 2γ )Γ (3− 2γ )

√
2γ

(1+ 2γ )2γ
; (2.35)

cf. (2.30).

Proof. The result is immediate from (2.28) and (2.31), in
combination with (2.32). �

Since Eq. (2.35) is precisely (2.3), this completes the proof of
Theorem 2.1.

Remark 11. Clearly, Kγ reduces to zero in the limit as f ′(0) = γ

→ 0+, which is in agreement with [13, Theorem 2]: there, it was
shown that the correction ∆c to c0 = 1

√
2
that is induced by the

cut-off in the resulting Zeldovich equation, with f (u) = u2(1− u),
is of the order O(ε2); see also [5, Eq. (9)]. �

Remark 12. The approach developed in this section can be
extended to more general choices of cut-off function Θ in (2.1).
(In particular, for Θ as defined in (1.4), the dynamics of the
associated traveling front equation will remain unchanged in
the outer and intermediate regions, since Θ ≡ 1 there.)
However, while the exponent 1 + 2γ in the leading-order ε-
asymptotics of ∆c will be Θ-independent, the numerical value
of Kγ will depend on the choice of Θ , in contrast to the
expansion for ∆c obtained in [2,3], in the context of the cut-
off Fisher–Kolmogorov–Petrowskii–Piscounov (FKPP) equation in
(1.1), where the corresponding coefficient was universal. Since,
moreover, the governing equations in the inner region will
typically have no closed-form solution in the singular limit as ε→
0+, it will not be possible to evaluate Kγ in closed form for general
Θ . �
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Remark 13. The leading-order approximation ζ+ = − ln ε +
O(1) made in [16, Section 3], while sufficient to prove ∆c(ε) =
O(ε1+2γ ), is not accurate enough to give the value of the coefficient
Kγ : that value can only be determined if δ(γ ) is known; however,
the definition of δ crucially depends on the factor of ρ1+2γ thatwas
neglected in [16]. �

Remark 14. Alternatively, existence and uniqueness of c(ε) can be
shown via a phase plane argument, as was done in the analysis of
the cut-off FKPP equation in [3, Proposition 3.1]: first, Wu(`−) is
tracked in forward ‘time’ ξ to the hyperplane {u = ε}, where it
lies inside of W s(`+) for c > c(ε), whereas it is located outside
for c < c(ε). Hence, the two manifolds must coincide for some
value c(ε) of c close to c0. Moreover, by that same argument, it
follows that c(ε) > c0. Finally, c(ε) is unique, as the positions of
the points of intersection of Wu(`−) and W s(`+) with {u = ε}

change monotonically with c.
The ε-asymptotics of ∆c , however, cannot be obtained in

that manner, but has to be derived separately, via an analysis of
the transition through the intermediate region, as was done in
[3, Proposition 3.2] and in the proof of Proposition 2.2. That proof
shows the existence of ∆c in addition to yielding its leading-
order asymptotics, rendering a separate existence argument
unnecessary. �

3. The cut-off Schlögl equation

In this section, we briefly discuss the Schlögl equationwith cut-
off:

φt = φxx − [2(1− σ)φ + (σ − 3)φ2 + φ3]H(φ − ε). (3.1)

Here, 0 < σ < 1 is a (fixed) parameter [7], and φ is defined so
that themetastable state, which in the usual formulation is located
at φ+ = −1, lies at zero now. Additional rest states of (3.1) are
found at φ◦ = 1 − σ and φ− = 2. Moreover, we note that an
explicit expression is known for the traveling front solution that
propagates between the rest states at 2 and 0, with propagation
speed c0 =

√
2σ , in the corresponding equation without cut-off;

that solution is given by

u(ξ) = 1− tanh
(
ξ − ξ−
√
2

)
, (3.2)

with arbitrary phase ξ−; see e.g. [7,16].
The following corollary is the main result of this section:

Corollary 3.1. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small, and
let σ ∈ (0, 1). Then, the unique (σ -dependent) value c(ε) of c for
which Eq. (4.1) supports a unique traveling front solution propagating
betweenφ− = 2 andφ+ = 0 is given by c(ε) = c(0)+∆c(ε), where
c(0) =

√
2σ (the propagation speed in the absence of a cut-off) and

∆c is a positive, C1-smooth function in ε (including at ε = 0) and σ
that satisfies

∆c(ε) = Kσ ε2−σ + o(ε2−σ ), (3.3)

for

Kσ =
Γ (4)

Γ (2+ σ)Γ (2− σ)

√
2(1− σ)

22−σ (2− σ)1−σ
(3.4)

a positive constant. (Here,Γ (·) denotes the standardGamma function,
as before.)
Proof. The result is most easily seen from the well-known equiv-
alence of the Schlögl and Nagumo equations [5,7]: introducing the
new variables

Φ =
1
2
φ, T = 4t, X = 2x, E =

1
2
ε, and

Σ =
1
2
(1− σ)

in (3.1), we obtain

ΦT = ΦXX + Φ(1− Φ)(Φ −Σ)H(Φ − E), (3.5)

which corresponds precisely to Eq. (2.1). (In particular, there holds
Σ ∈

(
0, 12

)
for σ ∈ (0, 1), as required.) Defining the new traveling

wave variable Ξ by Ξ = X − CT , we note that Ξ = 2ξ , with
ξ = x − ct , as before. Hence, c = 2C , and applying the result of
Theorem 2.1 to (3.5), we have

C(E) = C0 + KΣE1+2Σ + o(E1+2Σ ), (3.6)

where C0 = 1
√
2
−
√
2Σ and KΣ are defined as in (2.3), with γ

replaced with Σ there. Rewriting (3.6) in terms of ε, c , and σ , we
find (3.3) and (3.4), as claimed, which completes the proof. �

To the best of our knowledge, the value of Kσ had not been
calculated explicitly before. Finally, we remark that a preliminary,
geometric analysis of the cut-off Schlögl equation has appeared
previously in [16]. (In particular, the statement of Corollary 3.1
makes rigorous the reasoning presented in [16, Section 3].)

