
A Binary Adaptable Window SoC Architecture for a  

StereoVision Based Depth Field Processor

Andy Motten, Luc Claesen

Expertise Centre for Digital Media

Hasselt University – tUL – IBBT

Wetenschapspark 2, 3590 Diepenbeek, Belgium

{firstname.lastname}@uhasselt.be

Abstract— This paper presents a novel binary fully adaptable 

window for incorporating in a stereo matching System-on-Chip 

(SoC) architecture. This architecture is fully scalable and 

parameterizable to allow for custom SoC implementations, as 

well as rapid prototyping on FPGAs. For each window a binary 

mask window is generated which selects the supporting pixels in 

the cost aggregation phase of the SAD algorithm. This selection is 

performed using color similarity and spatial distance metrics. 

Hardware resource utilization for a fixed window and an 

adaptable window cost aggregation is compared based on FPGA 

logic element use.

Keywords-component; stereo matching; adaptable window; cost
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I. INTRODUCTION

Stereo matching has long been an important research topic 
in computational video. Many stereo matching algorithms have 
been investigated and published. A good comparison between 
different algorithms can be found in the review paper of 
Lazaros et al. [1], and the review paper of Scharstein and 
Szeliski [2]. 

Local and window based methods calculate the differences 
between the left and right images from a small part of the 
images. They produce a decent depth image result and are 
suitable for real-time applications. Selection of the ideal 
window size is important: it should be large enough to contain 
distinguished features, but small enough to keep depth 
discontinuities. 

Recently more advanced local based methods make use of 
color information to select the optimal support window. A 
good overview of these methods can be found in Wang [3].  

The adaptive-weight algorithm proposed by Yoon [4]
adjusts the support weight of each pixel in a fixed sized 
window. The support weights are depending on the color and 
spatial difference between each pixel in the window and the 
center pixel. Dissimilarities are computed based on the support 
weights and the plain similarity scores. Their experiment 
indicates that a local based stereo matching algorithm can 
produce depth maps similar to global algorithms. 

Tombari [5] extends the adaptive-weight algorithm of Yoon 
[4] by using information from segmentation. It allows inclusion 

of connectiveness of pixels and segment shapes, instead of 
relying only on color and spatial distance.

Cooperative stereo algorithms optimize initially calculated 
disparity matches by evaluating the disparity results of the 
neighboring pixels. An example of such a cooperative 
algorithm that makes use of color information can be found in 
the paper of Brockers [6]. He proposes to use color information 
in a local window to align support areas with local borders to 
keep object boundaries while using a cooperative stereo 
method.

Implementations on hardware of these methods are difficult 
to find. Most stereo vision implementations on a custom SoC
or a FPGA make use of a fixed cost aggregation window ([7],
[8] and [9]) or an adaptable rectangular cost aggregation 
window [10].

This paper presents a novel binary full adaptable window 
for incorporating in a stereo matching System-on-Chip (SoC) 
architecture. For each window a binary mask window is 
generated which selects the supporting pixels in the cost 
aggregation phase of the SAD algorithm. This selection is 
performed using color similarity and spatial distance metrics. 
The architecture is an extension on the architecture presented in 
[11]. It consists of a multiple parallel on-chip memory 
architecture, an adaptable window SAD matching cost 
computation and a tree based minima calculation with registers 
to store intermediate results. This architecture is fully scalable 
and parameterizable to allow for custom SoC implementations, 
as well as rapid prototyping on FPGAs.  

Hardware resource utilization for a fixed window and a 
binary adaptable window cost aggregation is compared based 
on FPGA logic element use and depth map quality obtained 
from the Tsukuba stereo pair [2]. 

II. STEREO MATCHING ARCHITECTURE

A. Basics and Requirements

The stereo matching algorithm takes two undistorted and 
rectified images that have been taken by two cameras that have 
a vertical alignment and a horizontal offset (see Fig. 1). Objects 
will appear on both images on the same horizontal line (the 
epipolar line). The horizontal distance between the same 
objects on the left and right images is called the disparity. 

The research described in this paper is directly funded by Hasselt 

University through the BOF framework.

25978-1-4244-6471-5/10/$26.00 c©2010 IEEE



Objects that are close to the cameras will have a larger 
horizontal disparity than objects which are far away. The goal 
of the stereo matching algorithm is to measure the disparity 
between all pixels in the image.

