
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Structure of association rule classifiers: a review.

Non Peer-reviewed author version

VANHOOF, Koen & DEPAIRE, Benoit (2010) Structure of association rule

classifiers: a review.. In: Jin, Xiaogang & Li, Yangguang & Li, Tianrui & Ruan, Da

(Ed.) Proceedings of 2010 IEEE International Conference on Intelligent Systems and

Knowledge Engineering. p. 9-12..

DOI: 10.1109/ISKE.2010.5680784

Handle: http://hdl.handle.net/1942/11704



Structure of Association Rule Classifiers: a Review 
 

Koen Vanhoof  Benoît Depaire 
Transportation Research Institute (IMOB),  

University Hasselt   
3590 Diepenbeek, Belgium 

koen.vanhoof@uhasselt.be benoit.depaire@uhasselt.be  
 
 

Abstract— This paper provides a short review of various 
association rule classifiers (ARC) that have been developed over 
the past decade and the common structure behind most ARCs. 
Furthermore, different pruning and classification schemes used 
in various ARCs are reviewed and two ARCs are discussed which 
break with the standard structure behind ARC. 

Keywords: Classification, Association Rules, Pruning 

I. INTRODUCTION 

In 1998, Liu et al. [1] introduced CBA, the first association 
rule classifier (ARC). This new type of classification algorithm 
distinguishes itself from other classifiers by learning 
association rules from the training data and using these rules to 
classify new cases. As association rules typically represent 
local knowledge, all ARCs try to combine local knowledge to 
solve new cases. In the wake of Liu et al. [1], several other 
authors came up with different ARC implementations, such as 
CMAR [2], ARC-AC and ARC-BC [3], CPAR [4], CorClass 
[5] and ACRI [6], 2SARC1 and 2SARC2 [7] and ARUBAS 
[8].  

At first sight, large differences seem to exist between these 
different ARCs in terms of generating a set of association rules 
and using this knowledge to classify new instances. Despite the 
differences, a common structure exists among the various ARC 
implementations which will be unraveled in this article.  

The next section will introduce some concepts of frequent 
item sets and association rules, which are the basis of ARCs. 
Next, the common structure of many ARCs is introduced and 
different implementations are discussed. Furthermore, two 
ARCs which are exceptions to the common structure are 
discussed and finally some conclusions are formulated. 

II. FREQUENT ITEM SETS AND ASSOCIATION RULES 

Research regarding frequent item sets and association rules 
goes back to an article of Agrawal et al. [9]. However frequent 
item set analysis typically deals with transactional data where 
each record is a transaction representing a set of items. Any 
two transactions can have a different size, i.e. contain a 
different number of items, and might have no items in 
common. Market basket analysis is a typical example of data 
analysis on transactional data. To measure how often a set of 
items occur together within a set of transactions, the item set’s 
support is calculated as the number of transaction that contain 
the item set. If the support of the item set is above a predefined 
threshold, it is called a frequent item set. 

In contrast to frequent item set analysis, classification 
analysis, which is what ARC’s are used for, is mostly applied 
on rectangular data instead of transactional data. While a 
record in a transactional data set is represented as a set of 
items, e.g. ଵܺ ൌ ሼܣ, ,ܤ ,ܦ  ሽ, the same record in a rectangularܧ
data set is represented as a set of attribute-value pairs, e.g. 

ଵܺ ൌ ሼܣۃ, ,ۄ1 ,ܤۃ ,ۄ1 ,ܥۃ െۄ, ,ܦۃ ,ۄ1 ,ܧۃ   .ሽۄ1

It is always possible to transform transactional data into 
rectangular data, by creating a binary attribute-value pair for 
each item. Note that a transformed rectangular record contains 
an attribute-value pair for all possible items, not only for those 
items present in the original transactional record. This is a first 
and important difference between transactional and rectangular 
data, i.e. transactional records differ in size as they only contain 
a subset of all possible items, while rectangular data records 
contain all possible attribute-value pairs and have equal size. 

Another important difference between the two data set 
structures is that transactional data has a binary data nature, i.e. 
either an item is present or it is not, which explains why ARC 
algorithms typically require nominal data to work with. On the 
other hand, rectangular data can also represent non-binary data 
such as nominal, categorical and continuous data. 
Transforming rectangular data to transactional data can be done 
in two steps. First all attributes must be transformed into 
nominal attributes by discretizing continuous variables and 
ignoring the order of categorical variables. Next, the nominal 
attributes are transformed into binary dummy variables.  