Remark 15. Alternatively, the result of Corollary 3.1 can also be
obtained from the equivalent first-order system

u′ = v, (3.7a)

v′ = −cv + [2(1− σ)u+ (σ − 3)u2 + u3]H(u− ε), (3.7b)

ε′ = 0 (3.7c)

corresponding to (3.1), as was done for the Nagumo equation in
Section 2. In particular, the existence and uniqueness of ∆c(ε) =
Kσ ε2−σ + o(ε2−σ ), with Kσ =

√
2(1−σ)

(2−σ)1−σ δ(σ )
> 0 and δ(σ ) a C∞-

smooth, positive function, can be shown exactly as in Section 2.2.
To determine the value of δ, one considers the corresponding
variational equation along the heteroclinic connection v(u, c0) =
1
√
2
u(u− 2) between the equilibrium points at Q−0 = (2, 0, 0) and

Q+0 = (0, 0, 0) in (3.7):

∂

∂u

(
∂v

∂c
(u, c0)

)
= −1+ 2

u+ σ − 1
u(2− u)

∂v

∂c
(u, c0). (3.8)

The unique solution of (3.8) that satisfies ∂v
∂c (2, c0) = 0 is given by

∂v

∂c
(u, c0)

=
21−σ

2+ σ
uσ−1(2− u)F

(
2+ σ ,−1+ σ ; 3+ σ ; 1−

u
2

)
, (3.9)

where F(·, ·; ·; ·) denotes the hypergeometric function [11, Section
15], as before. Hence, we have

δ(σ ) = lim
ρ→0+

{
ρ1−σ

∂v

∂c
(ρ, c0)

}
= 22−σ

Γ (2+ σ)Γ (2− σ)
Γ (4)

, (3.10)

which we substitute into Kσ to find (3.4), as required. �
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4. General cut-off bistable dynamics

The results obtained in Sections 2 and 3 for the Nagumo
and Schlögl equations, respectively, generalize to bistable front
propagation into a metastable state in the more general class of
cut-off reaction–diffusions equations defined in (1.5), which we
restate for reference here:

φt = φxx + f (φ)H(φ − ε), (4.1)

where H again denotes the Heaviside cut-off, as before, and the
smooth reaction function f satisfies several mild assumptions that
are specified in the following.

Assumption A1. The function f (φ) in (4.1) has three roots,
corresponding to the three rest states at φ+, φ−, and φ◦ in (4.1).
Moreover, the stable rest state at φ+ is located at the origin, i.e., f
may be written as f (φ) = φg(φ), where g is a smooth function,
with

g(0) < 0 and g ′(0) > 0, as well as g(φ−) = 0 and

g ′(φ−) < 0.
(4.2)

For future reference,we note that, clearly, g(0) = f ′(0).We also
remark that, by Assumption A1, the third rest state at φ◦ satisfies
g(φ◦) = 0 and g ′(φ◦) ≥ 0.
Next, we require an assumption about the global dynamics of

Eq. (4.1) in the absence of a cut-off:

Assumption A2. The equation φt = φxx + f (φ) supports a
traveling front solution that propagates between the rest states at
φ− and φ+ (=0), with propagation speed c0.

Finally, to ensure that the front propagation speed c0, as defined
in Assumption A2, is non-negative, we impose the following
assumption on the integral of f , cf. e.g. [17, Section 6.2]:

Assumption A3. The reaction function f in (4.1) satisfies
∫ 1
0 f (φ)

dφ > 0.

Remark 16. The requirement in Assumption A3 can be seen by
considering the traveling front equation u′′ + c0u′ + f (u) = 0
(without cut-off): multiplying that equation with u′, integrating
over ξ , and taking into account that u′ → 0 as ξ → ±∞, one
finds

c0

∫
∞

−∞

[u′(ξ)]2 dξ =
∫ 1

0
f (u) du;

hence, the sign of c0 must equal the sign of the integral of f over
(0, 1). �

As in Section 2, we will study front propagation in (4.1) in the
framework of the first-order system

u′ = v, (4.3a)

v′ = −cv − ug(u)H(u− ε), (4.3b)

ε′ = 0 (4.3c)

that is equivalent to the traveling front equation corresponding to
(4.1); see also (1.7). For ε small and fixed, the relevant equilibrium
points of (4.3) are found at Q−ε = (φ−, 0, ε) and Q+ε =

(0, 0, ε); recall AssumptionA1. These points are hyperbolic saddle
equilibria, in (u, v), of the corresponding system

u′ = v, (4.4a)

v′ = −cv − ug(u) (4.4b)
that is obtained from (4.3) in the absence of a cut-off; the associated
eigenvalues are given by λ−± = −

c
2 ±

1
2

√
c2 − 4φ−g ′(φ−) and

λ+± = −
c
2 ±

1
2

√
c2 − 4g(0), respectively. Traveling front solutions

of (4.1) propagatingwith speed c between the rest states atφ− and
0 then correspond to heteroclinic orbits that connect Q−ε and Q

