
Trajectory databases: data models,

uncertainty and complete query languages ⋆

Bart Kuijpers and Walied Othman ∗

Hasselt University and Transnational University of Limburg, Belgium

Abstract

Moving objects produce trajectories. We describe a data model for trajectories and
trajectory samples and an efficient way of modeling uncertainty via beads for trajec-
tory samples. We study transformations of the ambient space for which important
physical properties of trajectories, such as speed, are invariant. We also determine
which transformations preserve beads. We give conceptually easy first-order com-
plete query languages and computationally complete query languages for trajectory
databases, which allow to talk directly about speed and uncertainty in terms of
beads. The queries expressible in these languages are invariant under speed- and
bead-preserving transformations.

Key words: moving objects databases, spatio-temporal databases, constraint
databases, trajectories, trajectory samples, beads, uncertainty

1 Introduction and summary

The research on spatial databases, which started in the 1980s from work in
geographic information systems, was extended in the second half of the 1990s
to deal with spatio-temporal data. One particular line of research in this field,
started by Wolfson, concentrated on moving object databases (MODs) [9,21],
a field in which several data models and query languages have been proposed
to deal with moving objects whose position is recorded at, not always reg-
ular, moments in time. Some of these models are geared towards handling

⋆ An extended abstract appeared in the proceedings of the 11th International Con-
ference on Database Theory (ICDT’07) [14].
∗ Corresponding author: Walied Othman, Hasselt University, Department of Math-
ematics, Physics and Computer Science, 3590 Diepenbeek, Belgium; phone: +32 11
26 82 95; fax: +32 11 26 82 99; email: walied.othman@uhasselt.be.

Preprint submitted to Elsevier 7 August 2007

uncertainty that may come from various sources (measurements of locations,
interpolation, ...) and often ad-hoc query formalisms have been proposed [20].
For an overview of models and techniques in the field of moving object data-
bases, we refer to the recent textbook by Güting and Schneider [9].

In this paper, we focus on the trajectories that are produced by moving objects
and on managing and querying them in a database. Hence, we think it is
more appropriate to talk about trajectory databases, rather than to refer to
the moving objects that produce these trajectories. We can summarize our
results as follows: we give a data model for trajectory data; an efficient way of
modeling uncertainty; we study transformations for which important physical
properties of trajectories are invariant and we give first-order complete and
computationally complete query languages for queries invariant under these
transformations.

We propose two types of trajectory data. Firstly, we have trajectories, which
are curves in the real plane R2 that are rationally parameterized by time (R
denotes the set of real numbers). Secondly, we consider trajectory samples,
which are well-known in MODs, and which are finite sequences of time-space
points (i.e., finite sequences of elements of R × R2). A trajectory database
contains a finite number of labeled trajectories or labeled trajectory samples.
There are various ways to reconstruct trajectories from trajectory samples,
of which linear interpolation between consecutive sample points is the most
popular in the literature [9]. However, linear interpolation relies on the (rather
unrealistic) assumption that between sample points, a moving object moves
at constant minimal speed. It is more realistic to assume that moving objects
have some physically determined speed bounds. Given such upper bounds,
an uncertainty model has been proposed which constructs beads between two
consecutive time-space points in a trajectory sample. Basic properties of this
model were discussed a few years ago in the geographic information system
(GIS) community by Pfoser et al. [16], Egenhofer et al. [3,12] and Miller [?],
but beads were already known in the time-geography of Hägerstrand in the
1970s [11].

A bead is the intersection of two cones (one pointing upward and one down-
ward) in the time-space space and all possible trajectories of the moving object
between the two consecutive time-space points, given the speed bound, are lo-
cated within the bead. The chain of beads connecting consecutive trajectory
sample points is called a lifeline necklace [3]. Figure 1 illustrates the concepts
of bead and lifeline necklace. Beads manage uncertainty more efficiently than
other approaches based on cylinders [21] (by a factor of 3).

Speed is not only important in obtaining good uncertainty models, but also
many relevant queries on trajectory data involve physical properties of trajec-
tories of which speed is the most important. Geerts proposed a model which

2

�
�
�
�

�
�
�
�

��

�
�
�
�

Fig. 1. An example of a bead (left) and a lifeline necklace (right).

works explicitely with the equations of motion of the moving objects, rather
than with samples of trajectories, and in which the velocity of a moving object
is directly available and used [8]. If we are interested in querying about speed,
it is important to know which transformations of the time-space space preserve
the speed of a moving object. We characterize this group V of transformations
as the combinations of affinities of time with orthogonal transformations of
space composed with a spatial scalings (that uses the same scale factor as
the temporal affinity) and translations. In [4], transformations that leave the
velocity vector invariant were discussed, but starting from spatial transfor-
mation that are a function of time alone. Our result holds in general, for
arbitrary smooth transformations of time-space space. We also show that the
group V contains precisely the transformations that preserve beads. So, the
queries that involve speed are invariant under transformations of V, as are
queries that speak about uncertainty in term of beads. Therefore, if we are
interested in querying about speed and dealing with uncertainty via beads,
it is advisable to use a query language that expresses queries invariant under
transformations of V. Beads have been studied before in the context of mod-
elling uncertainty [3,12,?,16], but have not been considered in the context of
query languages before.

As a starting point to query trajectory (sample) databases, we take a two-
sorted logic based on first-order logic over the real numbers (i.e., the relational
calculus extended with polynomial constraints) in which we have trajectory-
label variables and real variables. First-order logic over the real numbers has
been studied well in the context of constraint databases [15]. This logic is
expressive enough to talk about speed and beads. We remark that the V-
invariant queries form an undecidable class, and we show that this fragment

3

of the above mentioned two-sorted logic is captured by a three-sorted logic,
with trajectory-label variables, time-space point variables and speed variables,
that uses two very simple predicates: Before(p, q) and minSpeed(p, q, v). For
time-space points p and q, the former expresses that the time-component of
p is smaller than that of q. The latter predicate expresses that the minimal
constant speed to travel from p to q is v. This logic also allows polynomial
constraints on speed variables. We show that using these two, conceptually
intuitive, predicates, all the V-invariant first-order queries can be expressed.
This language allows one to express all queries concerning speed on trajectory
data and all queries concerning uncertainty in terms of beads on trajectory
samples. In particular, a predicate inBead(r, p, q, v) can be defined in this logic,
expressing that r is in the bead of p and q with maximal speed v.

We also show that a programming language, based on this three-sorted logic,
in which relations can be created and which has a while-loop with first-order
stop conditions, is sound and complete for the computable V-invariant queries
on trajectory (sample) databases. The proofs of these sound and completeness
results are inspired by earlier work on complete languages for spatial [10] and
spatio-temporal databases [4]. Compared to [4], the language we propose is
far more user oriented since it is not based on geometric but speed-related
predicates. We remark that the completeness and soundness results presented
in this paper hold for arbitrary spatio-temporal data, but we present them
for trajectory (sample) data for which the bead model is specifically designed.
In any case, in all the presented languages it is expressible that an output
relation is a trajectory (sample) relation.

This paper is organized as follows. In Section 2 we give definitions and results
concerning the transformation group V and Section 3 deals with uncertainty
via beads. Trajectory databases and queries are discussed in Section 4. The
various query languages and completeness results are given in Section 5.

2 Trajectories and trajectory samples

2.1 Definitions and basic properties

Let R denote the set of real numbers. We restrict 1 ourselves to movement in
the real plane R2. Time-space space will be denoted R × R2, where the first

1 We remark that all definitions and results in this paper can be generalized to
higher dimensions in a straightforward way. For ease of exposition, we restrict our-
selves to two dimensions, which is the case relevant for geographic information
system applications [3,12,?,16].

4

dimension represents time and the latter two represent space. Typically, we
will use t as a variable that ranges over time points and x, y as variables that
range over spatial coordinates. 2

Definition 1 Let I ⊆ R be an interval. A trajectory T is the graph of a
piecewise-smooth 3 (with respect to t) mapping

α : I ⊆ R → R2 : t 7→ α(t) = (αx(t), αy(t)),

i.e., T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I}. The set I is called the time
domain of T . 2

Often, in the literature, conditions are imposed on the nature of the mappings
αx and αy. For instance, they may be assumed to be piecewise linear [9],
differentiable or even C∞ [20]. For reasons of finite representability, we may,
for instance, assume that I is a (possibly unbounded) interval in R with
rational end points and that αx and αy are semi-algebraic functions (i.e., they
are given by a combination of polynomial inequalities in x and t and y and
t respectively). For example, the set {(t, 1−t2

1+t2
, 2t

1+t2
) | 0 ≤ t ≤ 1} describes a

trajectory on the quarter of the unit circle located in the first quadrant. In
this example, αx is given by the formula x(1 + t2) = 1− t2 ∧ 0 ≤ t ≤ 1 and αy

is given by the formula x(1 + t2) = 2t ∧ 0 ≤ t ≤ 1.

Definition 2 A trajectory sample is a list of time-space points 〈(t0, x0, y0),
(t1, x1, y1), ..., (tN , xN , yN)〉, where ti, xi, yi ∈ R for i = 0, ..., N and t0 < t1 <
· · · < tN . 2

For the sake of finite representability, we may assume that the time-space
points (ti, xi, yi), have rational coordinates. This will be the case in practice,
since these points are typically the result of observations.

Definition 3 Let S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉 be a sample of
a trajectory and let T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I} be a trajectory.
We say that the trajectory T is consistent with the sample S, if t0, t1, ..., tN ∈ I
and αx(ti) = xi, αy(ti) = yi for i = 0, ..., N . 2

A classical model to reconstruct a trajectory from a sample is the linear-
interpolation model [9], where the unique trajectory, that is consistent with
the sample and that is obtained by assuming that the trajectory is run through
at constant lowest speed between any two consecutive sample points, is con-

2 So, we have (t, x, y)-tuples in the space R×R
2. Strictly speaking, we should write

R×R×R or simply R
3, but we prefer the notation R×R

2 to stress the distinction
between time and space.
3 Smooth is here used in the terminology of differential geometry [?], meaning
differentiable or C1.

5

t

(t0, x0, y0)

(t1, x1, y1)

(t2, x2, y2)

(t3, x3, y3)

(t4, x4, y4)

x

y

Fig. 2. The linear interpolation trajectory for the sample 〈(t0, x0, y0), (t1x1, y1),
(t2, x2, y2), (t3, x3, y3), (t4, x4, y4)〉.

structed. For a sample S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉, the tra-
jectory LIT (S) :=

N−1
⋃

i=0

{(t,
(ti+1 − t)xi + (t − ti)xi+1

ti+1 − ti
,
(ti+1 − t)yi + (t − ti)yi+1

ti+1 − ti
) | ti ≤ t ≤ ti+1)}

is called the linear-interpolation trajectory of S. The functions describing the
x- and y-coordinates are everywhere differentiable except may be at the mo-
ments t0, t1, ..., tN .

