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ABSTRACT 

 

Similarity measures, such as the ones of Jaccard, Dice or Cosine, measure the similarity 

between two vectors. A good property for similarity measures would be that, if we add a 

constant vector to both vectors, then the similarity must increase. We show that Dice and 

Jaccard satisfy this property while Cosine and both overlap measures do not. Adding a 

constant vector is called, in Lorenz concentration theory, “nominal increase” and we show 

that the stronger “transfer principle” is not a required good property for similarity measures. 

 

Another good property is that, when we have two vectors and if we add one of these vectors 

to both vectors, then the similarity must increase. Now Dice, Jaccard, Cosine and one of the 

overlap measures satisfy this property, while the other overlap measure does not. Also a 

variant of this latter property is studied. 
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I.  Introduction 

 

Similarity measures are applied on cooccurrence data or cocitation data of authors and 

journals, represented by vectors of the form  1 2, ,..., NX x x x  and  1 2, ,..., NY y y y . Some 

papers (e.g. van Eck and Waltman (2009)) only consider binary vectors where the coordinates 

of X  and Y  are 0 or 1. This limitation will not be applied here but we will, evidently, assume 

that , 0i ix y   for all 1,...,i N . 

 

Let us repeat the “classical” similarity measures. First there is Dice’s measure E 
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Since all sums are 
1

,
N

i

  we will, henceforth, use the simpler .  Jaccard’s measure, denoted J 

is 
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Both measures are, essentially, the same since it is not difficult to prove that 

 

 
2

1

J
E

J



 (3) 

 

so that E is an increasing function of J (and vice-versa). Hence all properties expressed with 

inequalities for one measure are also valid for the other measure. 

 

The cosine formula (e.g. used by Salton in information retrieval – Salton and McGill (1987)) 

is defined as follows. 
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 (4) 

 

One can, indeed, show that C is the cosine of the angle between the vectors X  and Y . 

 

The classical overlap measures 
1O  and 2O  are defined as follows. 
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 (5) 
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 (6) 

 

The name overlap comes from the binary case where i ix y  can be interpreted as the number 

of elements in the intersection of two sets, each set having 2

ix  (resp. 2

iy ) elements (see 

Egghe (2009) for a complete description). In an information retrieval situation, (5) and (6) (in 

this or another order) can be interpreted as the classical recall and precision measures. 

 

Similarity measures are also studied (or mentioned) in the books Boyce, Meadow and Kraft 

(1995), Grossman and Frieder (1998), Losee (1998), Salton and McGill (1987), Tague-

Sutcliffe (1995) and van Rijsbergen (1979); also see Egghe and Michel (2002, 2003). In van 

Eck and Waltman (2009) a general similarity measure with a parameter p is defined such that 

it yields all measures (except J) defined above according to some (limiting) values of p (see 

the  last section for more details). 

 

Strictly speaking the correlation coefficient of Pearson, defined in (7), as also a similarity 

measure 
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where x  and y  denote the average of X  and Y , respectively. 

 

Certainly, r is an important measure of correlation in statistics (measuring e.g. the degree of 

correlation of a cloud of points with its regression line). But in Ahlgren, Jarneving and 

Rousseau (2003) one has found two bad properties of r in terms of similarity. One of them is 

that, adding the same number of zeros to two vectors should not decrease    the similarity. It 

is shown in Ahlgren, Jarneving and Rousseau (2003) that r does not satisfy this property. The 

second property is defined in a similar way and also here we have that r does not satisfy this 

property. So we will not consider r anymore in this study of similarity measures (note that all 

the measures defined above (except r) are invariant to adding zeros to vectors). 

 

The idea in Ahlgren, Jarneving and Rousseau (2003) of checking good properties for 

similarity measures is comparable with (but not the same as) what has been done in 

econometrics and informetrics on so-called concentration measures. There are, however, basic 

differences. Firstly, concentration measures act on one vector X  and where one tries to 

measure the degree of inequality amongst the coordinates of X : the higher the inequality, the 

higher the value of the concentration measures. We refer to Egghe (2005) and references 

therein for many applications of concentration theory in informetrics. Similarity measures, 

however, compare two vectors which makes them very different from concentration 

measures. Secondly, similarity measures give high values for vectors X  and Y  that are 

similar (e.g. X Y highest value for the similarity measure) while concentration measures 

give high values for a vector X  with concentrated coordinate values (e.g.  1,0,...,0X  ). 