+
ε

in (4.3), as before. In particular, AssumptionA2 implies that there
exists a heteroclinic connection between Q−0 and Q

+

0 for a locally
unique value of the parameter c = c0 in the equations without
cut-off in (4.4). Finally, c0 is non-negative by AssumptionA3.
The following theorem is the main result of this section:

Theorem 4.1. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small. Then,
there exists a unique value c(ε) of c such that Eq. (4.1) possesses a
unique traveling front solution propagating betweenφ− andφ+(=0).
Moreover, c(ε) = c(0) + ∆c(ε), where c(0) = c0 (the propagation
speed in the absence of a cut-off) and ∆c is a positive, C1-smooth
function in ε (including at ε = 0) and p that satisfies

∆c(ε) = Kεp + o(εp), (4.5)

with

p =
2
√
c20 − 4g(0)

c0 +
√
c20 − 4g(0)

(4.6)

and

K = |f ′(0)|
p
2

−c0 +
√
c20 − 4f ′(0)

c0 +
√
c20 − 4f ′(0)

1−
p
2

[c20 − 4f
′(0)]

1−p
2

δ(p)
(4.7)

a positive constant. Here, δ is a C∞-smooth, positive function that is
defined as

δ(p) = lim
ρ→0+

{
ρp−1

∂v

∂c
(ρ, c0)

}
, (4.8)

where ∂v
∂c (u, c0) denotes the solution of the variational equation

corresponding to (4.3), taken along the heteroclinic orbit v(u, c0).

We remark that, in general, the value of the leading-order
coefficient K in (4.5) cannot be determined in closed form, as the
function δ(p) defined in (4.8) can only be evaluated exactly if a
closed-form expression for ∂v

∂c (u, c0) is known. As will become
clear in the following, explicit knowledge of v(u, c0) is a necessary,
but not a sufficient, condition for the computability of ∂v

∂c and,
hence, of K .

Remark 17. The Nagumo equation discussed in Section 2 is a
special case of the very general scenario considered here, as
Eq. (2.1) satisfies (4.2) with g(φ) = (1 − φ)(φ − γ ) and φ− = 1.
Correspondingly, the leading-order ε-asymptotics of c(ε), as stated
in Theorem 4.1, agrees with the results of Section 2 in that case:
substituting c0 = 1

√
2
−
√
2γ and g(0) = −γ into (4.6) and (4.7),

we recover p = 1 + 2γ and K = Kγ , as in the statement of
Theorem 2.1. Similarly, the Schlögl equation discussed in Section 3
is of the form in (4.1), with g(φ) = −[φ2 + (σ − 3)φ + 2(1− σ)]
and φ− = 2: since c0 =

√
2σ and g(0) = −2(1 − σ), it follows

that p = 2− σ and K = Kσ , as claimed in Corollary 3.1. �

Remark 18. To obtain classical bistable reaction kinetics in (4.1),
one would typically require the following additional assumption;
cf. again [17] for details and references.

Assumption A′1. The function g defined in Assumption A1 has
exactly two roots. Moreover, g ′(φ◦) is strictly positive.
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Assuming, without loss of generality, that φ− = 1 and φ◦ = γ
for γ ∈ (0, 1), one could rewrite (4.1) as

φt = φxx + φ(1− φ)(φ − γ )g̃(φ)H(φ − ε), (4.9)

where g̃(φ) = 1+ O(φ) denotes a smooth function that is strictly
positive on (0, 1). AssumptionA2 would then imply the existence
of a front solution propagating between the rest states at 1 and 0 in
(4.9). For the propagation speed c0 to be non-negative, we would
assume

∫ 1
0 φ(1− φ)(φ − γ )g̃(φ) dφ > 0, as in AssumptionA3.

Eq. (4.9) is, to leading order, precisely the Nagumo equation
studied in Section 2 and can be analyzed accordingly. The proof
of Theorem 4.1, however, only requires information on g in a
neighborhood of the rest states at φ− and φ+ (=0), in addition to
the global requirement that a front solution connecting the two
exists. Hence, the stricter Assumption A′1 is of no relevance to us
and will not be imposed here. �

The proof of Theorem 4.1 follows the procedure outlined in the
Introduction: the origin in (4.3) is desingularized via the blow-
up transformation in (1.8). The singular heteroclinic connection Γ
is then constructed in the blown-up vector field that is induced
by (4.3) on S2

+
. The required construction is again performed

in the two charts K2 and K1, in which the dynamics of (4.3) is
analyzed in the inner and intermediate regions, respectively; the
dynamics in the outer region can conveniently be described in
the original (u, v, ε)-variables, as before. Finally, persistence of
Γ as a heteroclinic connection between Q−ε and Q

+
ε for ε > 0

sufficiently small may be established in exactly the same manner
as was done in Sections 2 and 3; see also [3]. As before, that
connection will yield the sought-after traveling front solution of
(4.1) that propagates between φ− and 0, with speed c(ε). Since the
corresponding analysis is in many ways similar to that presented
in Section 2, we will omit some of the details in the following.