As this article focuses on ARC algorithms, the remainder of 
the text assumes data to be nominal and in a rectangular 
format. Therefore, some definitions related to frequent item 
sets need to be reformulated in terms of transactional data 
structures. 

 
Definition 1: Attribute-Value Pair ࢞ 

 An attribute-value pair ݔ ൌ൏ , ݔ ݆   represents a 
nominal variable ݔ  with value ݆  from possible values ݆ א
ሼ, 1,2, … ,  ,denotes a missing value. Furthermore  ሽ. Valueܬ
ݔ ൌ ᇱݔ

֞ ݔ ൌ ݔ
ᇱ ്  .

 
Definition 2: Record ࢄ 

 A record  ܺ ൌ ሼݔଵ, … , ,ݔ … ,  ࣣ ሽ represents a set ofࣣݔ
attribute value pairs. 

 



Definition 3: Item set ࡵ 
 An item set ܫ ൌ ሼݔଵ, … , ,ݔ … ,  ࣣ ሽ represents a set ofࣣݔ

attribute value pairs  

 

From these definitions, it follows that there is no structural 
difference between a record and an item set. However, the term 
record is mainly used for the original data, while item sets are 
mainly subsets of the original data. Furthermore, while the 
value  in a record represents a missing value, this value is 
interpreted as ‘not present’ rather than ‘missing’ when present 
in an item set. 

 
Definition 4: Record ࢄ contains Itemset ࢄ) ࡵ ل  (ࡵ

 Record X ൌ ሼݔଵ, … , ,ݔ … ,  ሽ  contains item setࣣݔ
I ൌ  ൛ݔଵᇱ, … , ᇱݔ

, … , ᇱࣣݔ
ൟ iff ݔ ൌ ᇱݔ

ᇱݔ 
א ሼݔᇱ

א I |ݔ
ᇱ ്   ሽ

 
Definition 5: Support of Itemset ࡵ  

ሺIሻݑܵ  ൌ |ሼX|X ل Iሽ| 

 
Definition 6: Frequent Itemset ࡵ   

ሻܫ௭ is a frequent item set iff Supሺܫ    is a ߙ where ,ߙ
predefined threshold 

 

Definition 7: ࡵ ת  Ԣࡵ
ܫ  ת Ԣܫ ൌ ᇱᇱݔ ԢԢ such thatܫ

א  ԢԢ it holds thatܫ

ݔ
ᇱᇱ ൌ ൜

ݔ
ᇱᇱ ൌ ݔ ݂݅         ݔ ൌ ݔ

ᇱ

ݔ
ᇱᇱ ൌ ݔ ݂݅          ് ݔ

ᇱ  

 

III. ASSOCIATION RULES 

Association rules are nothing less than rules built from two 
exclusively disjunctive item sets. One item set acts as the rule’s 
body, which is also called the antecedent, while the second 
item set is the rule’s head, which is also called the consequent.  

 
Definition 8: Association Rule ࡾ 

 An association rule ܴ: ܫ ֜   consists of a body itemܫ
set ܫ and a head item set ܫ such that ݔ ൌ ,  ݔ א ܫ ת  ܫ

 

Traditionally, two measures are generated to evaluate the 
quality of an association rule, i.e. the support and the 
confidence. The support of an association rule measures to 
what extent the data supports the pattern described by the rule. 
A low support can have different explanations. Typically, this 
implies that the rule only exists in a small local part of the data 
space. If the support is extremely low, it could also imply that 
the rule doesn’t really exist and is rather some kind of 
measurement error.  

 
Definition 9: Support of Association Rule ࢈ࡵ :ࡾ ֜  ࢎࡵ

ሺܴሻݑܵ  ൌ ܫሺݑܵ    ሻܫ

The union of two disjunctive item sets is defined as 
follows: 

 
Definition 10: Union of two disjunct itemsets ࡵ   ᇱࡵ

ݔ  א ᇱᇱܫ ൌ ܫ ת :ᇱܫ ݔ ൌ ֜   ܫ  ᇱܫ ൌ ᇱᇱܫ such that 
ᇱᇱݔ

א  ᇱᇱ it holds thatܫ

ݔ
ᇱᇱ ൌ ൜

ݔ
ᇱᇱ ൌ ݔ ݂݅         ݔ

ᇱ ൌ 
ݔ

ᇱᇱ ൌ ݔ
ᇱ         ݂݅ ݔ ൌ 

 

 
While the support of an association rule measures how well 

the rule is supported by the data, the confidence of the rule 
reveals how accurate the rule’s body predicts the rule’s head. 
The confidence of a rule measures how many percent of the 
records that contain the body, also contain the head and is 
defined as follows: 

 
Definition 11: Confidence of Association Rule ࢈ࡵ :ࡾ ֜  ࢎࡵ

ሺܴሻ݂݊ܥ  ൌ   ሻܫሺݑܵ/ሺܴሻݑܵ

 
For classification purposes, not all association rules are 

interesting. Only those rules where the rule’s head contains the 
class attribute and no other items can be used to classify new 
instances. Such rules are called classification association rules 
or CARs. 