This last remark is not completely clear, stated as such, since concentration measures act on 

one vector and similarity measures act on two vectors, but let us clarify this further. 

 

Let f be a concentration measure. Let X  be any vector (say with positive coordinates, 

including zero). Let  ,...,A a a  be a constant vector with 0a  . Then it is logical that the 

vector  1 2, ,..., NX A x a x a x a      is less concentrated than X  (supposing X  not to be 

a constant vector), i.e.    f X A f X  . In concentration theory this is called the “principle 

of nominal increase”. Let F be a similarity measure, hence acting on two vectors  ,X Y . It is 
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then logical that (supposing X Y ) that X A  and Y A  are more similar than X  and Y : 

   , ,F X A Y A F X Y   . So similarity measures are kind of “opposite” to concentration 

measures but acting on two vectors instead of one for concentration measures. This is only 

partially true as we will explain in the next section. 

 

Also in the next section we will study this principle of nominal increase for similarity 

measures. We will show that Dice’s measure as well as the Jaccard index satisfy this 

principle, while Cosine, and overlap measure 1O and  2O  do not satisfy this principle. For 2O  

we have partial positive results if X  is a multiple of Y  or if i ix y  .  

 

In the third section we will study another “natural” good property for similarity measures. If 

we add to two vectors X  and Y  one of the two vectors, say X Y  and 2Y Y Y   then the 

similarity should increase strictly (if X Y ). We will show that Dice, Jaccard, Cosine and 

overlap measure 2O  satisfy this property while overlap measure 1O  does not satisfy this 

property. A variant of the property studied in this section is also defined and studied and we 

prove that only Cosine satisfies this property. 

 

We hereby demonstrated a kind of complementarity of the classical similarity measures : 

some measures satisfy a property while others do not, while the reverse is valid for another 

property ! 

 

The paper then closes with  suggestions for further research. We can generalise both 

properties in Section 2 and 3 by requiring that X Z  and Y Z  are more similar than X  

and Y  themselves (if X Y ) for every vector Z  (with positive coordinates).  Dice and 

Jaccard satisfy this property while the other measures do not. 
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II.  The principle of nominal increase for similarity 

measures 

 

Let sim be any measure we want to check for good properties of similarity measures. Let 

 1,..., NX x x ,  1,..., NY y y  with , 0i ix y   for all 1,...,i N  and such that X Y . Let 

 ,...,A a a  be any constant vector with 0a  . Then we say that sim satisfies the principle 

of nominal increase if 

 

    , ,sim X A Y A sim X Y    (8) 

 

The following theorem proves that Dice’s measure satisfies this principle. 

 

Theorem II.1: Dice’s measure E (formula (1)) satisfies the principle of nominal increase. 

 

Proof: Denote 

 

  
  

   
2 2

2 i i

i i

x a y a
E a

x a y a

 


  



 
 (9) 

 

being Dice’s measure on  ,X A Y A  . For proving that  E a E  it is sufficient to prove 

that 
 

0
dE a

da
  (this method will not always be successful since the principle of nominal 

increase can be valid without having a strictly increasing function of a). We have 

 

 
 

    
 

2
2 2

1
*

i i

dE a

da x a y a



   
 

 

where  
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      
2 2

* 2 2 4i i i ix a y a x y Na          

         2 2 2i i i ix a y a x a y a         

 

So 
 

0
dE a

da
  if and only if 

 

          
2 2

2 2i i i ix a y a x a y a          

       4 0i i i ix a y a x a y a          

 

if and only if 

 

             
2 2

2 2 0i i i i i ix a x a y a y a x a y a               

 

if and only if 

 

           
2

0i i i ix a y a x a y a          

 

which is true since all coordinates are 0 , 0a   and X Y .                        □ 

 

Also Jaccard’s index J satisfies this principle. 

 

Theorem II.2: Jaccard’s measure J (formula (2)) satisfies the principle of nominal increase. 