4.1. Construction of Γ

4.1.1. Outer region
In the outer region, which is again defined by u = O(1),

the governing equations are given by (4.3) with H ≡ 1, i.e., by
(4.4). (Equivalently, the dynamics in this region is governed by
the corresponding traveling front equation u′′ + cu′ + ug(u) = 0;
cf. Section 2.1.1.) As noted above, we assume the existence of
a heteroclinic connection between u = φ− and u = 0 in
that equation for some (locally unique, non-negative) value c0 of
the front speed c . In the context of (4.4), this heteroclinic orbit
corresponds precisely to the unstable manifold Wu(Q−0 ) of the
point Q−0 , since AssumptionA2 implies (u, v)→ (φ−, 0) as ξ →
−∞. Moreover, as before, we may assume an expansion for that
manifold of the form

v(u, c) =
∞∑
j=0

1
j!
∂ jv

∂c
(u, c0)(∆c)j, (4.10)

where ∆c = c − c0 is taken to be o(1); cf. (2.8). For future
reference, we note that the leading-order asymptotics of the
lowest-order term v(u, c0) in (4.10) near u = 0 is given by the
linear approximation v(u, c0) = λ+−u + O(u2), where λ

+

− =

−
c0
2 −

1
2

√
c20 − 4g(0), as above, with c replaced with c0. (In fact,

noting that v(u, c0)must be C∞-smooth in u as u→ 0+, we may
make a series expansion for v, which can be used to determine the
asymptotics of v(u, c0) near u = 0 to arbitrary order.)
The next-order term ∂v

∂c (u, c) is again obtained as the solution
of the variational equation associated to (4.4), taken along the orbit
v(u, c0) that corresponds to the traveling front solution u(ξ) of the
problemwithout cut-off; recall Section 2.1.1. Rewriting (4.4)withu
as the independent variable, differentiating the resulting equation
with respect to c , and evaluating at c0, we find

∂

∂u

(
∂v

∂c
(u, c0)

)
= −1−

c0 + ∂v
∂u (u, c0)

v(u, c0)
∂v

∂c
(u, c0)

= −1+
ug(u)
[v(u, c0)]2

∂v

∂c
(u, c0). (4.11)

(Here, the last equality follows immediately from (4.4).) While
(4.11)will, in general, have no explicit solution, as not even v(u, c0)
will typically be known in closed form, we can still prove that
∂v
∂c (u, c0)will be strictly positive on (0, φ

−).

Lemma 4.1. The unique solution ∂v
∂c (u, c0) of (4.11) that satisfies

∂v
∂c (φ

−, c0) = 0 is strictly positive for any u ∈ (0, φ−).

Proof. The proof is based on a phase plane analysis of the first-
order system

u̇ = u(φ− − u),

ẇ = −u(φ− − u)+
u2(φ− − u)g(u)
[v(u, c0)]2

w

that is equivalent to the variational equation in (4.11), with w ≡
∂v
∂c . Considering the linearization of the above system at the saddle
equilibrium that is located at (φ−, 0), we find−φ− 0

φ−
u2(φ− − u)g(u)
[v(u, c0)]2

∣∣∣∣
u=φ−

 =
−φ− 0

φ−
(φ−)2g ′(φ−)
(λ−+)

2

 .
As (φ−)2g ′(φ−)

(λ−
+
)2

< 0, it follows that the only orbits that are

asymptotic to (φ−, 0) for u→ φ− are those on the corresponding
stable manifold. Since the slope of that manifold is negative and
since, clearly, ẇ|{w=0} < 0 for u ∈ (0, φ−), w is strictly positive on
this interval (and, in fact, becomes unbounded as u → 0+, which
can be seen by linearizing the equations at the saddle equilibrium
at the origin). �

Remark 19. The qualitative dynamics of Eq. (4.11) in this general
setting agreeswith that of the exactly solvable variational equation
in (2.9). However, as will become clear in the following, the limit
as u → 0+ in ∂v

∂c (u, c0) cannot be evaluated analytically unless
v(u, c0) is known explicitly, as was the case in Section 2.1. �

Finally, as in Section 2.1, let Σ− be defined as the hyperplane
{u = ρ} in (u, v, ε)-space, with ρ ≥ ε0 for ε0 > 0 sufficiently
small, and let P−0 denote the point of intersection of Wu(Q−0 )
with Σ−. Then, the segment of Γ that is located in this outer
region is given by the manifold Wu(Q−0 ), restricted to {u ≥ ρ}.
In the context of (4.3), that singular heteroclinic connection is
determined precisely by the leading-order term v(u, c0) in (4.10).

4.1.2. Inner region
The dynamics of (4.3) in the inner region is governed by the cut-

off system that is obtained by imposing H ≡ 0 in (4.3b). Since the
blow-up transformation defined in (1.8) is again given by (2.11) in
the corresponding (rescaling) chart K2, the resulting equations are
identical to those found previously in (2.12); cf. Section 2.1.2.
In particular, the line of equilibria `+2 , which is the segment of

the r2-axis obtained for r2 ∈ [0, r0], again corresponds to the point
Q+ε , after blow-up and transformation to chart K2; given r2 (=ε)
fixed, we write Q+2 = (0, 0, r2) ∈ `+2 , as before. In the limit as
r2 → 0+, the unique solution of the resulting singular equation
dv2
du2
= −c0, with v2(0) = 0, is found as v2(u2) = −c0u2. The

corresponding orbit coincides with the stable manifoldW s
2(Q
+

02
) of
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Q+02 = (0, 0, 0) and intersects the section Σ+2 defined in (2.14)
in the point P+02 = (1,−c0, 0), as before. Thus, the restriction
of W s

2(Q
+

02
) to {u2 < 1} yields precisely the segment Γ +2 of the

sought-after singular connection Γ that lies in this inner region;
see again Fig. 1 for an illustration.