 
Definition 12: Classification Association Rule ࡾ 

 A classification association rule ܴ: ܫ ֜ ܫ  is an 
association rule such that ݔ א ܫ ך  ൛ݔ௬ൟ: ݔ ൌ ௬ݔ and  ്  
where ݔ௬  represents the class attribute of the classification 
problem. 

 

Once the CARs are learned from the data, they are used to 
classify new data instances. In order to do so, a distinction must 
be made between CARs that match a record and CARs that 
cover a record. A CAR covers a record if the record contains 
the body of the CAR, while a CAR matches a record if the 
record contains both the body and the head of the CAR 

 
Definition 13: ࡾ covers record  ࢄ 

 CAR  ܴ: ܫ ֜ ܺ   covers record ܺ iffܫ ل  ܫ

 

Definition 14: ࡾ matches record  ࢄ 
 CAR  ܴ: ܫ ֜ ܫ  covers record ܺ  iff  ܺ ل ܫ  and 

ܺ ل  ܫ

 

Furthermore, the size of a rule is defined as the number of 
non-empty attribute-value pairs in the rule’s body 

 

 



Definition 15: The size of ࡾ  
 The size of  ܴ , denoted as |ܴ|, is the number of 

attribute-value pairs ݔ for which  ݔ ്  

 

Finally a CAR  ܴଵ
 can be a generalization of another CAR 

 ܴଶ
, which is defined as follows: 

 

Definition 16: ࡾ
ࡾ generalizes 

 
 ܴଵ

: ଵܫ ֜ ଵܫ  generalizes ܴଶ
: ଶܫ ֜ ଶܫ  iff ܫଵ ൌ

ଶܫ ,ଶܫ ل ଵ and |ܴଵܫ
| ൏ |ܴଶ

| 

 

IV. ASSOCIATION RULE CLASSIFIERS 

A. General Structure 

Over the years, various authors have introduced their own 
association rule classifier. Although each implementation 
differs, a common structure of three consecutive steps can be 
identified across most ARCs. 

Step 1: Learn Classification Association Rules. 
Obviously, all ARCs must start by generating a set of CARs 
from a given training set. Various algorithms have been used, 
such as Apriori which is used in CBA, ARC-AC, ARC-BC and 
ACRI. 

Other CAR generating algorithms are FPGrowth, which is 
used by CMAR, a CAR generating algorithm based on FOIL 
used by CPAR and a CAR generating algorithm based on the 
Framework of Morishita and Sese used by CorClass. 
Algorithms such as Apriori and FPGrowth are exact algorithms 
which provide the exhaustive set of association rules meeting 
specific support and confidence criteria. These CAR generating 
algorithms produce the same set set of CARs generated, but 
differ in terms of computational complexity. One exception is 
the FOIL-based CAR generating algorithm used in the CMAR 
implementation, which is a heuristic rather than an exact 
solution and only gives an approximation of the exhaustive set 
of CARs meeting specific criteria. 

Step 2: Prune the set of Classification Association Rules. 
Once the CARs are generated from the training set, most ARCs 
apply some pruning strategy to reduce the set of CARs as this 
can become enormous. Various strategies to prune the set of 
CARs exist, which will be discussed in the next subsection. 
However, some ARCs, such as CorClass and ACRI do not 
apply a separate pruning step, although setting a minimum 
confidence and support when generating the CARs can be 
interpreted as a pre-pruning strategy. 

Step 3: Classifying new instances. Once the (pruned) set 
of CARs is finalized, they can be used to classify new 
instances. Various strategies have been developed, which will 
be discussed in section IV.B. 

B. Pruning the Association Rules 

As mentioned before, even if there is no separate post-
pruning step in the ARC algorithm, all ARC algorithm apply 
some sort of pre-pruning by setting a support and/or confidence 

threshold. Only CARs passing these thresholds will be kept in 
the set of association rules. These pruning techniques are 
isolated pruning techniques as they evaluate each CAR 
individually, in isolation from the other CARs.  