 

First proof: Denote 

 

  
  

      
2 2

i i

i i i i

x a y a
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
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being Jaccard’s index on  ,X A Y A  . The same method as in the proof of Theorem II.1 

yields 
 

0
dJ a

da
  if and only if 

 

           
2

0i i i ix a y a x a y a          

 

which is true. 

 

Second proof: By Theorem II.1 we have  E a E . It follows from (3) that 

 

 
2

E
J

E



 (11) 

 

a strictly increasing function of E. Hence 

 

  
 

 2 2

E a E
J a J

E a E
  

 
.                    □ 

 

Now the Cosine measure does not satisfy the principle of nominal increase. 

 

Example II.3: Let  3,1X  ,  6,2Y   (hence 2Y X ),  1,1A  . Then the similarity 

between X  and Y  is 1 of course. But on  ,X A Y A   we have 

 

  
34

0.9982744 1
20 58

C a    . 

 

It is easy to see that 

 

 2

1 2O O C  (12) 
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This already yields that at least one of the measures 
1O  or 2O  do not satisfy the principle of 

nominal increase. The same example yields 1 2O   and  1

34
2

20
O a   , a counterexample. 

For 2O  this is not  a counterexample:  2 2

1 34

2 58
O O a   , but also for 2O a counterexample 

exists.  

 

This counterexample was kindly provided by L. Waltman (based on simulations in Mathlab). 

X (9636,6142,7457,5318,59),   

Y  = (9246,7469,6486,5098,2188)  

A = ( , , , , )a a a a a with  4867a  . 

Then it is readily seen that 2O = 0.9818 (between X and Y ) while 

2O ( ) 0.9799a  < 2O 2(O ( )a  is the 2O -measure for ( X + A ,Y + A ))  

 

As a partial position result we can show that 2O  satisfies this principle if one vector is a 

multiple of the other vector or in case the sum of the coordinates of the vectors are equal. We 

will prove this now. 

 

Proposition II.4: Let X , Y  and A  be as above. Suppose Y X  for a certain number 

0   1   (excluding the case Y X  in which case the principle of nominal increase is 

never valid !). Then 

 

    2 2 2, ,O X A Y A O X Y O     

 

Proof: It is no loss of generality to suppose 1   (otherwise, interchange X  and Y ). Then it 

is easy to see that 

 

 2

1
O


  (13) 

 

and that 
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i
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O X A Y A
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



 
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




 

 

since all 0ix  . Now 

 

 
  

 
2

1i i

i

x a x a

x a





 







 

if and only if 

 2 21
2i i ia x a x Na a x Na


       

 

if and only if 

   21
1ix a a Na



 
   

 
  

 

which is true since 1  .                               □ 

 

Note that the above Proposition is false for 1O  (see the example above). In fact, in all cases 

where Y X   0, 1    we have that  , 1C X Y  . Then by (12) and the above 

Proposition on 2O  we have that    1 1, ,O X A Y A O X Y   . But also note that this 

inequality is not always true for 1O . Indeed, take the example 
2 2

1.1 ;1.1
2 2

X
 

   
 

, 

 0;0.9 2Y   and  1,1A  . Then    1 1, 0.8181... , 0.9436944O X Y O X A Y A     . 

 

In order to prove a partial result on the principle of nominal increase for 2O  we need to show 

 

 
  

      2 2 2 2max ,max ,

i i i i

i ii i

x a y a x y

x yx a y a

 


 

 
  

 (14) 
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We can always suppose that 2 2

i ix y   (otherwise interchange X  and Y ). However this 

does not yield that    
2 2

i ix a y a     for all 0a  . To produce a counterexample to 

this we must find X , Y  and A  such that  

 

 2 2 2 22 2i i i ix a x a y a y a         

 

and hence, since 2 2

i ix y  , we must have i ix y  . In terms of 1L - and 2L -vector 

norms we must have 2 2|| || || ||X Y  and 1 1|| || || ||X Y . It is well-known that equal 2|| . || -norms 

yield a circle and that equal 1|| . || -norms yield a square. Let us take the circle 2|| || 1.2Z   and 

the square 1|| || 2Z  . Then we have that they intersect (see Fig. 1). 