4.1.3. Intermediate region
The system of equations corresponding to (4.3) in the interme-

diate region, where ε < u < O(1) and H ≡ 1, is given by

r ′1 = r1v1, (4.12a)

v′1 = −cv1 − v
2
1 − g(0)− [g(r1)− g(0)], (4.12b)

ε′1 = −ε1v1, (4.12c)

as the blow-up transformation in chart K1 again reduces to (2.15);
recall the equations in (2.16). (Here, we note that g(r1) − g(0) =
O(r1)may be of higher order, due to our assumptions on g in (4.2).)
The two equilibria of (4.12) are located at P s1 = (0, λ+−, 0) and

Pu1 = (0, λ++, 0), where λ
+

± = −
c0
2 ±

1
2

√
c20 − 4g(0), as before;

these equilibria correspond to the stable eigendirection and the
unstable eigendirection, respectively, of the linearization at Q+0 of
(4.4), in the absence of a cut-off. The associated eigenvalues are
given by λ+−,−c0 − 2λ

+

−, and −λ
+

−, respectively, λ
+

+,−c0 − 2λ
+

+,
and−λ++. The relevant equilibrium for us is again P

s
1, since

u′
u → λ+−

must hold as ξ →∞ along the traveling front solution of (4.1) that
corresponds to the singular heteroclinic orbit Γ .
The portion of that orbit that is located in this intermediate

region can be found by analyzing the dynamics of (4.12) in the
invariant hyperplanes defined by {r1 = 0} and {ε1 = 0}, as
before. Specifically, we denote by Γ −1 the singular orbit obtained
for ε1 = 0 that is asymptotic to P s1 as ξ → ∞, and we write Γ

+

1
for the orbit that asymptotes to P s1 as ξ → −∞ in {r1 = 0}; recall
Fig. 2. Then, the restriction of Γ to the intermediate region is given
by the union of Γ −1 , P

s
1, and Γ

+

1 , as indicated in Fig. 3.
This completes the construction of the singular heteroclinic

orbit Γ .

Remark 20. The exponent p in (4.6) is given precisely by the ratio
of the second and third eigenvalues of the linearization of (4.12) at
P s1, as noted already in Section 2.1.2; cf. Remark 8. �

4.2. Existence and asymptotics of c(ε)

As in Section 2.2, the persistence of the singular heteroclinic
connection Γ for a unique value c(ε) of c in (4.5), with ε ∈ (0, ε0]
sufficiently small, can be proven by considering the transition
map Π1 : Σ−1 7→ Σ+1 between the two sections Σ

−

1 and Σ
+

1
defined in (2.18). Moreover, the corresponding persistence proof
will again yield the leading-order ε-asymptotics of c(ε), provided
Π1 is described sufficiently accurately to the order consideredhere.
The required analysis is carried out entirely in chart K1, as before.

4.2.1. Preparatory analysis
We begin by introducing the new variables ∆c = c − c0 and

z = v1 + 1
2 c0 in (4.12):

r ′1 = −
(
1
2
c0 − z

)
r1, (4.13a)

z ′ =
(
1
2
c0 − z

)
∆c − z2 +

1
4
c20 − g(0)− [g(r1)− g(0)], (4.13b)

ε′1 =

(
1
2
c0 − z

)
ε1. (4.13c)
Reparametrizing the independent variable in (4.13) by dividing out
the (positive) factor of 12 c0 − z, we find

r ′1 = −r1, (4.14a)

z ′ = ∆c −
z2 −

[ 1
4 c
2
0 − g(0)

]
1
2 c0 − z

+
g(0)− g(r1)
1
2 c0 − z

, (4.14b)

ε′1 = ε1, (4.14c)

cf. (2.20), where the prime again denotes differentiation with
respect to the new variable ζ .
The normal form equations corresponding to (4.14) can now be

obtained as in the proof of Proposition 2.1:

Proposition 4.1. Let V := {(r1, z, ε1) | (r1, z, ε1) ∈ [0, ρ]
×[−z0, 0] × [0, 1]}, where z0 = v0 +

c0
2 , with v0 as in (2.18). Then,

there exists a C∞-smooth coordinate transformation

ψ :

{
V → ψ(V),
(r1, z, ε1) 7→ (r1, ẑ, ε1),

with ẑ(z, r1) = z + O(r1), such that (4.13) can be written as

r ′1 = −r1, (4.15a)

ẑ ′ = ∆c −
ẑ2 −

[ 1
4 c
2
0 − g(0)

]
1
2 c0 − ẑ

, (4.15b)

ε′1 = ε1. (4.15c)

As in Section 2,wewrite P− and P+2 for the points of intersection
of Wu(Q−ε ) and W s

2(Q
+

2 ) with Σ
− and Σ+2 , respectively, where

ε ∈ (0, ε0]. Let P−1 and P
+

1 denote the corresponding respective
points in (r1, v1, ε1)-coordinates. Given Proposition 4.1, we can
then derive the following estimates for the ẑ-coordinates of the
points P̂∓1 that are obtained from P