Figure 2 gives an illustration of the linear-interpolation trajectory. Obviously,
many samples may give rise to the same linear-interpolation trajectory.

2.2 Speed of a trajectory

Definition 4 Let T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I} be a trajectory. If
αx and αy are differentiable in t0 ∈ I, then the velocity vector of T in t0 is
defined as

(1,
dαx(t0)

dt
,
dαy(t0)

dt
)

and the length of the projection of this vector on the (x, y)-plane is called the
speed of T in t0. 2

Let S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉 be a sample. Then for any t,
with ti < t < ti+1, the velocity vector of LIT (S) in t is (1, xi+1−xi

ti+1−ti
, yi+1−yi

ti+1−ti
)

and the corresponding speed is
√

(xi+1 − xi)2 + (yi+1 − yi)2/(ti+1 − ti), which

corresponds to the minimal speed at which this distance between (xi, yi) and

6

(xi+1, yi+1) can be covered. At the moments t0, t1, ..., tN the velocity vector
and speed of LIT (S) may not be defined.

2.3 Transformations of trajectories

Now, we study transformations of trajectories under bijective mappings

f : R ×R2 → R × R2 : (t, x, y) 7→ (ft(t, x, y), fx(t, x, y), fy(t, x, y)).

Since we are interested in transformations that preserve the speed of trajecto-
ries at all moments in time, we assume, in the spirit of differential geometry [?],
that the transformations f : R×R2 → R×R2 are (globally) smooth. We will
call globally smooth bijective mappings of R×R2 transformations for short.

We further assume that f preserves the uni-directional nature of time and the
temporal order of events.

An event is a subset of R×R2. The projection of an event A on the time-axis
is denoted by πt(A) and called the time-domain of A.

Let A and B be events. In the terminology of Allen’s interval calculus [1,2],
A and B are called co-temporal if πt(A) = πt(B) (we denote this by A =t B).
Allen says A is before B if tA < tB for all tA ∈ πt(A) and all tB ∈ πt(B) (we
denote this by A <t B).

Remark that A ≤t B := (A =t B or A <t B) is a pre-order on events.

Definition 5 We say that a transformation f : R×R2 → R×R2 preserves
the order of events if for all events A and B, A =t B implies f(A) =t f(B)
and A <t B implies f(A) <t f(B). 2

It is easy to show the following property (for a proof see [5]).

Property 1 A transformation f = (ft, fx, fy) : R×R2 → R×R2 : (t, x, y) 7→
(ft(t, x, y), fx(t, x, y), fy(t, x, y)) preserves the order of events if and only if ft

is a strictly monotone increasing bijection of t alone. 2

Assuming the above restrictions on f , from now on we shall therefore write
ft : R → R : t 7→ ft(t).

Property 2 Let T be a trajectory. If f is as above and ft is a monotone
increasing function of t, then f(T) is also a trajectory.

Proof 1 (of Property 2). Let T = {(t, αx(t), αy(t)) | t ∈ I} be a trajectory
and f = (ft, fx, fy) : R × R2 → R × R2 be a function with ft a monotone

7

increasing function of t. First, we observe that from the fact that f is a bi-
jective mapping, it follows that ft must be a monotone continuous function
with a continuous inverse (i.e., ft is a homeomorphism of R). Even more,
since f is assumed to be differentiable, ft is also differentiable and the inverse
function theorem guarantees that also f−1

t is differentiable. Therefore, ft is a
diffeomorphism of R.

We have that f(T) = {(ft(t), fx(t, αx(t), αy(t)), fx(t, αx(t), αy(t))) | t ∈ I}
and if we write τ = ft(t), then we get f(T) = {(τ, fx(f

−1
t (τ), αx(f

−1
t (τ)),

αy(f
−1
t (τ))), fy(f

−1
t (τ), αx(f

−1
t (τ)), αy(f

−1
t (τ)))) | τ ∈ ft(I)}. Since ft is a

diffeomorphism of R, ft(I) is also an interval in R. It is clear that fx(f
−1
t (τ),

αx(f
−1
t (τ)), αy(f

−1
t (τ))) and fx(f

−1
t (τ), αx(f

−1
t (τ)), αy(f

−1
t (τ))) are functions

that are defined on this interval and that they are differentiable in all points
except maybe in those τ0 = ft(t0), with t0 a moment in time where αx or αy

is not differentiable. Therefore, f(T) is a trajectory. 2

We remark that the restriction concerning finite representability of trajectories
that we have given after Definition 1, might not be fulfilled for f(T) for some
f . For the moment we do not worry about this. For the relevant f , that we
will identify in Theorem 1, this problem vanishes.

We remark that the fact that ft is a monotone increasing function of t alone,
can be expressed as by the conditions: ∂ft

∂x
= 0, ∂ft

∂y
= 0 and ∂ft

∂t
> 0.

If f : R× R2 → R ×R2 is as above, then the matrix

df =

∂ft

∂t
0 0

∂fx

∂t

∂fx

∂x

∂fx

∂y

∂fy

∂t

∂fy

∂x

∂fy

∂y

is called the total derivative of f [?]. This is in each time-space point a linear
transformation of R × R2 that, when applied to a trajectory, describes how
the velocity vector is transformed.

Theorem 1 A function f : R×R2 → R×R2 : (t, x, y) 7→ (ft(t, x, y), fx(t, x,
y), fy(t, x, y)) preserves at all moments the speed of trajectories and preserves
the order of events if and only if f is of the form

f (t, x, y) = a ·

1 0 0

0 a11 a12

0 a21 a22

t

x

y

+

b

b1

b2

,

8

with a, b, b1, b2 ∈ R, a > 0, and the matrix

a11 a12

a21 a22

 ∈ R2×2 defining an

orthogonal transformation (i.e., its inverse is its transposed).

We denote the group of the transformations of R×R2 identified in this theorem
by V.

Proof 2 (of Theorem 1). Let f : (t, x, y) 7→ (ft (t, x, y) , fx (t, x, y) , fy (t, x, y))
be a transformation as in the statement of the theorem. As remarked be-
fore, we have ∂ft

∂x
= 0, ∂ft

∂y
= 0 and ∂ft

∂t
> 0, which means that ft is a

reparameterization of time and that f can be simplified to f : (t, x, y) 7−→
(ft (t) , fx (t, x, y) , fy (t, x, y)).

Consider a trajectory T = {(t, αx(t), αy(t)) ∈ R×R2 | t ∈ I}. For the purpose
of this proof it suffices to consider trajectories for which I = R and for which
αx and αy are everywhere differentiable. The trajectory T will be transformed
to a trajectory f(T) given by β : R → R × R2 : τ 7→ (τ, βx (τ) , βy (τ)),
where τ = ft (t) or t = f−1

t (τ) and βx(τ) = fx(f
−1
t (τ), αx(f

−1
t (τ), αy(f

−1
t (τ))

and βy(τ) = fy(f
−1
t (τ), αx(f

−1
t (τ), αy(f

−1
t (τ)), as remarked in the proof of

Property 2.

We assume that f preserves, at all moments in time, the speed of trajectories,
which means that

∥

∥

∥

(

1, ∂αx(t)
∂t

, ∂αy(t)
∂t

)∥

∥

∥ =
∥

∥

∥

(

1, ∂βx(τ)
∂τ

, ∂βy(τ)
∂τ

)∥

∥

∥ .

Let ᾱ be the mapping t 7→ (t, αx(t), αy(t)) and β̄ be the mapping τ 7→
(τ, βx(τ), βy(τ)). Since (f ◦ ᾱ)(t) is equal to β̄(τ), we have that the deriva-

tive 4 (f ◦ ᾱ)′(t) should be equal to ∂β̄(τ)
∂t

.

Since (f ◦ ᾱ)′ (t) = dfᾱ(t) ◦ ᾱ′ (t) and ∂β̄(τ)
∂t

= β̄ ′ (τ) · ∂τ(t)
∂t

= β̄ ′ (τ) · f ′

t (t), we
have dfᾱ(t) ◦ ᾱ′ (t) = β̄ ′ (τ) · f ′

t (t). Since ft is strictly monotone f ′

t(t) 6= 0 for all

t and we can therefore write
(

1
f ′

t(t)
· dfᾱ(t)

)

◦ ᾱ′ (t) = β̄ ′ (τ) and conclude that
1

f ′
t
(t)

· df(t,x,y) must be an isometry of R× R2 for each (t, x, y).

Let A be the matrix associated to the linear mapping 1
f ′

t(t)
· df(t,x,y), i.e., A is

1

f ′
t (t)

·

∂ft

∂t
0 0

∂fx

∂t

∂fx

∂x

∂fx

∂y

∂fy

∂t

∂fy

∂x

∂fy

∂y

.

Since this linear transformation must be orthogonal, we have that A · AT =

4 If f is a function of t alone, we write f ′ instead of df
dt

.

9

AT ·A = I and therefore det (A) = ±1. These conditions lead to the following
equations. Firstly,

∂ft

∂t

∂fx

∂t
/(f ′

t (t))
2

= 0,

which means ∂fx

∂t
= 0, because ∂ft

∂t
> 0. Similarly, we have that ∂fy

∂t
= 0.

Secondly, we have
(

∂fx

∂x

)2

+

(

∂fx

∂y

)2

= (f ′

t (t))
2
.

We remark that the right-hand side is time-dependent and the left-hand side is
not, and vice versa the left-hand side is dependent on only spatial coordinates
and the right-hand side is not, which means both sides must be constant. This
implies that ft (t) = at+ b where a > 0 since ft is assumed to be an increasing
function. The condition (∂fx

∂x
)2+(∂fx

∂y
)2 = a2 is known as a differential equation

of light rays [17], and has the solution fx(x, y) = a11x + a12y + b1, where
a2

11 + a2
12 = a2 and where b1 is arbitrary. Completely analogue, we obtain

fy (x, y) = a21x + a22y + b2 where a2
21 + a2

22 = a2 and where b2 is arbitrary.

Thirdly,
(

∂fx

∂x

∂fy

∂x
+

∂fy

∂y

∂fx

∂y

)

/ (f ′

t (t))
2

= 0.

And finally, det (A) = ±1 gives a11a22 − a12a21 = ±1.

If we write a′

ij =
aij

a
, then we all these equations lead to the following form of

f :

f : R ×R2 → R × R2 : (t, x, y) 7→ a ·

1 0 0

0 a′

11 a′

12

0 a′

11 a′

22

t

x

y

+

b

b1

b2

where a > 0, and

a′

11 a′

12

a′

11 a′

22

 is an orthogonal transformation of the plane.