 

0
1.2

x2

X

y

Y

 

Fig. 1. Circle  
22 2 1.2x y   and square 2x y   yielding 

X , Y  such that 2 2|| || || ||X Y  and 1 1|| || || ||X Y . 
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Take 
2 2

1.1 ;1.1
2 2

X
 

   
 

 and  0;0.9 2Y  . Then we have that 

2 21.21 1.62i ix y     and 1.1 2 0.9 2i ix y    , i.e. X  is inside the circle 

2|| || 1.2Z   and outside the square 1|| || 2Z   while we have the opposite for Y . 

(Incidentally we could use this example above in the 1O  study but the example was made for 

the purpose we have here: study further the principle of nominal increase for 2O ). 

 

If we take  1,1A   then, with X  and Y  as above, we have  

 

    
2 2

5.8284271 6.1655844i ix a y a       

 

 

but with  2,2A   we have 

 

    
2 2

15.43254 11.71627i ix a y a      . 

 

 

We can now state and prove the following Proposition. 

 

Proposition II.5: Let X , Y  and A  be as above. Suppose X Y  and  

 

 1 1|| || || ||i iX x y Y     (15) 

 

Suppose X  is not a multiple of Y  (as in Proposition II.4). Then 

 

    2 2 2, ,O X A Y A O X Y O     
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Proof: We can always suppose 2 2

i ix y   (otherwise interchange X  and Y ). Since we 

have to prove (14) we hence must show 

 

 
  

    
22 2

max ,

i i i i

ii i

x a y a x y

yx a y a

 


 

 
 

 

 

In view of the 1|| . ||  and 2|| . ||  argument above, this is equivalent with 

 

 
  

 
2 2

i i i i

ii

x a y a x y

yy a

 




 


 (16) 

 

and 

 

 
  

 
2 2

i i i i

ii

x a y a x y

yx a

 




 


 (17) 

 

For (16) we must have  

 

      2 2 2 22i i i i i i i i ix y a x a y Na y y a y Na x y             

 

or  

 

             2 2 2 2i i i i i i i i i ix y y y Na y y x y Na x y            (18) 

 

Since X  is not a multiple of Y  we have that 

 

 2 2 2

i i i i ix y x y y      (19) 

 

So, if 
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 i iy x   (20) 

 

we have that (18) (with strict inequality) is valid. 

 

For (17) we must have 

 

      2 2 2 22i i i i i i i i ix y a x a y Na y x a x Na x y             

 

or  

 

 

 

          2 2 2 2 2

i i i i i i i ix y y a x y a y y Na y          

 

        2 22i i i i i i i ix y x a x y x Na x y        (21) 

 

But since 2 2

i ix y   and by (19), the inequality (21) is proved if 

 

 i ix y   (22) 

 

(20) and (22) show that the Proposition is proved if we have (15).             □ 

 

A variant of this proof is as follows. We can suppose that 2 2

i ix y  . For 

   
2 2

i ix a y a     we need 

 

 
2 2 2 22 2i i i ix a x a y a y a         

 

If we suppose that i ix y   then this is satisfied. By (15) we now only have to prove 

(16). We take over from the first proof the calculation, showing that (16) is valid if 

i iy x  . Hence Proposition II.5 is proved, supposing i ix y  . 
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Remark: We have claimed that the principle of nominal increase is a good property for 

similarity measures. This principle, however is, in concentration theory, linked with the 

transfer principle as follows. Let f  be a concentration measure. As briefly described in the 

Introduction, it satisfies the principle of nominal increase (acting on one vector): 

   f X A f X  . The transfer principle is defined as follows (see e.g. Egghe and Rousseau 

(1990), Egghe (2005)): If, in X  we have two coordinates such that j ix x   , 1,...,i j N  and 

if 'X  is this vector derived from X  such that all coordinates are the same as in X  except the 

i
th

 and the j
th

 one: jx  becomes jx h  (with 0h   such that 0jx h  ) and 
ix  becomes 

ix h , then 'X  is more concentrated than X  and we must have    'f X f X . 

 

In econometric terms: the “poorer” person j  becomes poorer and the “richer” person i  

becomes richer. This operation is also called an elementary transfer. 