Another isolated pruning technique, which is applied by 
CBA, is Pessimistic Error Pruning (PEP). PEP uses the 
pessimistic error rate based pruning method in C4.5 [10]. It 
calculates the pessimistic error rate of the entire rule and 
compares it with the pessimistic error rate of the rule obtained 
by deleting one item from the rule’s body. If the pessimistic 
error rate of the complete rule is higher than the pessimistic 
error rate of the trimmed rule, than the complete rule is pruned. 
The results in [1] show that pessimistic error pruning has a 
strong impact on the number of CARs generated. 

Another isolated pruning technique is Correlation 
Pruning (CorP), which is applied in CMAR. This pruning 
technique calculates the correlation between the rule’s body 
and the rule’s head. If the correlation is not statistically 
significant, the rule is pruned. 

There are also non-isolated pruning techniques which take 
multiple rules into account in order to decide whether or not to 
prune a specific rule. A well known non-isolated pruning 
technique is the Data Coverage Pruning technique (DCP), 
which is applied in CBA, ARC-AC, ARC-BC and CMAR. 
DCP consists of two steps. First, the rule set is ordered 
according to confidence, support and rule size. Rules with the 
highest confidence go first. In case of a tie, rules with the 
highest support take precedence. In case of tie in terms of 
confidence and support, the smaller the rule, i.e. the more 
general a rule is, the higher the ranking. Once the rule set is 
ordered, the rules are taken one by one from the ordered rule 
set and are added to the final rule set until every record in the 
data set is matched at least ߙ times. For CBA, ARC-AC and 
ARC-BC this parameter ߙ is fixed to 1, while in CMAR ߙ is a 
parameter which needs to be set by the user. 

Confidence Pruning (ConfP) is a second non-isolated 
pruning technique which is used by CMAR, ARC-AC, ARC-
BC. ConfP prunes all rules which are generalized by another 
rule with a higher confidence level. 

C. Classifying new instances 

Once the CARs are generated and pruned, the ARC needs 
to use all these pieces of local knowledge to classify new 
instances. Various approaches have been developed, which can 
be classified as order-based classification or non-order-based 
classification. With order-based classification, the rules in the 
final rule set need to be ordered according to a specific 
criterion and this ordering has an influence on the predicted 
class, while non-order-based classifiers do not need such 
ordering. 

A first order-based classification scheme is the Single Rule 
Classification. This approach orders the rules and then uses the 
first rule which covers the new instance to make a prediction. 
The predicted class is the selected rule’s head. This 
classification scheme is used by CBA, CorClass and ACRI. 
CBA and CorClass order the rules according to confidence, 
support and rule size in the same way the data coverage 
pruning technique does. ACRI on the other hand, provides the 



user four different ordering criteria to select from, i.e. a cosine 
measure, the support, the confidence or the coverage. The latter 
is defined as the number of items the body of a rule has in 
common with the new instance divided by the size of the rule. 

A second order-based classification scheme is the Multiple 
Rule Classification. This approach, which is used by CPAR, 
retains only those rules which cover the new instance. Next, the 
rules are grouped per class value and ordered according to a 
specific criterion. Finally, a combined measure is calculated for 
the best ܼ rules, where ܼ is a parameter which needs to be set 
by the user. With CPAR, the rank of each rule is determined by 
the expected accuracy of the rule, which is calculated by the 
Laplace accuracy. This is defined as follows where ݇ denotes 
the number of classes in the classification problem: 

 

Definition 17: Laplace accuracy 
 The Laplace accuracy of a CAR ܴ: ܫ ֜ ܫ  is 

ሺܴሻ݈݁ܿܽܽܮ ൌ ሾܵݑሺܴሻ  1ሿ/ሾܵݑሺܫሻ  ݇ሿ  

 
The combined measure in CPAR is nothing more than the 

average expected accuracy. 

Finally, some ARCs use a non-order-based classification 
scheme, such as CMAR, ARC-AC, ARC-BC and CorClass. 
This classification scheme selects the rules which cover the 
new instance, groups them per class value and calculates a 
combined measure per class value. This approach is almost 
identical to the multiple rule classification scheme, except for 
the ordering step. Since this non-order based classification uses 
all the rules, such ordering is not required. The CMAR 
algorithm uses a weighted ߯ଶ measure as combined measure, 
while ARC-AC and ARC-BC calculate the sum of the rules’ 
confidence levels. CorClass uses a weighted sum as combined 
measure and defines three different weights. The first option is 
to give all rules a weight equal to one, which results in a 
majority voting classification scheme. The second and the third 
option uses some kind of ranking of the rules, which turns it 
into an order-based classification scheme. 