∓

1 after application of the normal
form transformation ψ defined in Proposition 4.1:

Lemma 4.2. For any ρ ∈ (ε, 1), with ε ∈ (0, ε0] and∆c sufficiently
small, the points P̂−1 = (ρ, ẑ

−, ερ−1) and P̂+1 = (ε, ẑ
+, 1) satisfy

ẑ− = ẑ−(ρ,∆c) = −
1
2

√
c20 − 4g(0)+ ν(ρ,∆c)∆c, with

ν(ρ, 0) =
1
ρ

∂v

∂c
(ρ, c0)[1+ ν1(ρ)] > 0,

(4.16)

and

ẑ+ = ẑ+(∆c, ε) = −
( c0
2
+∆c

)
+ ω(∆c, ε)ε. (4.17)

Here, ν(ρ,∆c) is aC∞-smooth function in ρ and∆c, while ν1 isC∞-
smooth down to ρ = 0, with ν1(0) = 0. Finally, ω(∆c, ε) is C∞-
smooth in∆c and ε, including in a neighborhood of (0, 0).

Proof. The proof is analogous to that of Lemma 2.2: making use of
the expansion for v(u, c) in (4.10), we find (2.24), as before. Next,
we recall that v(ρ, c0) = −λ+−ρ + O(ρ2); see Section 4.1.1. Given
that v− = ρv−1 as well as that z

−
= v−1 +

c0
2 , we obtain

z− = −
1
2

√
c20 − 4g(0)+ O(ρ)+

1
ρ

∂v

∂c
(ρ, c0)∆c + O[(∆c)2];

cf. the proof of Lemma 2.2. Applying the normal form (near-
identity) transformation ψ to z− and noting that ẑ− = ± 12√
c20 − 4g(0) is invariant for∆c = 0 in (4.15b), we have

ẑ− = −
1
2

√
c20 − 4g(0)+

1
ρ

∂v

∂c
(ρ, c0)[1+ ν1(ρ)]∆c
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+ ν2(ρ,∆c)(∆c)2

≡ −
1
2

√
c20 − 4g(0)+ ν(ρ,∆c)∆c,

where ν1 and ν2 are C∞-smooth in ρ and (ρ,∆c), respectively;
moreover, ν1 is smooth down to ρ = 0, as before, with ν1(0) = 0.
Finally, ν(ρ, 0) is positive for ρ ∈ (0, 1) sufficiently small, by
Lemma 4.1, which yields (4.16), as claimed.
The corresponding expression for ẑ+ is obtained by noting that

the v1-coordinate of P+1 must necessarily satisfy v
+

1 = −c0 − ∆c
and, hence, that z+ = − c02 − ∆c must hold. Recalling that ẑ =
z + O(r1) and r1 = ε in Σ+1 , we find (4.17), which completes the
argument. �

4.2.2. Uniqueness of∆c
Let ẑ− denote the solution to (4.15b) with initial value

ẑ−(ρ,∆c), and let ẑ+− ≡ ẑ−(ζ+), with ζ+ = − ln ε
ρ
, as

before. In analogy to Lemma 2.3, it then follows that the singular
heteroclinic connection Γ can persist in the transition through the
intermediate region for at most one value of∆c:

Lemma 4.3. For ẑ+− defined as above, there holds
∂ ẑ+
−

∂c (ρ,∆c) >
0. Moreover, there can exist at most one value of ∆c such that
ẑ+−(ρ,∆c) = ẑ+(∆c, ε), where ẑ+ is as in (4.17).

4.2.3. Existence and asymptotics of∆c
Both the existence of c(ε) and its leading-order ε-asymptotics

can now be obtained from the following analogue of Proposi-
tion 2.2:

Proposition 4.2. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small.
Then, there exists a function c(ε) = c0 + ∆c(ε), with ∆c(0) = 0,
such that the singular orbit Γ persists if and only if c = c(ε) in (4.1).
Moreover, ∆c is positive, and C1-smooth in ε (including at ε = 0)
and p, where p is defined as

p =
2
√
c20 − 4g(0)

c0 +
√
c20 − 4g(0)

. (4.18)

Proof. As in the proof of Proposition 2.2, we first integrate (4.15b)
by separating variables to find

ζ+ − ζ−−
1
2
ln
∣∣∣∣2ẑ2 + 2∆cẑ − c0∆c − 12 c20 + 2g(0)

∣∣∣∣∣∣∣∣ẑ+
ẑ−

−
c0 +∆c√

−4g(0)+ c20 + 2c0∆c + (∆c)2

× arctanh

 2ẑ +∆c√
−4g(0)+ c20 + 2c0∆c + (∆c)2

∣∣∣∣∣∣
ẑ+

ẑ−

= 0. (4.19)

Recalling that ζ+ = − ln ε
ρ
and ζ− = 0, substituting in the

expressions for ẑ+ and ẑ− from (4.17) and (4.16), respectively, and
making use of the identity arctanh x = 1

2 ln
1+x
1−x , we obtain

− ln
ε

ρ
−
1
2
ln |2g(0)− 2c0ω(∆c, ε)ε + O(2)|

+
1
2
ln
∣∣∣∣−{c0 +√c20 − 4g(0)[1+ 2ν(ρ, 0)] + O(1)}∆c∣∣∣∣

−
1
2

 c0√
c20 − 4g(0)