 

One can prove that the transfer principle implies the principle of nominal increase for 

concentration measures. One can now wonder if the transfer principle, applied to similarity 

measures, is a good property. In this context, this would mean that, given two vectors X , Y  

and suppose that 'X  and 'Y  are constructed from X , respectively Y  by an elementary 

transfer on the same coordinates (supposing j ix x  and j iy y ) the similarity has 

diminished then: let F be such a similarity measure, should we then have 

   ', ' ,F X Y F X Y  ? 

 

The answer is no and this is logical as the next example shows. Let  3,2X  ,  4,2Y  , 

 ' 4,1X  ,  ' 5,1Y  . So both vectors 'X , 'Y  are derived from X  and Y  by an elementary 

transfer (of one unit) from the second coordinate to the first coordinate. However, it is easy to 

verify that 

 

    , 0.9922779 ', ' 0.9988681C X Y C X Y    
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    , 0.969697 ', ' 0.9767442E X Y E X Y    

 

    , 0.9411765 ', ' 0.9545455J X Y J X Y    

 

    1 1, 1.2307692 ', ' 01.2352941O X Y O X Y    

 

    2 2, 0.8 ', ' 0.8076923O X Y O X Y    

 

We claim that the fact that these measures do not follow the transfer principle is a good 

property: in no way are 'X  and 'Y  less similar than X  and Y . Indeed, the last coordinates in 

X  and Y  and in 'X  and 'Y  are equal and in the first coordinates, the difference between the 

coordinates is one but the first coordinates in 'X  and 'Y  are larger than in X  and Y  so that, 

intuitively, 'X  and 'Y  are “more similar” than X  and Y  which is also expressed by the 

values of the similarity measures C , E , J , 1O  and 2O . 

 

This also shows that similarity measures, in addition to the fact that they act on two vectors 

(while concentration measures act on one vector), do not follow (and do not have to follow) 

the reverse concentration properties (also called dispersion properties). 

 

 

III.  Another good property for similarity measures 

 

Let again  1,..., NX x x  and  1,..., NY y y  be two vectors with , 0i ix y   for all 

1,...,i N  and such that X Y . It is then logic that, if we add one of these vectors (supposed 

to be non-zero) to these two vectors, then the similarity should increase strictly. So if we 

denote by sim any similarity measure, we require 

 

    ,2 ,sim X Y Y sim X Y   (23) 
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and  

 

    2 , ,sim X X Y sim X Y   (24) 

 

The Cosine satisfies this property as the next Theorem shows. 

 

Theorem III.1: For all X , Y  as above, such that one vector is not a multiple of the other, we 

have 

 

    ,2 ,C X Y Y C X Y   (25) 

 

and  

 

    2 , ,C X X Y C X Y   (26) 

 

Proof: It suffices to prove (25); (26) follows from (25) upon interchange of X  and Y  and the 

fact that the cosine is symmetric. We have to show that 

 

 
 

   
2 2 2 2

2

2

i i i i i

i i i i i

x y x y y

x y x y y






 

   
 (27) 

 

This is equivalent with 

 

       
2 2

i i i i i i i ix y x y x y y x       

 

or  

 

             
22 22 2 2 2 22 2i i i i i i i i i i i i ix y x x y y x y x y y y x              

 

or  
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             
23 2 2 2 2 2 22 2i i i i i i i i i i ix y x y y x y x y x y           (28) 

 

Since X  and Y  are not multiples we have 

 

     
2 2 2

i i i ix y x y    (29) 

 

, hence  

 

             
23 2 2 2 2 2 22 2i i i i i i i i i i ix y x y y x y x y x y           

 

which proves (28) and hence (25). If X  and Y  are multiples we have that (25) and (26) are 

equalities.                          □ 

 

The above proof essentially showed that the angle between X Y  and 2Y  (or Y ) is smaller 

than the one between X  and Y . 

 

Also Dice satisfies this  property.  In fact, L. Waltman proved that Dice even satisfies the 

following stronger property : let Z = ( 1z , ..., Nz ) O be any vector with positive (or zero) 

coordinates.  Then (denoting by sim a similarity measure) 

  

 sim (X + Z , Y + Z ) > sim ( X ,Y ) (30) 

 

We have the following result of L. Waltman. 