It is also clear that transformations of the above form preserve at any moment
the speed of trajectories. This completes the proof. 2

Examples of speed-preserving transformations include the spatial translations
and rotations, temporal translations and scalings of the time-space space.

The previous result generalizes a result from [4,5], where the same conclusion
was derived, not starting from a general transformation f : R×R2 → R×R2,
but rather from time-dependent and space-independent affinities of R× R2.

10

3 Uncertainty via beads

In 1999, Pfoser et al. [16] introduced the notion of beads in the moving ob-
ject database literature to model uncertainty. Beads were later studied by
Egenhofer et al. [12,3] and Miller [?]. Before Wolfson used cylinders to model
uncertainty [9,21]. Cylinders give less precision (by a factor of 3, compared to
beads), however.

Let S be a sample 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉. More formally, the
cylinder approach to managing uncertainty, depends on an uncertainty thresh-
old value ε > 0 and gives a buffer of radius ε around LIT (S). In elemen-
tary geometry, we can define this set as {(t, x, y) ∈ R × R2 | t0 ≤ t ≤
tN ∧ ∃x′∃y′(x′, y′) ∈ LIT (S) ∧ (x − x′)2 + (y − y′)2 ≤ ε2}.

In the bead approach, for each pair (ti, xi, yi), (ti+1, xi+1, yi+1) of consecutive
sample points in S, their bead does not depend on a uncertainty threshold
value ε > 0, but rather on a maximal speed value vmax of the moving object.

We now define the notion of bead technically.

Definition 6 Let vmax ∈ R and (ti, xi, yi), (ti+1, xi+1, yi+1) ∈ R × R2, with
ti < ti+1 and vmax > 0 be given. The bead of (ti, xi, yi, ti+1, xi+1, yi+1, vmax),
denoted B(ti, xi, yi, ti+1, xi+1, yi+1, vmax), is the set of points (t, x, y) ∈ R×R2

satisfying the following constraints:

ti ≤ t ≤ ti+1

(x − xi)
2 + (y − yi)

2 ≤ (t − ti)
2v2

max

(x − xi+1)
2 + (y − yi+1)

2 ≤ (ti+1 − t)2v2
max. 2

We call the set given by the constraintsti ≤ t and (x − xi)
2 + (y − yi)

2 ≤
(t− ti)

2v2
max the bottom cone of the bead and the set given by the constraints

t ≤ ti+1 and (x − xi+1)
2 + (y − yi+1)

2 ≤ (ti+1 − t)2v2
max the top cone of the

bead. The axis of these cones is parallel to the t-axis. Clearly, the bead is the
intersection of its bottom and top cone.

Figure 3 illustrates a bead with vmax = 1. For this bead, the slope of the two
cones is determined by the value of vmax and in this case it is 45◦.

11

(t1, x1, y1)

(t0, x0, y0)

Fig. 3. An example of a bead B(t0, x0, y0, t1, x1, y1, vmax) with vmax = 1.

3.1 Basic properties of beads

We give some basic properties of beads. Let S be a sample 〈(t0, x0, y0), (t1, x1,
y1), ..., (tN , xN , yN)〉.

Definition 7 For a sample S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉 the
set

⋃N−1
i=0 B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) is called the bead chain (or lifeline

necklaces [3]) of S. 2 ∗B.vraagt :∗

[waarom staat die def. hier. moet nog meer over gezegd worden...]

The bead B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) is the intersection of two cones with
slope determined by vmax. At each moment t, with ti ≤ t ≤ ti+1, the inter-
section of the bead with the plane at moment t, parallel to the (x, y)-plane is
a an intersection of two disks, which is a disk or a lens. This disk or lens is
given by the constraints

(x − xi)
2 + (y − yi)

2 ≤ (t − ti)
2v2

max

(x − xi+1)
2 + (y − yi+1)

2 ≤ (ti+1 − t)2v2
max.

The case of a lens is illustrated in Figure 4.

More specifically, let di =
√

(xi − xi+1)2 + (yi − yi+1)2. At any moment t be-

tween ti and ti+ti+1

2
− di

2vmax
the bead shows a disk with center (xi, yi) and

radius vmax(t − ti). At any moment between ti+ti+1

2
− di

2vmax
and ti+ti+1

2
+ di

2vmax

the bead is a lens and between ti+ti+1

2
+ di

2vmax
and ti+1 it shows a disk with

center (xi+1, yi+1) and radius vmax(ti+1 − ti).

There are obviously a number of special or degenerate cases that are discussed
in the following property, which follows immediately from the above remarks.

Property 3 Let (ti, xi, yi), (ti+1, xi+1, yi+1) be time-space points with ti < ti+1

and let vmax > 0. Then we have

(1) d((xi, yi), (xi+1, yi+1)) > vmax(ti+1−ti) if and only if B(ti, xi, yi, ti+1, xi+1,

12

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

(xi, yi)

vmax(ti+1 − t)
vmax(t− ti)

(xi+1, yi+1)

Fig. 4. An example of a lens in a bead B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) at moment
t, with t1 ≤ t ≤ ti+1.

yi+1, vmax) is empty;

(2) if vmax = d((xi,yi),(xi+1,yi+1))
ti+1−ti

, then B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) is a line

segment in the (t, x, y)-space that is not parallel to the (x, y)-plane;
(3) the bead B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) is at no moment between ti and

ti+1 a lens (i.e., it is always a disk) if and only if (xi, yi) = (xi+1, yi+1)
and vmax > 0. In this case, B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) is the union of
two cones, one with top (ti, xi, yi), one with top (ti+1, xi, yi) and both with
the disk with center (xi, yi) and radius vmax(

ti+1+ti
2

) at ti+1+ti
2

as base. 2

Case (3) of this property is illustrated by the bead on the top right in Figure 1.

The following two properties can be proven quite easily in an analytical way.
We omit the proofs.

Property 4 Given (ti, xi, yi), (ti+1, xi+1, yi+1), with ti < ti+1 and vmax > 0,
the projection of the bead B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) onto the (x, y)-plane
is the area boredered by the ellipse with foci (xi, yi) and (xi+1, yi+1) and with

long axis vmax(ti+1−ti)
2

. The equation of this ellipse is

(2x − xi − xi+1)
2

v2(ti+1 − ti)2
+

(2y − yi − yi+1)
2

v2(ti+1 − ti)2 − (xi − xi+1)2 − (yi − yi+1)2
= 1. 2

We denote the area boredered by the ellipse from the previous property by
πx,y(B(ti, xi, yi, ti+1, xi+1, yi+1, vmax)).

Property 5 Given (ti, xi, yi), (ti+1, xi+1, yi+1), with ti < ti+1 and vmax > 0,
then any trajectory from (ti, xi, yi) to (ti+1, xi+1, yi+1) for which the speed at
any moment ti ≤ t ≤ ti+1 is less than vmax is located within B(ti, xi, yi, ti+1,
xi+1, yi+1, vmax) and the projection of such a trajectory on the (x, y)-plane
is located within πx,y(B(ti, xi, yi, ti+1, xi+1, yi+1, vmax)). Furthermore, for any
point (t, x, y) in B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) there exists a trajectory from

13

(ti, xi, yi) to (ti+1, xi+1, yi+1) that passes through (t, x, y). 2

We remark that the trajectory LIT (〈(ti, xi, yi), (t, x, y), (ti+1, xi+1, yi+1〉) can
be taken to prove the last part of the the previous property.

3.2 Transformations of beads

Suppose we transform a bead B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) by a function
f : R × R2 → R × R2 : (t, x, y) 7→ (ft(t), fx(t, x, y), fy(t, x, y)), where we
assume f to be a globally smooth bijection (called transformation, for short)
and ft to be strictly monotone, as we have done earlier in Section 2.3 for
trajectories. We ask ourselves which class of transformations map a bead to a
bead. Also here we assume transformations to be smooth and bijective. Before
answering this we give the following technical lemma.

Lemma 1 Let f : R → R : t 7→ f(t) be a smooth function. If f is strictly
monotone increasing and if for any s, t ∈ R, we have that 2 · f(s+t

2
) = f(s) +

f(t), then f(t) = (f(1) − f(0)) · t + f(0). 2

Proof 3 (of Lemma 1) Suppose f is a smooth function for which for any
s, t ∈ R, we have that f(s+t

2
) = 1

2
(f(s) + f(t)). If we take the derivative on

both sides to the variable t, we get

∂

∂t
f
(

s + t

2

)

=
∂

∂t

f (s) + f (t)

2
or f ′

(

s + t

2

)

·
∂

∂t

(

t

2

)

=
f ′ (t)

2

and thus f ′
(

s+t
2

)

= f ′ (t) for all t, which means f ′ (t) is constant and f (t) =
at + b. Since f is assumed to be strictly monotone increasing, we must have
a > 0. Clearly, f(0) = b and f(1) = a + b = a + f(0). 2

Theorem 2 Let f : R × R2 → R × R2 : (t, x, y) 7→ (ft(t), fx(t, x, y), fy(t, x,
y)) be a transformation that preserves the order of events. Then for arbitrary
time-space points (ti, xi, yi) and (ti+1, xi+1, yi+1) with ti < ti+1 and arbitrary
vmax > 0, f(B(ti, xi, yi, ti+1, xi+1, yi+1, vmax)) is also a bead if and only if f is
of the form

f (t, x, y) =

a 0 0

0 ca11 ca12

0 ca21 ca22

t

x

y

+

b

b1

b2

,

with a, b, c, b1, b2 ∈ R, a, c > 0, and the matrix

a11 a12

a21 a22

 ∈ R2×2 defining an

orthogonal transformation. Furthermore, if these conditions are satisfied, then
f(B(ti, xi, yi, ti+1, xi+1, yi+1, vmax)) = B(f(ti, xi, yi), f(ti+1, xi+1, yi+1),

cvmax

a
).

14

Proof 4 (of Theorem 2) Let f : R × R2 → R × R2 be a transformation
that preserves the order of events. Suppose that for any bead B = B(ti, xi, yi,
ti+1, xi+1, yi+1, vmax), f(B) is again a bead.

Let us first consider the special case, vmax = d((xi,yi),(xi+1,yi+1))
(ti+1−ti)

(i.e., the max-

imal speed is also the minimal speed). Then the bead B is the straight line
segment between (ti, xi, yi) and (ti+1, xi+1, yi+1) in the (t, x, y)-space. This seg-
ment is not parallel to the (x, y)-plane (like all beads that are lines). Since B
is one-dimensional and since f(B) is assumed to be a bead and since f(B) at
any moment consists of one point also f(B) must be a straight line segment
not parallel to the (x, y)-plane in the in the (t, x, y)-space. We can conclude
that f maps any line segment not parallel to the (x, y)-plane to a line segment
not parallel to the (x, y)-plane.