The major focus of the architecture presented in this paper 
is the implementation of a fully adaptable window to replace 
the fixed window cost aggregation algorithm. The architecture 
that is presented has been developed in a scalable and 
parameterized way. In this way a custom depth field processor 
SoC module can be generated and tuned to the available 
resources, the implementation technology and application at 
hand. 

The architecture should be easy to pipeline in order to 
balance the hardware usage with respect to the speed of the 
implementation technology. This requirement is necessary to 
guarantee a real time stereo vision system.

B. General Structure

The architecture consists of five processing blocks. The 
first block captures the synchronized stereo pixel stream and 
places it into multiple on-chip parallel memories. This stream 
can result from synchronized cameras, frame buffers or 
precaptured data streams on mass storage media. This data 
stream is a synchronized source of pixels coming from the two 
images where the first elements of the stream are the top left 
pixels in the left and right images and the following elements 
are corresponding pixels on the same line. The second block 
uses the information in the on-chip parallel memory to place a 
correctly oriented window of the image in a register. These first 
two blocks can be seen as more general and applicable to many 
(and more advanced) vision applications and are explained in 
more detail in [11]. The third block generates support weights 
for each pixel in the window using a color similarity 
measurement. These weights are used in block four to adapt the 
cost aggregation phase of the Sum of the window stored in the 
memory architecture. The fifth and last block calculates the 
minimum SAD result. This data flow can be seen on Fig. 2.

Figure 1. Stereo Vision Setup

Figure 2. General Architecture

C. Memory Architecture

Due to the sequential way in which digital video data are 
presented, video signal processing architectures are 
traditionally built around line buffers. In the line buffers a 
number of the most recent scan lines are kept on-chip. Line 
buffers could be implemented as shift registers, but are 
currently efficiently implemented as on-chip memory blocks 
with dedicated addressing logic, such that they are used as 
FIFOs, typically one FIFO per scan line. At the outputs of the 
FIFOs, corresponding column pixels for the recent scan lines 
are accessed. These can then be stored in a shift register array 
with the size of the area of interest for window based video 
operations such as filtering, edge detection, sharpening, 
resampling etc. 

However, the traditional scan line based FIFO architecture 
does not fully exploit the parallelism that is available with 
multiple on-chip memory blocks.

In this paper, an on-chip memory architecture (see Fig. 3) is 
used that allows parallel access to all pixels located in a chosen 
window. A window is defined here as a rectangular region of 
interest of the image. This region should be read out in one 
clock cycle for real-time operation and in order to avoid that 
memory access becomes a bottleneck in the data path. 

On every clock cycle, exactly one on-chip memory block is 
written to. An Address Management Unit (AMU) is needed to 
keep track of which on-chip memory to write to (called the 
base memory) and of which address to write to (called the base 
address). 

On every clock cycle, reading the on-chip memory contents 
for a chosen window is performed in parallel.
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Figure 3. Parallel Memory Implementation

D. Window Transformation

The window retrieved from the memories is not 
immediately usable for further processing. Although all 
window pixels are available at the same clock cycle, they still 
need to be reorganized in a way that the window orientation in 
the memory represents the window orientation on the image. 
Due to the addressing order of the AMU, the pixels contained 
in a memory window are scrambled in comparison with the 
image window. 

For the architecture with a fixed window cost aggregation, 
only a column transformation is needed for the complete 
window. For the architecture with the binary adaptable window 
cost aggregation, a column transformation is needed for the 
complete window and a complete transformation is needed for 
the center pixel.

E. Binary Adaptable Window

When using a fixed window shape, implicitly depth 
continuity across this window is assumed. This assumption is 
not correct at depth edges, where the center pixel depth is 
different from some (or the majority) of the surrounding pixels 
depths. A more conservative assumption is to assume depth 
continuity across pixels with similar color. The adaptive weight 
algorithm proposed by Yoon [4] gives a support weight to each 
pixel in a fixed squared window. A derivative of this method is 
implemented in this architecture. To save SoC resources, the 
support weights are chosen binary, where ‘0’ means that this 
pixel will give no support to the matching window and ‘1’ 
means that this pixel gives support to the matching window. 
There is no gradient between these two extremes. 

This can be seen as a masking window that selects the 
pixels that will be used in the cost aggregation phase of the 
SAD algorithm. Only the pixels where the masking window is 
‘1’ (black) will be taken into account (see Fig. 4). Note that this 
masking window can arrange for any shape possible within the 
original window, connectiveness between pixels and segment 
shape are not taken into account.  