 

 

Theorem III.2 (L. Waltman) : For any vectors X ,Y , X  Y , and any nonzero vector Z as 

above we have 

  

E (X + Z , Y + Z ) > E( X ,Y )     (31) 

 

Proof :  
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E (X + Z , Y + Z ) 

 

= 
  

 
2 2

2

( )

i i i i

i i i i

x z y z

x z y z

 

  


 

 

  

 

 =
2 2

2 2 ( )

(2 ) (2 )

i i i i i i

i i i i i i i i

x y z x y z

x z x z y z y z

  

    

 
   

 

 

 =
 

 2 2

2 , 2

2

i i i i i i

i i i i i i

x y z x y z

x y z x y z

  

   

 
  

 

 

 >
2 2

2 i i

i i

x y

x y


 

 = E  ,X Y  

 

since Z O and since X Y .  

 

Note that the property studied in this section follows by taking Z X or Z Y .  Also the 

principle of nominal increase is included in the above general property, by taking Z A . 

 

 

Since Jaccard’s index has a strickly increasing relation with Dice (see (3) or (11), it follows 

that also J satisfies this general property.  By the results on the principle of nominal increase, 

it follows that none of the other measures studied here satisfy this general principle. 

 

 

However we have the following Theorem on 2O  showing that the properties (23) and (24) are  

always is true. 

 

Theorem III.3: Let X  and Y  be any vectors such that X Y . Then 

 

    2 2,2 ,O X Y Y O X Y   (32) 

 

and  
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    2 22 , ,O X X Y O X Y   (33) 

 

Proof: The proof needs several parts. Since we want to prove both (32) and (33) we cannot 

assume that 2 2

i ix y   (or  ). So we have to deal with all cases. 

 

(i) Let 

 

 2 2

i ix y   (34) 

 

 and let X  and Y  not be multiples. Then 

 

 
2

i ix y  

 

2 22i i i ix x y y        

 

2 2 2 22i i i iy x y y       

 

24 iy   

 

 by the Cauchy-Schwarz inequality and by (34). 

 

 So 

 

  
 

2 2

2
,2

4

i i i

i

x y y
O X Y Y

y


 




 

 

 and hence we have to show, for (32) 

 

 
 

2 2

2

4

i i i i i

i i

x y x y y

y y




 
 

 (35) 
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 again using (34). This is equivalent with 

 

 24 2 2i i i i ix y x y y     

 

 which is true by (29) since X  and Y  are not multiples and by (34). This proves (32) 

in case we have (34). 

 

 

 

(ii) Let now 

 

 2 2

i ix y   (36) 

 

 and X , Y  are not multiples. 

 

 By definition of 2O  we have to show that 

 

 
 

  
2 2 2

2

max ,4

i i i i i

i i i i

x y x y y

x x y y






 
  

 (37) 

 

 Now we cannot know which of the numbers  
2

i ix y  and 24 iy  is the largest. 

So we have to prove both inequalities (38) and (39): 

 

 
 

 
2 2

2i i i i i

i i i

x y x y y

x x y






 
 

 (38) 

 

 
 

2 2

2

4

i i i i i

i i

x y x y y

x y




 
 

 (39) 

 

 Now (38) is valid if and only if 
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          
2 2 2i i i i i i i ix y x y x x y y       

 

 or 

 

           
2 2 2 2 22 2i i i i i i i i i ix y x y y x y x x y          

 

 but this is valid by (29) (since X  and Y  are not multiples) and by (36). 

 

 Now (39) is valid if and only if 

 

      2 2 24 2 2i i i i i i ix y y x x y y       

 

 But 

 

      2 22 2i i i i i ix y y x y x     

 

 by (36) and 

 

  22 i i ix y y   

 

 2 2 22 i i ix y y     

 

  2 22 i ix y    

 

 by (29) and (36). 

 

 Hence we have proved (34) completely and (35) follows in the same way if X  and Y  

are not multiples. 

 

(iii) Let now X Y  for a certain 0  , 1  . We have 
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  
 

2 2
,

max ,1
O X Y




  (40) 

 

  
 

  
2 2

2 1
,2

max 1 ,4
O X Y Y






 


 (41) 

 

 Hence for (32) we have to prove 

 

 
 

    2 2

2 1

max ,1max 1 ,4

 







 (42) 

 

(I) Let  
2

1 4    (this is so if and only if 1  ). Then (42) boils down to 

 

 
 

 
2

2 1 1

1









 

 

  which is so since 1   and 1   (since X Y ). 