Secondly, let us consider a bead B with (xi, yi) = (xi+1, yi+1) and vmax > 0.
This bead consists of a cone between ti and ti+ti+1

2
with top (ti, xi, yi) and

base the disk D = {(ti+ti+1

2
, x, y) | (x − xi)

2 + (y − yi)
2 ≤ v2

max(
ti+1−ti

2
)2} on

the one hand and a cone between ti+ti+1

2
and ti+1 with top (ti+1, xi, yi) and

the same disk D as base. Consider the straight line segments emanating from
the top (ti, xi, yi) and ending in some point of the central disk D. They are
mapped to straight line segments in f(B) (as we have argued before) that
emanate from the top f (ti, xi, yi) of f(B) and that end up in some figure

f(D) in the hyperplane t = ft

(

ti+ti+1

2

)

. Since f(B) is assumed to be a bead,

the image of the bottom cone of B is again a cone, [waarom is dat zo?] ∗B.vraagt :∗

and the aforementioned figure f(D) in the hyperplane t = ft

(

ti+ti+1

2

)

is also
a closed disk. The same holds for the top cone of B. This half of B is mapped
to a cone with top f(ti+1, xi+1, yi+1) and base f(D). Therefore, f(B) is the
union of two cones, one with top f (ti, xi, yi), the other with top f(ti+1, xi, yi)
and both with base f(D). Since f(B) is a bead that at no moment in time is
a lens, it must, by Property 3, itself be a bead with equally located tops. This
means that fx(ti, xi, yi) = fx(ti+1, xi, yi) and fy(ti, xi, yi) = fy(ti+1, xi, yi). In
other words, the functions fx and fy are independent of t. This argument also
shows that ft(

ti+ti+1

2
) is the middle of ft(ti) and ft(ti+1). This means that for

any ti and ti+1, ft(
ti+ti+1

2
) = 1

2
(ft(ti) + ft(ti+1)). By Lemma 1, ft(t) = at + b

with a > 0.

So, we have shown that a bead-preserving transformation f is of the form
f (t, x, y) = (at + b, fx (x, y) , fy (x, y)) . Now we determine fx and fy. If we
restrict ourselves to a (x, y)-plane at some moment t between ti and ti+1

(ti < ti+1), the bead B = B(ti, xi, yi, ti+1, xi, yi, vmax) shows a disk. Since
f(B) is again a bead, it will also show a disk at ft(t). Since fx and fy are
independent of t, they map disks to disks, hence distances between points are
all scaled by a positive factor c by this transformation. To determine what fx

and fy look like we can restrict ourselves to a mapping from R2 to R2, since

15

fx and fy depend only on x and y. Consider the transformation f̃ (x, y) =
(fx (x, y) , fy (x, y)), we know now that for all points x and y in R2, ‖x − y‖ =
1
c

∥

∥

∥f̃ (x) − f̃ (y)
∥

∥

∥ . Now consider f̂ = 1
c
f̃ , this means ‖x − y‖ =

∥

∥

∥f̂ (x) − f̂ (y)
∥

∥

∥

and thus f̂ is an isometry. Just like before (cfr., the result on speed preserving-
transformations), we can conclude that f̃ (x, y) = (fx (x, y) , fy (x, y)) is a
similarity of the plane, i.e. composed of a linear isometry, a scaling and a
translation of the planel.

If B is a bead between the points (t1, x1, y1) and (t2, x2, y2) and speed vmax,
then f(B) = B′ is a bead between the points (t′1, x

′

1, y
′

1) and (t′2, x
′

2, y
′

2)
and speed v′

max = c.vmax

a
, because we know that (x′ − x′

i)
2 + (y′ − y′

i)
2 =

c2
(

(x − xi)
2 + (y − yi)

2
)

and that (t′ − t′i)
2 = a2 (t − ti)

2.

This has to hold for all beads, hence all vmax since degenerate beads must be
transformed to degenerate beads.

This concludes the proof since it is clear that all transformations of this form
also map beads to beads. 2

From this results it follows that if f maps a bead B with maximal speed
vmax to a bead f(B), the latter has maximal speed cvmax

a
. Therefore, we can

conclude the following.

Corollary 1 If f : R × R2 → R × R2 is a transformation that preserves
the order of events, then f maps beads to beads with the same speed, if and
only if, f preserves the speed of trajectories (i.e., f belongs to V defined in
Theorem 1). 2

4 A model for trajectory databases and queries

4.1 Trajectory and sample-trajectory databases and queries

We assume the existence of an infinite set Labels = {a, b, ..., a1, b1, ..., a2, b2, ...}
of trajectory labels. We now define the notion of trajectory (sample) database.

Definition 8 A trajectory relation R is a finite set of tuples (ai, Ti), i =
1, ..., r, where ai ∈ Labels can appear only once and where Ti is a trajectory.
Similarly, a trajectory sample relation R is a finite set of tuples (ai, ti,j, xi,j ,
yi,j), with i = 1, ..., r and j = 0, ..., Ni, such that ai ∈ Labels cannot appear
twice in combination with the same t-value and such that 〈(ti,0, xi,0, yi,0), (ti,1,
xi,1, yi,1), ..., (ti,Ni

, xi,Ni
, yi,Ni

)〉 is a trajectory sample.

16

A trajectory (sample) database is a finite collection {R1, R2, ..., RM} of trajec-
tory (sample) relations. 2

Without loss of generality, we will assume in the sequel that a database consists
of one relation and when we refer to the database we will refer to its relation.

In Section 2, we have discussed how we finitely represent trajectories and
trajectory samples.

The following is an example of a trajectory relation containing three trajec-
tories.

label geometry(x) geometry(y) Time domain

a 1
t2+1

t
t2+1

[0, 1]

b 1−t2

t2+1
2t

t2+1
[0, 1]

c 1 2 [1, 2]

The second trajectory, b, describes a movement on a segment of a circle. The
third, c, is a stationary trajectory in the point (1, 2).

The following is an example of trajectory sample relation.

label t x y

a 0 0 0

a 1 0 1

a 2 0 2

a 3 0 3

b 0 0 0

b 1 1 0

b 2 2 0

b 3 3 0

c 0 0 0

c 1 0 0

c 2 0 0

c 3 0 0

17

It contains samples of objects with labels a, b and c between time moments
0 and 3. The object a is moving over the y-axis at uniform speed, the object
b is moving over the x-axis at uniform speed and the object c that remains
stationary in the origin.

Now, we define the notion of a trajectory database query. We distinguish
between trajectory database transformations and boolean trajectory queries.

Definition 9 A (sample-)trajectory database transformation is a partial com-
putable function from (sample-)trajectory relations to (sample-)trajectory re-
lations. A boolean (sample-)trajectory database query is a partial computable
function from (sample-)trajectory relations to {0, 1}. 2

We could consider other types of queries, but without loss of generality we
can restrict ourselves to these. [is dat zo?????] ∗B.vraagt :∗

When we say that a function is computable, this is with respect to some
fixed encoding of the trajectory (sample) relations (e.g., rational polynomial
functions represented in dense or sparse encoding of polynomials; or rational
numbers represented as pairs of natural numbers in bit representation).

4.2 V-equivalent trajectory databases and V-invariant queries

Definition 10 Let R and S be trajectory (sample) databases. We say that
R and S are V-equivalent, if there is bijection µ : Labels → Labels and a
speed-preserving transformation f ∈ V such that (µ × f)(R) = S. 2

In this paper, we are especially interested in transformations and queries that
are invariant under elements of V.

Definition 11 A trajectory (sample) database transformation Q is V-invariant
if for any trajectory (sample) databases R and S which are V-equivalent, i.e.,
for which there is a bijection µ : Labels → Labels and a transformation f ∈ V
such that (µ × f)(R) = S, also (µ × f)(Q(R)) = Q(S).

A boolean trajectory (sample) database query Q is V-invariant if for any tra-
jectory (sample) databases R and S, for which are V-equivalent, also Q(R) =
Q(S). 2

18

5 Complete query languages for trajectory databases

5.1 First-order queries on trajectory (sample) databases

A first query language for trajectory (sample) databases that we consider is
the following extension of first-order logic over the real numbers, which we
refer to as FO(+,×, <, 0, 1, S).

Definition 12 The language FO(+,×, <, 0, 1, S) is a two-sorted logic with
label variables a, b, c, ... (possibly with subscripts) that refer to trajectory la-
bels and real variables x, y, z, ... (possibly with subscripts) that refer to real
numbers. The atomic formulas of FO(+,×, <, 0, 1, S) are

• p(x1, ..., xn) > 0, where p is a polynomial with integer coefficients in the real
variables x1, ..., xn;

• a = b; and
• S(a, t, x, y) (S ia a 4-ary predicate).

The formulas of FO(+,×, <, 0, 1, S) are built from the atomic formulas using
the logical connectives ∧,∨,¬, ... and quantification over the two types of
variables: ∃x, ∀x and ∃a, ∀a. 2

For what concerns the semantics of queries, expressed by FO(+,×, <, 0, 1, S)-
formulas, when applied to some input trajectory (sample) database, we ob-
serve the following. The label variables are assumed to range over the la-
bels occurring in the input database and the real variables are assumed to
range over R. The formula S(a, t, x, y) expresses that a tuple (a, t, x, y) be-
longs to the input trajectory (sample) database, i.e., to the trajectory (sam-
ple) relation. The interpretation of the other formulas is standard. The logic
FO(+,×, <, 0, 1, S) is a constraint database query language [15,18]. It is well-
known that FO(+,×, <, 0, 1, S)-expressible queries can be evaluated effec-
tively [15].

The FO(+,×, <, 0, 1, S)-sentence

∃a∃b(¬(a = b) ∧ ∀t∀x∀yS(a, t, x, y) ↔ S(b, t, x, y)), (†)

for example, expresses the boolean trajectory query that says that there are
two identical trajectories in the input database with different labels.

As another example, the FO(+,×, <, 0, 1, S)-sentence

∃a∃t1∃x1∃y1∃t2∃x2∃y2(S(a, t1, x1, y1) ∧ S(a, t2, x2, y2) ∧

0 < t2 − t1 ≤ 10 ∧ (x1 − x2)
2 + (y1 − y2)

2 ≥ 1002)

19

expresses the boolean trajectory query that says that there is a trajectory that
at some interval has an average speed higher than 10.