Figure 4. Window Content (left) and Resulting Window Mask (right)

For every sub window we want to match, a binary mask 

window needs to be generated. With the first version, this mask 

is generated by comparing the blue difference and red 

difference chroma components (in the YCrCb colour space) 

between each pixel in the window with the center pixel. If the 

combined chroma differences are larger than a certain 

threshold, the corresponding entry in the mask window will be 

‘0’, otherwise it will be ‘1’ (1). 
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The second version uses the same chroma difference 

combined with a distance parameter (2 and 3). This distance 

parameter is a pre-calculated value stored in a look-up table. It 

acts as a regulator to trim medium chroma matches from pixels

that are located further from the center. The current 

implementation of this version doesn’t make use of 

multiplications (2), it instead uses shift operations (3) in order 

to implement this version efficiently into hardware. This way, 

almost no extra resources are needed to include the distance 

parameter.  
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Figure 5 presents the distance parameter for 

implementation with the multiplication operator compared with 

the implementation with the shift operator. In the later case, the 

regulation possibility of the distance parameter becomes less 

nuanced but can be implemented very efficiently.  

      

Figure 5. Distance parameter (left: for usage with the multiplication 

operator, right: for usage with the shift operator)

F. Sum of Absolute Differences

The Sum of Absolute Differences (SAD) calculates the 

differences between two selected subwindows. It is a 

measurement of similarity between two parts of an image. The 

main building block is the calculation of the absolute difference 

(AD). Different methods exist to calculate this. The method 

chosen for this architecture calculates first the difference of the 
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two numbers, if this result is negative, the two’s complement of 

the result is taken (Fig. 6).

Figure 6. Absolute Difference Calculation

The summation part or cost aggregation step of the SAD 
uses a window and depth parallel approach to calculate the sum 
of absolute differences for all depths and all windows in one 
clock cycle. 

Three main methods are integrated in this architecture. The 

first method is a SAD block calculation (see Fig. 7). This 

method calculates the SAD values immediately from the 

absolute differences of the pixels in the subwindow. For a 3x3 

subwindow with a depth of 2; 27 AD calculations and 24 

adders are needed.

Figure 7. SAD Block Calculation

The second method calculates first the column SAD and 
places these results in registers (see Fig. 8). These registers are 
kept in buffers during the next processing round so that they 
can be reused during several clock periods (7, 8). Second the 
column SAD’s from several processing rounds are summed to 
calculated the SAD values (4, 5, 6). For a 3x3 subwindow with 
a disparity range of 2; 9 AD calculations, 12 adders and 3 
registers files with a size equal to the window width are 
needed.

Figure 8. SAD Column Calculation

 1 = (1)3
=1

 2 = (2)3
=1

 3 = (3)3
=1

_  3 =  _  2 

_  2 =  _  1 

The third method calculates first the AD and places them 
directly into registers without combining them into a column 
SAD (see Fig. 9). These registers are also kept in buffers 
during the next processing round so that they can be reused 
during several clock periods (12, 13). Second the column 
SAD’s from several processing rounds are summed to 
calculated the SAD values (9, 10, 11). For a 3x3 subwindow 
with a disparity range of 2; 9 AD calculations, 24 adders and 3 
registers files with a size equal to the window width multiplied 
with the window height are needed.

Figure 9. SAD Single Calculation

 1 =  1( )3
=1 +  2( )3

=1 +  3( )3
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Method one and three allow access to all single AD 
calculations, which make them suitable to switch to a binary 
adaptable cost aggregation window. Equation 14, 15 and 16
show the result of switching method three.

 1 = (1, )  1( )3
=1 + (2, )  2( )3

=1 + (3, )3
=1

 3( )

 2 = (1, )  1( )6
=4 + (2, )  2( )6

=4 + (3, )6
=4

 3( )

 3 = (1, )  1( )9
=7 + (2, )  2( )9

=7 + (3, )9
=7

 3( )

Since the weights in this architecture are ‘0’or ‘1’, the 
multiplication in (14, 15 and 16) can be replaced by an AND 
operator. This will accommodate for an efficient hardware 
implementation.  

9th bit of subtraction (sign bit)
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G. Minima Selection

The minima selection is based on an iterative minima tree 
calculation (see Fig. 10). The SAD results are pair wise 
compared, while each time the lowest value is stored in a 
register. Afterwards, these registers are pair wise compared and 
stored in registers. These steps are repeated until one value 
remains. Storing of the intermediate results in registers makes 
this method interesting for pipelining.