(II) Let  
2

1 4    (this is so if and only if 1  ). Then (42) boils down to  

 

 
1

2





  

 

  which is so since 1  . 

 

This completes the proof of (32) and the one of (33) is similar.                 □ 

 

For the overlap measure 1O , the results are completely negative with respect to the property 

studied in this section. A simple example proves this: take  2,1X  ,  3,1Y  . Then 
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1

7

5
O  . But  5,2X Y   and  2 6,2Y   yielding  1 1

34
,2

29
O X Y Y O   . Also: 

 1 1

24
2 ,

20
O X X Y O   . 

 

We can conclude that, with respect to the good similarity properties studied in Section II and 

this section, the overlap measure 2O  outperforms the overlap measure 
1O , although, for the 

principle of nominal increase, we only have partial positive results for 2O  (but 1O  scores 

negative in both cases). 

 

We close this section by studying a variant of the property (23) (or (24)) studied in this 

section. Let us focus on (23). Instead of adding the vector Y  to both vectors X  and Y , we 

simply add the vector Y  to X  and keep Y  as second vector. Then we require a similarity 

measure sim to satisfy (variant of inequality (23)): 

 

    , ,sim X Y Y sim X Y   (43) 

 

(and similarly for the variant of inequality (24)). What similarity measures satisfy this 

property ? 

 

Let us start with a simple remark: Cosine satisfies this property (if X  and Y  are not 

multiples; otherwise we have equal values). This, trivially, follows from Theorem III.1 and 

the fact that 

 

    , ,2C X Y Y C X Y Y    

 

, using formula (4). 

 

For Dice’s measure E  we have a double counterexample: Let  2,1X  ,  3,1Y  , then 

 

    
34 14

, ,
39 15

E X Y Y E X Y     
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and  

 

    
24

, ,
34

E X X Y E X Y   . 

 

By formula (11) (the strictly increasing relationship between J  (Jaccard’s index) and E ) we 

also have that the above counterexamples for E  for this variant property are also true for J . 

 

For overlap measure 2O  we also have a double counterexample for the same vectors 

 2,1X   and  3,1Y   above: 

 

    2 2

17 7
, ,

29 10
O X Y Y O X Y     

 

and  

 

    2 2

12
, ,

29
O X X Y O X Y   . 

 

For overlap measure 1O , there is a “50%” result, stated and proved in the next Proposition. 

 

Proposition III.4: For all vectors X  and Y  we have 

 

(i)    2 2

1 1, ,i iy x O X Y Y O X Y      

 

(ii)    2 2

1 1, ,i iy x O X X Y O X Y      

 

and there are counterexamples in the other cases. 

 

Proof: It suffices to prove (i). 
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    1 1, ,O X Y O X Y Y   

 

if and only if  

 

 
 

 

  
 

22 2 2 2min , min ,

i i i i i i i i

ii i i i i

x y x y y x y y

yx y x y y

 
 



  
   

 

 

or  

 

        2 2 2min ,i i i i i i i ix y y x y x y y       

 

or  

 

      2 2 2 2min ,i i i i i i i ix y y x y x y y        (44) 

 

So if 2 2

i iy x  , the (44) is trivially satisfied. Similarly we can prove (ii). 

 

To provide a counterexample for (i) in case 2 2

i iy x  , we first try to prove (i) in this 

case: by (44) we have to prove: 

 

      2 2 2

i i i i i i ix y y x x y y       

 

or  

 

   2 2 2 2

i i i i i ix y y x x y       

 

This is not possible: we will make an example for which we have 

 

      2 2 2 2

i i i i i ix y y x x y       
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as follows: Let  2,1X  ,  1,5Y  . Then 2 2

i iy x   and 

 

        2 2 2 27 26 5 147 130i i i i i ix y y x x y          . 