−
4g(0)

(c20 − 4g(0))
3
2
∆c + O(2)


×

ln
∣∣∣∣∣∣
−c0 +

√
c20 − 4g(0)

c0 +
√
c20 − 4g(0)

+
8g(0)√

c20 − 4g(0)
[
c0 +

√
c20 − 4g(0)

]2∆c

+

4
√
c20 − 4g(0)[

c20 +
√
c20 − 4g(0)

]2ω(∆c, ε)ε + O(2)
∣∣∣∣∣∣∣∣∣

− ln

∣∣∣∣∣∣
c0 +

√
c20 − 4g(0)[1+ 2ν(ρ, 0)] + O(1)

2[c20 − 4g(0)]
∆c

∣∣∣∣∣∣


= 0. (4.20)

Here, O(1) and O(2) denote first-order terms in ∆c and second-
order terms in (∆c, ε), respectively, that are C∞-smooth and
uniform as long as ρ is restricted to compact subsets of (0, 1);
cf. the proof of Proposition 2.2.
Given that (4.20) is solvable for at most one value of ∆c , as

shown in Lemma4.3,wemay attempt to find a solution for positive
∆c first. Since ν(ρ, 0) > 0, by Lemma 4.1, we obtain(
ε

ρ

)2√c20−4g(0)
= [2|g(0)|]−

√
c20−4g(0)

×

{[
c0 +

√
c20 − 4g(0)[1+ 2ν(ρ, 0)]

]
∆c
}c0+√c20−4g(0)

×

 c0 +
√
c20 − 4g(0)

−c0 +
√
c20 − 4g(0)

c0

×

 c0 +
√
c20 − 4g(0)[1+ 2ν(ρ, 0)]

2[c20 − 4g(0)]

c0 [1+ O(1)], (4.21)

where O(1) denotes terms that are C∞-smooth in ∆c,∆c ln(∆c),
and ε. As in the proof of Proposition 2.2, the Implicit Function
Theorem now implies that (4.21) has a solution ∆c(ε, p, ρ), for
any ρ ∈ (0, 1) and p as defined in (4.18), which is C1-smooth in
ε (down to ε = 0), p, and ρ. Moreover, ∆c is necessarily unique,
and independent of ρ, as it again yields the unique value of c for
whichΓ persists, as a heteroclinic connection betweenQ−ε andQ

+
ε

in (4.3), irrespective of the definition ofΣ−.
Finally, solving (4.21) for ∆c(ε) ≡ ∆c(ε, p) and taking into

account that g(0) = f ′(0) < 0, by (4.2), we find ∆c(ε) =
Kεp + o(εp) for the leading-order ε-asymptotics of ∆c. Here, the
constant K is given by

K = 2|f ′(0)|
p
2

−c0 +
√
c20 − 4f ′(0)

c0 +
√
c20 − 4f ′(0)

1−
p
2

×
[c20 − 4f

′(0)]1−
p
2

c0 +
√
c20 − 4f ′(0)[1+ 2ν(ρ, 0)]

1
ρp

≡ |f ′(0)|
p
2

−c0 +
√
c20 − 4f ′(0)

c0 +
√
c20 − 4f ′(0)

1−
p
2

[c20 − 4f
′(0)]

1−p
2

δ(p)
,

(4.22)
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with

δ(p) =

1
2
+

c0

2
√
c20 − 4f ′(0)

+ ν(ρ, 0)

 ρp (4.23)

a strictly positive, C∞-smooth function, which concludes the
argument. �

This completes the proof of Theorem 4.1.

Remark 21. Thenumerical value of the leading-order coefficientK
in the ε-asymptotics of∆c will, in general, depend on the choice of
Θ in (1.5); recall Remark 12. In other words, while the exponent p
in that asymptotics is universal within the class of cut-off functions
defined in (1.4), cf. (4.6), the value of K given in (4.7) is specific to
the Heaviside cut-off H . �

4.3. Computability of∆c

We conclude this section by discussing the computability of the
correction ∆c that is induced by the cut-off in (4.1), for general f .
We begin by noting that the exponent p in the ε-asymptotics of∆c
will always be computable if the front propagation speed c0 in the
absence of a cut-off is known; cf. Eq. (4.6). However, to determine
the value of the corresponding coefficient K , as defined in (4.7), in
closed form, we would need to evaluate δ(p). Since the definition
of δ must be independent of ρ, we may take the limit as ρ → 0+
in (4.23),

δ(p) = lim
ρ→0+

{
ρpν(ρ, 0)

}
= lim

ρ→0+

{
ρp−1

∂v

∂c
(ρ, c0)

}
, (4.24)

see Section 2.2, where ∂v
∂c denotes the solution of the variational

equation in (4.11), which we restate for convenience here:

∂

∂u

(
∂v

∂c
(u, c0)

)
= −1+

ug(u)
[v(u, c0)]2

∂v

∂c
(u, c0). (4.25)

Eq. (4.25) can be solved by variation of constants; however, an
exact solution for ∂v

∂c (u, c0) can only be found in cases where a
solution to the corresponding traveling front problemwithout cut-
off is known explicitly.
To clarify this point further, we recall the linear approximation

for v(u, c0) from Section 4.1.1: v(u, c0) = λ+−u + O(u2), with

λ+− = −
c0
2 −

1
2

√
c20 − 4g(0). Substituting into (4.25) and solving

the resulting approximate equation

∂

∂u

(
∂v

∂c
(u, c0)