The FO(+,×, <, 0, 1, S)-formula

S(a, t, x, y) ∧ t ≥ 0 (∗)

has free variables a, t, x and y and returns the subtrajectories of the input
trajectories at positive time moments.

Sentences in FO(+,×, <, 0, 1, S) (for example, the sentence (†)) express Boolean
queries.

Trajectory transformations can be expressed in FO(+,×, <, 0, 1, S) by formu-
las ϕ(a, t, x, y) with four free variables (for example, the formula (∗)). We
remark that not every FO(+,×, <, 0, 1, S)-formula ϕ(a, t, x, y) defines a tra-
jectory relation on input a trajectory. The formula

∃t′∃x′∃y′S(a, t′, x′, y′) ∧ t > 0 ∧ x > 0 ∧ y > 0

is an example of a formula that does not return a trajectory (sample).

However, it can be syntactically guaranteed that the output of such a query
is a trajectory (sample), since the property of being a trajectory (sample) can
be expressed in FO(+,×, <, 0, 1, S).

Property 6 There is an FO(+,×, <, 0, 1, S)-formula that expresses that a
set {(t, x, y) | ϕ(t, x, y)}, with ϕ(t, x, y) an FO(+,×, <, 0, 1, S) formula, is a
trajectory (sample). 2

Proof 5 (of Property 6) It is well known that a FO(+,×, <, 0, 1, S)-defi-
nable set {(t, x, y) | ϕ(t, x, y)}, is a semi-algebraic set [15]. It is expressible
that a semi-algebraic set is a function of the form t 7→ (x(t), y(t)) and also
that it is piecewise smooth. Indeed, differentiability of a function in a point
t0 can be first-order expressed using the ε-δ-definition of differentiability (see
for example [7,6]). Piecewise smoothness is then expressed by saying that the
set of moments t where the function is not differentiable is finite. Finiteness
of a semi-algebraic set can be expressed by saying that all the elements of
the set are isolated points of the set [15]. Therefore, it is FO(+,×, <, 0, 1, S)-
expressible that {(t, x, y) | ϕ(t, x, y)} is a trajectory.

To express that a set {(t, x, y) | ϕ(t, x, y)} is a trajectory sample, it suffices
to say that this set is finite and that for each t-value, there is at most one
accompanying (x, y)-value. 2

By combining a formula ϕ(a, t, x, y) with a guard that expresses that for ev-
ery label a in the output of ϕ(a, t, x, y), the corresponding (t, x, y) values

20

form a trajectory (sample), we can determine a closed or safe fragment of
FO(+,×, <, 0, 1, S) for transforming trajectories.

5.2 A point-based first-order language for trajectory (sample) databases

In this section, we consider a first-order query language, FO(Before, minSpeed,
S̃), for trajectory (sample) databases.

Definition 13 The language FO(Before, minSpeed, S̃) is a three-sorted logic
with

• label variables a, b, c, ... (possibly with subscripts) that refer to labels of
trajectories;

• point variables p, q, r, ... (possibly with subscripts), that refer to time-space
points (i.e., elements of R ×R2);

• speed variables u, v, w, ... (possibly with subscripts), that refer to speed val-
ues (i.e., elements of R+).

The atomic formulas of FO(Before, minSpeed, S̃) are

• p(v1, ..., vn) > 0, where p is a polynomial with integer coefficients in the
speed variables v1, ..., vn;

• a = b; and
• S̃(a, p) (so, here S̃ is a binary predicate);
• Before(p, q), minSpeed(p, q, v).

The formulas of FO(Before, minSpeed, S̃) are built from the atomic formulas
using the logical connectives ∧,∨,¬, ... and quantification over the three types
of variables: ∃a, ∀a, ∃p, ∀p and ∃v, ∀v. 2

The label variables are assumed to range over the labels occurring in the input
database, the point variables are assumed to range over the set of time-space
points R×R2 and the speed variables are assumed to range over the positive
real numbers, i.e., over R+.

If p is a time-space point, then we denote its time-component by pt and its
spatial coordinates with respect to the standard coordinate system by px and
py. The formula S(a, p) expresses that a tuple (a, pt, px, py) belongs to the
input database. The atomic formula Before(p, q) expresses that pt ≤ qt. The
atomic formula minSpeed(p, q, v) expresses that

(px − qx)
2 + (py − qy)

2 = v2(pt − qt)
2 ∧ ¬(qt ≤ pt),

in other words, that v is the minimal speed to go from the spatial projection
(px, py) of p to the spatial projection (qx, qy) of q in the time-interval [pt, qt]

21

that separates them.

For example, the FO(Before, minSpeed, S̃)-sentence

∃a∃b(¬(a = b) ∧ ∀pS̃(a, p) ↔ S̃(b, p)) (†′)

equivalently expresses (†).

To define equivalence of (queries expressible by) formulas in the languages
FO(Before, minSpeed, S̃) and FO(+,×, <, 0, 1, S), we define the canonical map-
ping

can : p 7→ (pt, px, py).

If Ã is an instance of S̃, then (id × can)(Ã) is an instance of S. We say
that a formula ϕ̃(a, p) ∈FO(Before, minSpeed, S̃) and a formula ϕ(a, t, x, y) ∈
FO(+,×, <, 0, 1, S) express equivalent transformations if for any Ã, the set
(id × can)({(a, p) | Ã |= ϕ̃(a, p)}) is equal to the set {(a, t, x, y) | (id ×
can)(A) |= ϕ(a, t, x, y)}. For boolean queries the definition is analogue.

For the formula (∗), there is no equivalent formula in FO(Before, minSpeed, S̃).
The reason for this is given by the following theorem in combination with the
observation that the formula (∗) does not express a V-invariant transforma-
tion.

Theorem 3 A V-invariant trajectory (sample) transformation or a boolean
trajectory (sample) query is expressible in FO(+,×, <, 0, 1, S) if and only if it
is expressible in FO(Before, minSpeed, S̃).

Before giving the proof of Theorem 3, we introduce some more predicates on
time-space points and speed values, which will come in handy later on:

• inBead(r, p, q, v) expresses that r = (rt, rx, ry) belongs to the bead B(pt,
px, py, qt, qx, qy, v), where p = (pt, px, py) and q = (qt, qx, qy) (assuming that
pt ≤ qt);

• Between2(p, r, q) expresses that the three co-temporal points p, q and r are
collinear and that r is strictly between p and q;

• Between1+2(p, r, q) expresses that the three points p, q and r are collinear
and that r is strictly between p and q;

• EqDist(p1, q1, p2, q2) expresses that the distance between the co-temporal
points p1 and q1 is equal to the the distance between the co-temporal points
p2 and q2;

• Middle(p, r, q) expresses that Between2(p, r, q) and that r lies in the middle
between p and q;

• Perp(p1, q1, p2, q2) expresses that the vectors −−→p1q1 and −−→p2q2 of the co-temporal
points p1, q1, p2 and q2 are perpendicular.

22

We remark that a key predicate to simulate addition and multiplication in
FO(Before, minSpeed) is Between2 [10]. We now show that these predicates
belong to FO(Before, minSpeed).

Lemma 2 The expressions inBead(r, p, q, v), Between2(p, q, r), Between1+2(p,
q, r), EqDist(p1, q1, p2, q2), Middle(p, r, q) and Perp(p1, q1, p2, q2) can all be ex-
pressed in the logic FO(Before, minSpeed). 2

Proof 6 (of Lemma 2) First, we introduce some abbreviations, namely pred-
icates to denote co-spatiality and co-temporality:

• equality of the spatial coordinates, denoted =S (p, q), is expressed in FO(Before,
minSpeed) as

∃v(minSpeed(p, q, v) ∧ v = 0) ∨ p = q;

• co-temporality of time-space points, denoted =T (p, q) is expressed in FO(Before,
minSpeed) as

Before(p, q) ∧ Before(q, p).

Now we turn to the predicates in the statement of the lemma.

• For what concerns the predicate inBead(r, p, q, v), we remark that the point
r lies in the bead if and only if the line connecting p and r is steeper than
the edge of the bottom cone and the same is true for the line connecting
q and r and the top cone. This means that an object traveling along a
trajectory that is linearly interpolated between p, r and q has speed less
than v. Therefore, inBead(r, p, q, v) is expressed as

∃v1 (v1 ≤ v ∧ minSpeed(p, r, v1)) ∧ ∃v2 (v2 ≤ v ∧ minSpeed(r, q, v2)) ;

• The perdicate Between2(p, r, q) is expressed by the formula

∃r′∃q′∃v(=T(p, r) ∧ =T(r, q) ∧ ¬(p = r ∨ r = q ∨ p = q) ∧ =S(r, r
′) ∧

=S(q, q
′) ∧ minSpeed(p, q′, v) ∧ minSpeed(p, r′, v) ∧ minSpeed(r′, q′, v) ∧

¬Before(r′, p) ∧ ¬Before(q′, r′)).

Indeed, the first line states that the three points p, q and r are co-temporal
and distinct, and that the points r′ and q′ have the same spatial coordinates
as r and q respectively. The second line states that p, r′ and q′ are collinear,
and therefor p, r and q are as well. The last line simply states that r is
between p and q in a temporal sense.

This expression depicts a geometric situation as illustrated in Figure 5. If
there exists a line, not parallel to the spatial plane, through one of the points,
in this case p, and two parallel lines (the dotted lines in the figure) through
the other points, r and q, that intersect this line, then the plane, defined

23

��
��
��
��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����

y

p

r′

q′t

q

rx

Fig. 5. The geometric construction of Between
2.

by this line and the two parallel ones, cuts the spatial plane (containing p,
r and q) in a line containing these three points p, r and q, and hence they
are collinear.

To show that p, r′ and q′ are collinear, we assume for the sake of contra-
diction that they are not. That means d(p, q′) < d(p, r′) + d(r′, q′) due to
the triangle inequality. Thus, using Pythagoras’ theorem, we have
√

dS(p, q′)2 + (tq′ − tp)2 <
√

dS(p, r′)2 + (tr′ − tp)2+
√

dS(r′, q′)2 + (tq′ − tr′)2

where dS denotes the spatial distance between the spatial projection of its
arguments.

Due to the minSpeed relations, we have dS(p, q′) = v(tq′ − tp), dS(p, r′) =
v(tr′ − tp) and dS(r′, q′) = v(tq′ − tr′). Substituting this in the inequality
above yields to

√

(v2 + 1)(tq′ − tp)2 <
√

(v2 + 1)(tr′ − tp)2 +
√

(v2 + 1)(tq′ − tr′)2,

which holds if and only if
√

(v2 + 1)(tq′ − tp) <
√

(v2 + 1)(tr′ − tp) +
√

(v2 + 1)(tq′ − tr′).