V. EXCEPTIONS 

While most ARCs follow the design of learning the CARs, 
pruning the rule set and classifying the new instances, there are 
some ARCs which are an exception to this rule. These 
exceptions are classifiers which follow a totally different 
scheme. Three examples of such exceptions are 2SARC1, 
2SARC2 [8] and ARUBAS [9].  

These three classifiers firstly generate CARs from a 
training set, which makes them ARCs. However, instead of 
using these CARs directly to classify new instances, as the 
other ARCs do, the CARs are used to transform the attribute 
space into a new feature space. Subsequently, traditional data 
mining techniques are applied in this new feature space to 
classify the new instances.  

In case of 2SARC1, each instance is described by class 
features, while as for 2SARC2, each instance is described by 
rule features. Once the instances are transformed into this new 

feature space, a neural network is trained and used to classify 
new instances. 

ARUBAS on the other hand, uses the learned association 
rules to transform all instances into pattern space. Each CAR is 
considered to reveal a frequent pattern in the data which is 
strongly connected to a specific class. In pattern space, each 
CAR represents a binary attribute and instances receive value 1 
if the CAR covers the instance. Next, the similarity between a 
new instance and all instances of a specific class is calculated 
in pattern space. The authors believe that pattern space can be a 
stronger representation space as each attribute in pattern space 
is actually a frequent pattern in the original attribute space with 
strong predictive power. The instance will be assigned to the 
class with the highest similarity. 

VI. CONCLUSIONS 

Association rule classifiers are a type of classifier which 
have been around for more than a decade. Recently, they 
received quite some attention from researchers who focus on 
building global models from local patterns [11], [12]. Over 
time, different ARC algorithms have been developed, resulting 
in a wide variety of association rule pruning techniques and 
CAR classification schemes. Despite the variety, it is clear that 
most ARC algorithms have a common three step structure, i.e. 
first learn the association rules, next prune the set of CARs and 
finally classify new instances with the CAR set. The benefit of 
this clear common structure is that different elements from 
different ARC algorithms can easily be combined. Evaluating 
the effect of the various pruning techniques and association 
rule classifiers and the interaction among them could be an 
interesting direction for future research. 

At the same time, some authors came up with an innovative 
but different approach to use association rule for classification. 
Instead of using the association rules directly, the CARs are 
used to transform the original attribute space into a more 
powerful representation. However, this approach has not been 
studied as extensively as the more common three step approach 
and most likely provides some interesting new paths for future 
research. 

REFERENCES 

 
[1] Liu, B., Hsu, W. and Y. Ma, “Integrating classification and association 

rule mining,” ACM Int. Conf. on Knowledge Discovery and Data 
Mining (SIGKDD '98),pp. 80-86 , 1998. 

[2] Li, W., Han, J. and J. Pei, “CMAR: Accurate and efficient classification 
based on multiple class-association rules,” Proc. of the Int. Conf. on 
Data Mining (ICDM’01), pp. 369-376, 2001. 

[3]  Antonie, M.-L. and O.R. Zaïane, “Text document categorization by term 
association,” Proceedings of the 2002 IEEE International Conference on 
Data Mining (ICDM'02), pp. 19-26, 2002.  

[4] Yin, X. and J. Han, “CPAR: classification based on predictive 
association rules,” Proc. of the SIAM Int. Conf. on Data Mining, pp. 
369-376, 2003. 

[5] Zimmermann, A. and L. De Raedt, “CorClass: correlated association 
rule mining for classification,” Discovery Science, Springer Berlin / 
Heidelberg, pp. 60-72, 2004. 

[6] Rak, R., Stach, W., Zaïane, O.R. and M.-L. Antonie, “Considering re-
occurring features in associative classifiers,” Advances in Knowledge 
Discovery and Data Mining, Springer Berlin / Heidelberg, pp. 240-248, 
2005. 



[7] Antonie, M.-L., Zaïane, O.R. and R.C. Holte, “Learning to Use a 
Learned Model: A Two-Stage Approach to Classification,” Proc. of the 
sixth Int. Conf. on Data Mining (ICDM 2006), pp. 33-42, 2006. 

[8] Depaire, B., Vanhoof, K. and G. Wets, “ARUBAS: an association rule 
based similarity framework for associative classifiers,” Data Mining 
Workshops, Int. Conf. on Data mining (ICDMW 2008), pp. 692-699, 
2008. 

[9] Agrawal, R., Imieliński, T. and A. Swami, “Mining association rules 
between sets of items in large databases,” Proc. of the 1993 ACM 
SIGMOD Int. Conf. on Management of data, pp. 207-216, 1993. 

[10] J.R. Quinlan, “C4.5: program for machine learning,” Morgan Kaufman. 
1992. 

 
 

 