)
= −1+

g(0)
(λ+−)

2

∂v

∂c
(u, c0),

we find the leading-order solution

∂v

∂c
(u, c0) = −

(λ+−)
2

−g(0)+ (λ+−)2
u+ Cu

g(0)
(λ
+
−
)2 (4.26)

for ∂v
∂c (u, c0). Since, however, that solution is only valid locally, in a

neighborhood of u = 0, the constant of integration C has to remain
undetermined, as the boundary condition on ∂v

∂c is prescribed at
u = φ−. Knowledge of C , on the other hand, is necessary for
evaluating (4.24): since g(0)

(λ+
−
)2
< 0, the dominant term in the u-

asymptotics of ∂v
∂c is precisely that second term in (4.26). (In fact,

recalling our discussion of the Nagumo and Schlögl equations in
Sections 2 and 3, respectively, one finds that the order (in u) in
the leading-order asymptotics of ∂v

∂c , which was found as−2γ and
σ − 1 in (2.10) and (3.9), respectively, equals 1− p = g(0)

(λ+
−
)2
.)
Similarly, approximating v(u, c0) locally in a neighborhood
of φ−, one would obtain a leading-order expression for ∂v

∂c that
satisfies the boundary condition ∂v

∂c (φ
−, c0) = 0. However, that

approximationwill not be valid up to and including the equilibrium
state at zero. In other words, the two expansions cannot be
equivalent unless v(u, c0) is known explicitly and in closed form.
(Here, we only consider equivalence from an analytical point of
view, as Eq. (4.25) can, in principle, be integrated numerically, and
the resulting approximation for ∂v

∂c evaluated in Σ
−, to obtain an

approximate value for K .)
Hence, we conclude that, while the exact form of g does not

play a role in determining the solution asymptotics of (4.25),
knowledge of an explicit solution to the traveling front problem
in the absence of a cut-off – and, consequently, of v(u, c0) – is
crucial for evaluating the leading-order coefficient K in the ε-
asymptotics of∆c in closed form. Finally, we remark that it might
not be possible to evaluate K even then: while explicit knowledge
of v(u, c0) certainly is a necessary condition for the closed-form
computability of K , the integrals that arise in solving (4.25) may
not be computable in closed form even when v(u, c0) is known
explicitly.

Remark 22. The observation that an exact solution to the traveling
front problemwithout cut-off has to be available for the coefficient
K defined in (4.7) to be computable was also made in [5]: there,
it was shown that K can always be evaluated in closed form if the
function thatmaximizes the functional underlying their variational
approach is known explicitly. We conjecture that this requirement
is in fact equivalent to the condition that the variational equation in
(4.25) can be solved exactly. However, a proof is beyond the scope
of this article. �
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Appendix. Proof of Lemma 2.1

In this appendix, we give the proof of Lemma 2.1, which we
restate for reference here:

Lemma A.1. For u ∈ (0, 1], the unique solution ∂v
∂c (u, c0) to

∂

∂u

(
∂v

∂c
(u, c0)

)
= −1+ 2

u− γ
u(1− u)

∂v

∂c
(u, c0) (A.1)

that satisfies ∂v
∂c (1, c0) = 0 is given by

∂v

∂c
(u, c0) =

1
3− 2γ

u−2γ (1− u)F(3− 2γ ,−2γ ; 4− 2γ ; 1− u),

where F(·, ·; ·; ·) denotes the hypergeometric function [11, Sec-
tion 15]. In particular, ∂v

∂c (u, c0) is strictly positive for any u ∈ (0, 1).

Proof. We first note that the variational equation in (A.1) can be
solved by variation of constants, which gives the general solution

∂v

∂c
(u, c0) = Cu−2γ (u− 1)−2(1−γ )

−

∫ u

1
s2γ (s− 1)2(1−γ ) ds · u−2γ (u− 1)−2(1−γ ). (A.2)
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To fix the constant of integration C in (A.2), we apply the boundary
condition that ∂v

∂c (u, c0) has to satisfy, with
∂v
∂c → 0 as u → 1−.

Since the second term in the solution goes to zero, by l’Hôspital’s
Rule, we must set C = 0 for (A.2) to remain bounded (and, indeed,
vanish) in that limit.
Next, wemake the substitution s 7→ 1− s in (A.2), which yields

∂v

∂c
(u, c0) = (−1)−2γ

∫ 1−u

0
s2(1−γ )(1− s)2γ ds

×u−2γ (u− 1)−2(1−γ )

= B1−u(3− 2γ , 1+ 2γ )u−2γ (1− u)−2(1−γ ); (A.3)

here, Bx denotes the incomplete Beta function [11, Section 6.6],
with

Bx(a, b) =
∫ x

0
ta−1(1− t)b−1 dt.

Finally, we apply the relation Bx(a, b) = a−1xaF(a, 1− b; a+1; x),
with F the hypergeometric function, see again [11, Sections 6.6 and
15], to rewrite (A.3) as

∂v

∂c
(u, c0) =

1
3− 2γ

F(3− 2γ ,−2γ ; 4− 2γ ; 1− u)u−2γ (1− u).

The strict positivity of ∂v
∂c (u, c0) on (0, 1) now follows from the

fact that F is strictly positive on that interval, which completes the
proof. �
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