The latter condition holds if and only if (tq′ − tp) < (tr′ − tp) + (tq′ − tr′) or
equivalently (tq′ − tp) < (tq′ − tp). Since this is impossible, p, r′ and q′ must
be collinear.

• The predicate Between1+2 is a more general than Between2, but the expres-
sion for this predicate is quite similar. We have Between1+2(p, r, q) if and
only if

Between2(p, r, q) ∨ (¬(p = r ∨ r = q ∨ p = q) ∧ ∃v(minSpeed(p, q, v) ∧

minSpeed(p, r, v) ∧ minSpeed(r, q, v) ∧ ¬Before(r, p) ∧ ¬Before(q, r))).

24

The fact that the same speed v can be used to travel from p to q; from p to
r and from r to q, expresses that these three points must be collinear.

• We can write EqDist(p1, q1, p2, q2) as

∃p′1∃q′1∀r1∀r2∃v(=S(p1, p
′

1) ∧ =T(p2, p
′

1) ∧ =S(q1, q
′

1) ∧ =T(q2, q
′

1) ∧

=T(r1, r2) ∧ =S(r1, q
′

1) ∧ =S(r2, q2) ∧ ¬(Before(r1, q
′

1) ∨ Before(r2, q2)) ∧

minSpeed(p2, r2, v) ∧ minSpeed(p′1, r1, v)).

The first line states that we are projecting p1 onto a point p′1 with the
same spatial coordinates as p1 and with the same time coordinate as p2. The
same holds for q1 and q2. The second line introduces any two co-temporal
points r1 and r2 with the same spatial but greater time coordinates than q′1
and q2, respectively. And finally the last line states that we can reach r1 and
r2, which are spatially the same as q′1 and q2, from p′1 and p2 with the same
speed and in the same time frame. Hence their distance must be equal.

• The expression Middle(p, r, q) is a little bit more specialized than Between2(p,
r, q) in the sense that r lies in the middle between p and q. We can express
Middle(p, r, q) as

Between2(p, r, q) ∧ ∀r′∃v(=S(r, r
′) ∧ Before(r, r′) ∧

¬=T(r, r′) ∧ minSpeed(p, r′, v) ∧ minSpeed(p, r′, v)).

This expresses that r can be reached from p and q with the same speed and
in the same time-frame. This means the distance from p to r is equal to the
distance from q to r.

• Finally, we have Perp(p1, q1, p2, q2). We can express Perp(p1, q1, p2, q2) as

∃r∃p′1∃q′1((Between2(p1, q1, r) ∨ Between2(p1, r, q1) ∨ Between2(r, p1, q1)) ∧

∧ (Between2(p2, q2, r) ∨ Between2(p2, r, q2) ∨ Between2(r, p2, q2)) ∧

Middle(p′1, r, p1) ∧ Middle(q′1, r, q1) ∧ EqDist(p1, p2, p
′

1, p2) ∧

EqDist(q1, p2, q
′

1, p2) ∧ EqDist(p1, q2, p
′

1, q2) ∧ EqDist(q1, q2, q
′

1, q2)).

First, we state that r is the point of intersection of the straight lines going
through p1 and q1 and through p2 and q2. Then we say that p′1 is a point
on the line through the point p1 and q1 such that r is the middle of the
segment bound by p1 and p′1. The point q′1 is defined similarly. Finally, we
express that the line through p2 and q2 is the perpendicular bisector of the
segment bound by p1 and p′1 and the segment bound by q1 and q′1. Hence
the vectors −−→p1q1 and −−→p2q2 are perpendicular. 2

For the purpose of the proof of Theorem 3, we need to give a more general def-
inition (than Definition 11), of V-invariance of queries expressed by FO(Before,
minSpeed, S̃)-formulas.

Definition 14 A FO(Before, minSpeed, S̃)-formula ϕ(a1, ..., an, p1, ..., pm, v1, ...,

25

vk) expresses a V-invariant query Q if for any trajectory (sample) databases R
and S for which there is a bijection µ : Labels → Labels and a transformation
f ∈ V such that (µ × f)(R) = S, also (µn × fm × idk)(Q(R)) = Q(S). 2

This definition corresponds to the definition for transformations and boolean
queries (Definition 11), if we take n = m = 1, k = 0 and n = m = k = 0,
respectively.

Now, we are ready for the proof of Theorem 3.

Proof 7 (of Theorem 3) We have to prove soundness and completeness.

Soundness. Firstly, we show that every FO(Before, minSpeed, S̃)-formula is
equivalently expressible in FO(+,×, <, 0, 1, S) and that every query express-
ible in FO(Before, minSpeed, S̃) is V-invariant.

We assume prenex normal form for FO(Before, minSpeed, S̃)-formulas, and
translate the atomic formulas first. Logical connectives, and finally quanti-
fiers, can then be added in a straightforward manner. A label variable is left
unchanged. A point variable p is simulated by three real variables pt, px and
py that represent the real coordinates of p with respect to the standard coor-
dinate system of R×R2. A speed variable v is simulated by a real variable v
and when it appears it is accompanied with the restriction v ≥ 0.

An appearance of the trajectory predicate S̃(a, p) is translated into S(a, pt, px,
py). By switching to coordinate representations, the predicates minSpeed(p, q,
v) and Before(p, q) are translated to (px − qx)

2 +(py − qy)
2 = v2 (pt − qt)

2 and
pt ≤ qt respectively. Polynomial constraints on speed variables are literally
translated (adding v ≥ 0). Logical connectives, and finally quantifiers, can
then be added in a straightforward manner. In particular, ∃p is translated to
∃pt∃px∃py.

Speed-preserving transformations preserve the order of events. That implies
that the predicate Before is V-invariant. The predicate minSpeed is also V-
invariant. To see this take any f that belongs to V, then we know from The-
orem 1 that f is the composition of a scaling by a positive factor a and
an orthogonal transformation and a translation. Suppose that f(pt, px, py) =
(p′t, p

′
x, p

′
y) = p′ and f(qt, qx, qy) = (q′t, q

′
x, q

′
y) = q′. Now if minSpeed(p′, q′, v)

holds, then (p′x−q′x)
2 +(p′y −q′y)

2 = v2(p′t−q′t)
2. Because (p′x−q′x)

2 +(p′y −q′y)
2

= a2((px − qx)
2 + (py − qy)

2) and v2(p′t − q′t)
2 = v2a2(pt − qt)

2, we have
a2((px − qx)

2 + (py − qy)
2) = v2a2(pt − qt)

2 or (px − qx)
2 + (py − qy)

2 =
v2(pt − qt)

2. In other words, minSpeed(p, q, v) holds if and only if minSpeed(p′,
q′, v) holds.

The polynomial constraints on speed variables are by definition V-invariant
(see Definition 14). Now, it is easy to show, by induction on the syntactic

26

structure of FO(Before, minSpeed, S̃)-formulas that they are all V-invariant.

Completeness. Secondly, we show that every V-invariant trajectory query,
expressible in FO(+,×, <, 0, 1, S), can equivalently be expressed in FO(Before,
minSpeed, S̃). We will sketch the proof, as a rigorous proof easily becomes long
and tedious. The general strategy that we outline is based on proof strategies
introduced in [10] for spatial data and later developed for spatio-temporal data
in [4]. The details for the current setting can be easily reconstructed using the
proofs in [4,10] and the outline below.

Label variables are left unchanged in the translation. The real variables are
translated into point variables and we simulate addition, multiplication and
order on real values, on these point variables in a “computation plane”. We
explain this now in detail.

To simulate addition, multiplication and order, we need a coordinate system
for R × R2 that is the image of the standard coordinate system of R × R2

under some element of V. Let (u0, u1, u2, u3) be such a coordinate system,
meaning u0, u2 and u3 are co-temporal, −−→u0u1, −−→u0u2 and −−→u0u3 are perpendicular
and have equal length and u0 is a point before u1. All of this is expressible in
FO(Before, minSpeed, S̃) with the predicates introduced in Lemma 2. Indeed,
the formula

∃v(=T(u0, u2) ∧ =T(u0, u3) ∧ =S(u0, u1) ∧ ¬u0 = u2 ∧

EqDist(u0, u2, u0, u3) ∧ Perp(u0, u2, u0, u3) ∧ v = 1 ∧ minSpeed(u2, u1, v))

expresses that (u0, u1, u2, u3) is such a coordinate system. When travelling
from u1 to u2 with speed 1, the elapsed time equals the elapsed space. There-
fore, the distance between u0 and u2 equals the distance between u0 and u1.
Let CoSys(u0, u1, u2, u3) abbreviate this FO(Before, minSpeed, S̃)-formula that
expresses that (u0, u1, u2, u3) is the image of the standard coordinate system
under some speed-preserving transformation.

As a next step in the translation, all real variables are directly translated into
point variables on the line u0u2. The idea is to translate a real variable x to
a point variable px, where the cross ratio (u0, u2, p

x) corresponds to the real
value x.

It is obvious that the order relation can be simulated using Between2. But
Tarski showed that we can construct point based predicates that simulate
addition and multiplication using only Between2 [19] (see also [10]). Moreover,
these simulations occur in the plane spanned by the co-temporal points u0, u2

and u3 (hence the term computation plane).

At this point, we have in our translated formula too many free variables.
First of all, there is the coordinate system we have chosen to represent the

27

time-space points in. Secondly, we have translated variables, which represent
coordinates, to point variables. But we need to group triples of coordinates, all
points that are on the line u0u2, in time-space points of which they are the coor-
dinates. More precisely, we also introduce true time-space points. And we want
to be able to express that three time-space points, located on the line through
u0 and u2, represent the coordinates of a given time-space point. This can be
done with a predicate Coordinates(u0, u1, u2, u3, t, x, y, u) which expresses that
the cross ratios (u0, u2, t), (u0, u2, x) and (u0, u2, y) are the coordinates for the
point variable u with respect to the coordinate system (u0, u1, u2, u3). The
predicate Coordinates can be expressed using only the predicate Between1+2 as
was shown in [10].

The relation S is translated in a similar straightforward manner: whenever
S(a, t, x, y) appears, we translate it by S̃(a, p) and an expression

Finally, we add existential quantifiers for all the coordinate point variables
and for the points u0, u1, u2 and u3. 2

As a corollary of Theorem 3 and Property 7, is the following.

Property 7 There is a FO(Before, minSpeed, S̃)-formula that expresses that
S̃ is a trajectory (sample). 2

5.3 Computationally complete query language for trajectory (sample) data-
bases

In this section, we consider computationally complete query languages for
trajectory (sample) databases. For the sake of the better understanding of the
proof of Theorem 5, we start with showing the computational completeness of
the programming language FO(+,×, <, 0, 1, S)+while, which, apart from the
use of label variables, is described in Chapter 2 of [15]. We define this language
here in the presence of label variables.