 

We now know that we have a counterexample for (i) in Proposition III.4: 

 

    1 1

33 7
, ,

26 5
O X Y Y O X Y     

 

Similarly for (ii).                          □ 

 

Corollary III.5: For all vectors X  and Y  we have, if 2 2

i ix y   that 

 

    1 1, ,O X Y Y O X Y   

 

and  

 

    1 1, ,O X X Y O X Y   

 

Proof: This follows trivially from Proposition III.4.                  □ 

 

We conclude that, except for C and “50%” for 1O , none of the similarity measures studied 

here satisfy the variant property as studied in this section. This is due to the fact that, when 

taking X Y , we still used Y  and not 2Y  as in the original property in this section. Although 

all used measures are normalized, this, apparently, makes a difference. 
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IV.  Conclusions, remarks and suggestions for 

further research 

 

The principle of nominal increase, defined in econometrics, was tested on similarity measures, 

hence in a two-dimensional framework. We proved that Dice’s measure and Jaccard’s index 

satisfy this logical property for similarity measures. 

 

Cosine does not satisfy this principle (by example). Since 2

1 2O O C , at least one of the 

overlap measures 1O  and 2O  do not satisfy this principle either. It turns out that both 1O  and 

2O  do not satisfy it while 2O  satisfies this principle in case the vectors X  and Y  are 

multiples or in case the L
1
-norms of X  and Y  are equal.  

We remark that the “stronger” property of concentration theory, the transfer principle, cannot 

be used in the context of similarity measures. 

 

Next we claim that, adding one of the two vectors to the two vectors should increase the 

similarity. Now we show that all measures (except 1O ) satisfy this principle.  This and the 

previous principle show that 2O  outperforms 1O  with respect to these logical principles. 

 

A variant of the latter principle (only adding one of the vectors to the other one) is also 

studied. Cosine satisfies this principle while Dice’s measure, Jaccard’s index and 2O  do not. 

For 1O  we have positive results in case one L
2
-norm is larger than or equal to the other L

2
-

norm, but  also counterexamples are given for 1O . 

 

In van Eck and Waltman (2009) one presents the Association Strength, denoted by S : 

 

 
2 2

i i

i i

x y
S

x y



 

 (45) 
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This measure, however, does not satisfy any of the properties studied above. Indeed, for the 

principle of nominal increase, take  3,1X  ,  6,2Y  ,  1,1A  . Then 

   , 0.05 , 0.0293103S X Y S X A Y A     . 

 

For the second principle (adding one of the two vectors to both vectors), we take  2,1X  , 

 3,1Y  ,  5,2X Y  ,  2 6,2Y   and    ,2 0.0293103 , 0.14S X Y Y S X Y    . For 

the variant we have    , 0.0586207 , 0.14S X Y Y S X Y    . Note also the very small 

values of S  in all these examples. Although actual values of a similarity measure are not so 

important, we do not think it is logical to have a similarity value of 0.14 for the vectors 

 2,1X   and  3,1Y   (and similar for the other examples). These low values are due to the 

division in (45) of i ix y  by 2 2

i ix y   and not by their square roots as is the case for 

Cosine. 

 

All these results can be summarized in Table 1 (Y = yes, N = no, P = partially true 

 

Table 1.  Scores of similarity measures with respect 

to three logical properties 

 

Results E J C 
1O  2O  S 

 ,X A Y A   Y Y N N NP N 

 , 2X Y Y  Y Y Y N Y N 

 ,X Y Y  N N Y P N N 

 

 

This Table clearly shows the complementarity of similarity measures with respect to the 

studied properties: we do not have (at least in our paper) a similarity measure that satisfies all 

properties. 
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In van Eck and Waltman (2009) one finds a common generalization of several of the 

similarity measures studied here: the measure pG , dependent on a parameter  \ 0p  (the 

real numbers without 0). 

 

 

    

1

1

2 2

2 p

i i

p

p p p

i i

x y
G

x y







 

 (46) 

 

They indicate the following results 

 

 1lim p
p

G O


  (47) 

 

 
0

lim p
p

G C


  (48) 

 

 1G E  (49) 

 

 2lim p
p

G O


  (50) 

 

So, from our above results, whether or not pG  satisfies one or more of the good properties for 

similarity measures, depends on the parameter p . It is a difficult open problem to 

characterise p  such that none, one, two, three or all good properties studied here are valid for 

pG  (or its limits). Of course, also other similarity measures can be studied in this context. 
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