Figure 10. Iterative minima tree calculation for a maximum disparity range of 

eight

III. IMPLEMENTATION AND RESULTS

Matlab has been used to generate, out of the chosen 
parameters and the high level architecture, a complete stereo 
matching architecture for both simulation and hardware 
generation from a high level description. This allows an initial 
check of the stereo matching architecture in Matlab before 
implementation on the actual hardware. Using this framework, 
comparison between different stereo matching parameters and 
architectures can be rapidly performed.

The architecture and methods presented in this paper have 
been implemented on an FPGA system, based on an Altera 
Cyclone II with 68.416 logic elements and 250 memory blocks. 
The source of the input stream is a flash memory containing 
two 24 bit RGB color images and the depth information is 
stored on an external frame buffer that is connected to an LCD 
screen. Both fixed window as well as binary adaptive window 
SAD are compared with each other in function of their logic 
elements usage and the quality of the produced depth maps. 
The Quartus-II version 9.0 logic synthesis and fitter tool has 
been used for the hardware implementation.  

Fig. 11 show the depth maps of the Tsukuba stereo pair [2]
with a binary adaptive subwindow compared with a square 
subwindow. The results indicate that the quality of the resulting 
depth map increases when using a binary adaptive subwindow.
Even with smaller window sizes, small details around the edges 
are noticeable improved. With larger window sizes the 
smoothing effect stays while preserving small details around 
the edges. This improvement comes not for free, the logic 
element usage with a binary adaptive subwindow increases 

linearly with the size of the subwindow (see Fig. 12). The main 
reason for the large resource usage difference between the two 
cost aggregation versions is the switch from SAD Column to 
SAD Single calculation.

When comparing the results of a binary window 
implementation using only a color metric and a binary window 
implementation which a color and space distance metric (see 
Fig. 11). The depth image becomes less smooth and the borders 
are better preserved. Note that by using only shift operators, 
almost no extra resources are needed to add the space distance 
metric to the color metric. 

a. 3x3 (left: fixed window, middle: adaptable window in function of colour, 
right adaptable window in function of colour and spatial distance)              

b. 5x5 (left: fixed window, middle: adaptable window in function of colour, 
right adaptable window in function of colour and spatial distance)              

c. 7x7 (left: fixed window, middle: adaptable window in function of colour, 
right adaptable window in function of colour and spatial distance)              

d. 9x9 (left: fixed window, middle: adaptable window in function of colour, 
right adaptable window in function of colour and spatial distance)              

e. 11x11 (left: fixed window, middle: adaptable window in function of 
colour, right adaptable window in function of colour and spatial distance)              

Figure 11. Depth map quality of the Tsukuba stereo pair [2] in function of 
window size and aggregation window type
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Figure 12. Logic element usage in function of window size, color resolution 

and aggregation window type

The color resolution is an important parameter to reduce 
hardware resource usage. Fig. 13 shows that a 6 bit luma 
component with a 4 bit chroma component is sufficient to get 
acceptable results while limiting resource usage. Although
pixel resolution will improve the quality of the resulting depth 
map, hardware resource usage rises rapidly (see Fig. 12). 

    

a. 4 bit Y, 4 bit C  b. 6 bit Y, 4 bit C

    

c. 6 bit Y, 6 bit C  d. 8 bit Y, 8 bit C

Figure 13. Depth map quality of the Tsukuba stereo pair [2] in function of the 

color resolution with a binary adaptable window size of 11x11 in fucntion of 

colour and spatial distance

IV. CONCLUSIONS

A novel binary adaptive window cost aggregation 
calculation architecture is presented that allows for depth 
discontinuity preservation within the reference window. For 
each window a binary mask window is generated which selects 

the supporting pixels in the cost aggregation phase of the SAD 
algorithm. This selection is performed using color similarity 
and spatial distance metrics. The results of the implementation 
indicate that the binary adaptive window implementation 
improves the disparity map quality with both small as large 
window sizes. It is shown that this architecture can be 
implemented efficiently into a SoC design, however the 
resource usage rises rapidly with increased window size. 

This architecture is chosen with particular attention given to 
pipelining and parallelism possibilities and is fully scalable to 
allow for custom SoC implementations, as well as rapid 
prototyping on FPGAs.  

The system reported in this paper has been implemented on 
static image input from flash memory. Future work focuses on 
incorporating live video streams and optimization of the 
operating frequency.
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