We assume that in the language FO(+,×, <, 0, 1, S)+while, we have a sufficient
supply of relation variables (of all arities). In this language we have assignment
statements and while-loops.

More formally, FO(+,×, <, 0, 1, S)+while is defined as follows.

Definition 15 A program in FO(+,×, <, 0, 1, S)+while is a finite sequence of
assignment statements and while-loops :

(1) An assignment statement is of the form

R := {(a1,, ak, x1, . . . , xl) |ϕ (a1,, ak, x1, . . . , xl)};

28

where R is a relation variable that is of arity k in the label variables
and arity l in the real variables, and where ϕ is a formula in the logic
FO(+,×, <, 0, 1, S) extended with the relation names, previously intro-
duced in the program.

(2) A while-loop
while ϕ do P ;

contains a sentence ϕ, in the logic FO(+,×, <, 0, 1, S) extended with the
relation names previously introduced in the program, and a program P .

(3) One relation variable is designated as an output relation Rout. The pro-
gram stops and returns Rout, when that particular relation variable has
been assigned a value.

The semantics of a FO(+,×, <, 0, 1, S)+while-program applied to a trajectory
(sample) database is the step by step execution. The right-hand side of ev-
ery assignment statement is computed by evaluating the FO(+,×, <, 0, 1, S)
+while-formula, extended with previously introduced relation names, on the
input database. Then the result is assigned to the relation variable on the
left-hand side.

The body P of a while-loop is executed as long as the sentence ϕ evaluates to
true. If and when the program ends the value of Rout is considered the output
of the program. 2

First, we prove the following theorem, which is, if we assume that the label
values can be encoded as (or are) natural numbers, a straightforward gener-
alization of the case without labels (see Chapter 2 of [15]).

Theorem 4 The language FO(+,×, <, 0, 1, S)+while is sound and complete
for the computable trajectory (sample) queries (in particular, transformation
or boolean query).

Proof 8 (of Theorem 4) We assume that labels are natural numbers. Now
we can consider that an input instance of S (a, t, x, y) is given as a quantifier-
free formula in the logic FO(+,×, <, 0, 1). This formula will contain the sym-
bols (,), ¬, ∨, +, ×, 0, 1, a, t, x and y. Suppose these symbols are numbered
ranging from 1 to 11. The quantifier-free formula will be a string a of symbols
α1α2 . . . αm. This string will be encoded as a natural number n as follows,
n = p

sα1

1 · · ·psαm
m where pi is the ith prime number, and sαi

is the number be-
tween 1 and 11 which corresponds with the symbol αi. This product is called
the Gödel-number of a formula and is unique for every formula encoded in
this way.

We now give the encoding algorithm in the language FO(+,×, <, 0, 1, S)+while

which encodes the input relation S.

mS := 0, T := ∅, F := ∅, Found :=False

29

while ¬Found do

mS := mS + 1
if mS encodes a then

T := T ∪ {(mS , a1, a2, a3, a4, a1) | ai ∈ R}
else if mS encodes t then

T := T ∪ {(mS , a1, a2, a3, a4, a2) | ai ∈ R}
else if mS encodes x then

T := T ∪ {(mS , a1, a2, a3, a4, a3) | ai ∈ R}
else if mS encodes y then

T := T ∪ {(mS , a1, a2, a3, a4, a4) | ai ∈ R}
else if mS encodes 0 then

T := T ∪ {(mS , a1, a2, a3, a4, 0) | ai ∈ R}
else if mS encodes 1 then

T := T ∪ {(mS , a1, a2, a3, a4, 1) | ai ∈ R}
else if mS encodes (s+ t) then

T := T ∪{(mS , a1, a2, a3, a4, c+ d) | T (enc(s), a1, a2, a3, a4, c)∧T (enc(t), a1,

a2, a3, a4, d)}
else if mS encodes (s× t) then

T := T ∪{(mS, a1, a2, a3, a4, cd) | T (enc(s), a1, a2, a3, a4, c)∧T (enc(t), a1, a2,

a3, a4, d)}
else if mS encodes (s ≤ t) then

F := F ∪{(mS , a1, a2, a3, a4) | (∃c)(∃d)(T (enc(s), a1, a2, a3, a4, c)∧T (enc(t),
a1, a2, a3, a4, d) ∧ (c ≤ d))}

else if mS encodes (¬ϕ) then

F := F ∪ {(mS , a1, a2, a3, a4) | ¬F (enc(ϕ), a1, a2, a3, a4)}
else if mS encodes (ϕ ∨ ψ) then

F := F∪{(mS , a1, a2, a3, a4) | F (enc(ϕ), a1, a2, a3, a4)∨F (enc(ψ), a1, a2, a3, a4)}
end if

Found:= mS encodes a formula and ∀a1∀a2∀a3∀a4 (F (mS , a1, a2, a3, a4) ⇐⇒
S(a1, a2, a3, a4))

end while

Rout := {(mS)}

When the encoding program ends, T will contain all tuples (mS, r1, r2, r3, r4, f)
where mS is the encoding of a term in the variables a, t, x and y that outputs
f on input (r1, r2, r3, r4).

And F contains all tuples (mS, r1, r2, r3, r4) where mS is the encoding of a
formula ϕ in the variables a, t, x and y where ϕ(r1, r2, r3, r4) evaluates to true.

Note that the algorithm works because sub-formulas or sub-terms are evalu-
ated before the formulas or terms in which they appear are evaluated (because,
clearly, enc(s) ≤ enc(t) if s is a sub-formula or sub-term of t).

Now there exists, for each query Q a counter program MQ, such that for each
input database S on which Q is defined, and which is encoded by mS , MQ(mS)

30

is the encoding (a natural number) of a quantifier-free FO(+,×, <, 0, 1)-formula
representing Q (S). If the query is a boolean query the formula will return ei-
ther true or false, if the query is a trajectory transformation, then a formula in
the variables a, t, x and y is returned. If Q is not defined on S then MQ does
not halt on input mS. Furthermore, since we have full computational power
over the natural numbers in FO(+,×, <, 0, 1, S)+while, MQ can be simulated
in FO(+,×, <, 0, 1, S)+while. This concludes the computation step.

Decoding can easily be done by slightly adapting the encoding program. This
time the input is a number f , where f is the natural number MQ(mS). The
stop condition for the while-loop is replaced by Found := (m = f) and the
algorithm outputs a set {(r1, r2, r3, r4) | F (n, r1, r2, r3, r4)} representing the
output of the query.

m := 0, T := ∅, F := ∅, Found :=False
while ¬ Found do

m := m+ 1
if m encodes a then

T := T ∪ {(m,a1, a2, a3, a4, a1) | ai ∈ R}
else if m encodes t then

T := T ∪ {(m,a1, a2, a3, a4, a2) | ai ∈ R}
else if m encodes x then

T := T ∪ {(m,a1, a2, a3, a4, a3) | ai ∈ R}
else if m encodes y then

T := T ∪ {(m,a1, a2, a3, a4, a4) | ai ∈ R}
else if m encodes 0 then

T := T ∪ {(m,a1, a2, a3, a4, 0) | ai ∈ R}
else if m encodes 1 then

T := T ∪ {(m,a1, a2, a3, a4, 1) | ai ∈ R}
else if m encodes (s+ t) then

T := T ∪ {(m,a1, a2, a3, a4, c + d) | T (enc(s), a1, a2, a3, a4, c) ∧ T (enc(t), a1,

a2, a3, a4, d)}
else if m encodes (s× t) then

T := T ∪ {(m,a1, a2, a3, a4, cd) | T (enc(s), a1, a2, a3, a4, c) ∧ T (enc(t), a1, a2,

a3, a4, d)}
else if m encodes (s ≤ t) then

F := F ∪ {(m,a1, a2, a3, a4) | (∃c)(∃d)(T (enc(s), a1, a2, a3, a4, c) ∧ T (enc(t),
a1, a2, a3, a4, d) ∧ (c ≤ d))}

else if m encodes (¬ϕ) then

F := F ∪ {(m,a1, a2, a3, a4) | ¬F (enc(ϕ), a1, a2, a3, a4)}
else if m encodes (ϕ ∨ ψ) then

F := F∪{(m,a1, a2, a3, a4) | F (enc(ϕ), a1, a2, a3, a4)∨F (enc(ψ), a1, a2, a3, a4)}
end if

Found:= m = f

end while

Rout := {(r1, r2, r3, r4) | F (n, r1, r2, r3, r4)}

31

The query Q has now been effectively computed by the sequence

encode; compute; decode;

of programs. 2

Next, we extend the logic FO(Before, minSpeed, S̃) with a sufficient supply of
relation variables (of all arities), assignment statements and while-loops. Af-
terward, we will prove that this extended language is computationally sound
and complete for V-invariant computable queries on trajectory (sample) da-
tabases.

Definition 16 A program in FO(Before, minSpeed, S̃)+while is a finite se-
quence of assignment statements and while-loops :

(1) An assignment statement is of the form

R̃ := {(a1, . . . , ak, p1, . . . , pl, v1, . . . , vm) |

ϕ (a1, . . . , ak, p1, . . . , pl, v1, . . . , vm)};

where R̃ is a relation variable of arity k in the label variables, arity l in
the time-space point variables and arity m in the speed variables, and ϕ
is a formula in the language FO(Before, minSpeed, S̃) extended with the
relation labels that were previously introduced in the program.

(2) A while-loop
while ϕ do P ;

consists of a sentence ϕ in FO(Before, minSpeed, S̃) extended with pre-
viously introduced relation names and a FO(Before, minSpeed, S̃)+while-
program P .

(3) One relation variable is designated as an output relation R̃out. The pro-
gram ends once that particular relation variable has been assigned a
value. 2

The semantics of FO(Before, minSpeed, S̃)+while should be clear and is like
that of FO(+,×, <, 0, 1, S)+while. A program defines a query on a trajectory
(sample) database. Indeed, given an input relation, as soon as a value is as-
signed to the relation R̃out, the program halts and returns an output; or the
program might loop forever on that input. Thus, a program defines a partial
function from input to output relations. We remark that the output relation
is computable from the input.

Once we have fixed a data model for trajectories or trajectory samples (see
Section 2) and concrete data structures to implement the data model, we say
that a partial function on trajectory (sample) databases is computable, if there
exists a Turing machine that computes the function, given the particular data
encoding and data structures (see [15] for details).

32

Theorem 5 FO(Before, minSpeed, S̃)+while is sound and complete for the com-
putable V-invariant queries on trajectory (sample) databases. 2

Proof 9 (of Theorem 5) We need to prove that that every trajectory (sam-
ple) transformation or boolean trajectory (sample) query is expressible in
FO(Before,minSpeed,S̃)+while. To do this, we assume again that the label val-
ues are natural numbers. We consider again an instance S̃(a, p) to be given
as S (a, t, x, y) as before, i.e., as a quantifier-free formula in FO(+,×, <, 0, 1).
We now present the algorithm to encode an input relation S (a, t, x, y) in the
language FO(Before, minSpeed, S̃)+while.

To do this, we need the predicate Plus(e0, e2, e3, a, b, c) that expresses that,
relative to the computation plane (e0, e2, e3) (see the proof of Theorem 3 for
the notion of computation plane), c is the sum of a and b, where a, b and c are
collinear with e0e2, thus simulating addition. The predicate Times(e0, e2, e3,
a, b, c) that expresses that, relative to the computation plane (e0, e2, e3), c is
the product of a and b, where a, b and c are collinear with e0e2, simulating
multiplication. The predicate Less(e0, e2, e3, a, b) expresses that, relative to
the computation plane (e0, e2, e3), a encodes a number that is smaller than
the number encoded by b. All these predicates can be formulated using only
the predicate Between2(see, e.g., [10]).

Again relation variables T̃ and F̃ are introduced. Terms are encoded in T̃
and formulas in F̃ . The arity of T̃ is 10 and points in T̃ are of the form
(e0, e1, e2, e3, m, pa, pt, px, py, v), where m is a time-space point denoting a nat-
ural number that encodes a formula in the variables a, t, x and y. This formula
(term), when evaluated in pa, pt, px and py, outputs v.

The arity of F̃ is 9 and points in F̃ are of the form (e0, e1, e2, e3, m, pa, pt, px,
py), where m is a time-space point denoting a natural number that encodes a
formula in the variables a, t, x and y. This formula, when evaluated in pa, pt,
px and py, gives true.

In all the above tuples pt, px and py are collinear with e0 and e2 and pa is
collinear with e0 and e1.

Aside from this, we also need to define the notion of V-canonization and the
V-type of trajectory (sample) databases. As it has become clear from the previ-
ous proof, we can induce an order on the symbols used in FO(+,×, <, 0, 1, S)-
formulas and thus induce an order on the formulas themselves using the num-
bers that encode them.

Definition 17 The V-canonization of a trajectory (sample) database instance
D (of S), denoted by CanonV(D), is the trajectory (sample) database D′ that
is V-equivalent to D and is represented by a quantifier-free FO(+,×, <, 0, 1)-
formula ϕCanonV(D) that occurs first among all encodings of trajectory (sample)

33

databases that are V-equivalent to D.

The V-type of a trajectory (sample) database D, denoted by TypeV(D), is the
set

TypeV(D) = {g ∈ V | g(D) = CanonV(D)}.

2

We now present the encoding algorithm.

m := 0, T̃ := ∅, F̃ := ∅, Found:=False
while ¬Found do

m := m+ 1
if m encodes a then

T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py, pa) | pa ∈ e0e1 and pt, px, py ∈ e0e2}
else if m encodes t then

T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py, pt) | pa ∈ e0e1 and pt, px, py ∈ e0e2}
else if m encodes x then

T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py, px) | pa ∈ e0e1 and pt, px, py ∈ e0e2}
else if m encodes y then

T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py, py) | pa ∈ e0e1 and pt, px, py ∈ e0e2}
else if m encodes 0 then

T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py, e0) | pa ∈ e0e1 and pt, px, py ∈ e0e2}
else if m encodes 1 then

T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py, e2) | pa ∈ e0e1 and pt, px, py ∈ e0e2}
else if m encodes (s+ t) then

T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py, pe) | T̃ (e0, e1, e2, e3, enc(s), pa, pt, px,

py, pc) ∧ T̃ (e0, e1, e2, e3, enc(t), pa, pt, px, py, pd) ∧ Plus(e0, e2, e3, pc, pd, pe)}
else if m encodes (s× t) then

T̃ := T̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py, pe) | T̃ (e0, e1, e2, e3, enc(s), pa, pt, px,

py, pc)∧ T̃ (e0, e1, e2, e3, enc(t), pa, pt, px, py, pd)∧Times(e0, e2, e3, pc, pd, pe)}
else if m encodes (s ≤ t) then

F̃ := F̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py) | (∃pc)(∃pd)(T̃ (e0, e1, e2, e3, enc(s),
pa, pt, px, py, pc)∧T̃ (e0, e1, e2, e3, enc(t), pa, pt, px, py, pd)∧Less(e0, e2, e3, pc, pd)}

else if m encodes (s = t) then

F̃ := F̃ ∪ {(e0, e1, e2, e3,m, pa, pt, px, py) | (∃pc)(∃pd)(T̃ (e0, e1, e2, e3, enc(s),
pa, pt, px, py, pc) ∧ T̃ (e0, e1, e2, e3, enc(t), pa, pt, px, py, pd) ∧ (pc = pd)}

else if m encodes (¬ϕ) then

F̃ := F̃∪{(e0, e1, e2, e3,m, pa, pt, px, py) | ¬F̃ (e0, e1, e2, e3, enc(ϕ), pa, pt, px, py)}
else if m encodes (ϕ ∨ ψ) then

F̃ := F̃∪{(e0, e1, e2, e3,m, pa, pt, px, py) | F̃ (e0, e1, e2, e3, enc(ϕ), pa, pt, px, py)∨
F̃ (e0, e1, e2, e3, enc(ψ), pa, pt, px, py)}

end if

Found:= m encodes the formula CanonV(S)
end while

nCanonV(S) := m

TypeV := {g ∈ V | g(S) = CanonV(S)}

34

As shown in [10],“m encodes the formula CanonV(S)” can easily be checked
since CanonV(S) can be computed because V is a semi-algebraic transforma-
tion group. The following formula in one free variable, the variable m which
is the encoding of a formula, demonstrates how this can be done:

∀u0∀u1∀u2∀u3∃a00∃a11∃a12∃a21∃a22∃b0∃b1∃b2(CoSys(u0, u1, u2, u3) ∧

a00 > 0 ∧ a00a00 = (a11a22 − a12a21)(a11a22 − a12a21) ∧

∀pa∀pt′∀px′∀py′(F̃ (u0, u1, u2, u3, m, pa, pt′ , px′, py′) ⇔

∃p∃pt∃px∃py(S̃(pa, p) ∧ Coordinates(u0, u1, u2, u3, p, pt, px, py) ∧

pt′ = a00pt + b0 ∧ px′ = a11px + a12py + b1 ∧ py′ = a21px + a22py + b2))).

We note that all variables are time-space points. For the sake of clarity note
that the predicates, denoting that some time-space points play the role of
a real number, have been omitted here. We have also used abbreviations for
addition, multiplication and substraction. The above formula states that given
a natural number m, then for all coordinate systems the following needs to be
true: all points (pa, p

′) for which the formula encoded by m gives true, are the
image of a point (pa, p) under a transformation in V and (pa, p) is such that
S̃(pa, p) is true. And vice versa. This transformation maps (t, x, y) to

a00 0 0

0 a11 a12

0 a21 a22

t

x

y

+

b0

b1

b2

,

where a00, a11, a12, a21, a22, b0, b1, b2 are constrained as in the formula above,
clearly making this transformation belong to V.

Also mentioned in [10], TypeV can be computed by using a similar formula
but without the quantification of the variables used to parameterize the trans-
formation and coordinate system, i.e. without ∃a00∃a11∃a12∃a21∃a22∃b0∃b1∃b2.
This concludes the encoding step.

The computation step can be carried out as outlined in the proof of Theorem 4.
Since the predicate Between2 implicitly belongs to FO(Before, minSpeed, S̃),
we can simulate all operations on natural numbers in that language extended
with a while-loop, which means we can simulate a counter program. [dat ∗VRAAG∗
moet toch "extended met while loop" zijn, nietwaar?]

More specifically, there exists, for each query Q a counter program MQ, such
that for each database D on which Q is defined MQ(nCanonV (D)) is the en-
coding (a time-space point encoding a natural number) of a quantifier-free

35

formula representing Q(CanonV(D)). If Q is not defined on D then MQ does
not halt. Furthermore, since we have full computational power over the nat-
ural numbers in FO(Before,minSpeed,S̃)+while, MQ can be simulated in this
programming language. This concludes the computation step.

Decoding requires a bit more work, since we wish to output Q(D) and not
Q(CanonV(D)). Here is where we need TypeV(D) which was computed dur-
ing the encoding step. Since Q is a V-invariant query, we have, for all g ∈
TypeV(D) that Q(CanonV(D)) = Q(g(D)) = g(Q(D)). The decoding can
effectively be done by again slightly modifying the encoding algorithm. The
stop condition for the while loop becomes Found := m = MQ(nCanonV (D)).
On exiting the while loop we output the set F (e0, e1, e2, e3, MQ(nCanonV (D)),
a, pt, px, py).

After exiting the while loop we execute one more statement, namely the com-
putation of Q(D). The latter is a set which contains all points (a, p), where
a is a label and p a time-space point, for which there exists a transformation
g ∈ TypeV(D) such that g(p) has coordinates (encoded in time-space points on
the line e0e2) g(p)t, g(p)x and g(p)y for which F (e0, e1, e2, e3, MQ(nCanonV (D)),
a, g(p)t, g(p)x, g(p)y) is true. This can effectively be written in a FO(Before,
minSpeed,S̃)+while-expression as shown in [10] and sketched here:

∀u0∀u1∀u2∀u3∃a00∃a11∃a12∃a21∃a22∃b0∃b1∃b2(CoSys(u0, u1, u2, u3) ∧

φTypeV(D)(a00, a11, a12, a21, a22, b0, b1, b2) ∧

∀pt′∀px′∀py′(F̃ (u0, u1, u2, u3, MQ(nCanonV (D)), pa, pt′, px′, py′)

∧ ∃pt∃px∃pyCoordinates(u0, u1, u2, u3, p, pt, px, py) ∧

pt′ = a00pt + b0 ∧ px′ = a11px + a12py + b1 ∧ py′ = a21px + a22py + b2))

where φTypeV(D)(a00, a11, a12, a21, a22, b0, b1, b2) is a formula that expresses that
the transformation described above and parameterized by (a00, a11, a12, a21,
a22, b0, b1, b2) is part of TypeV(D).

The wanted FO(Before,minSpeed,S̃)+while program consists of successively ex-
ecuting

Encode; Compute; Decode;

This concludes the proof. 2

6 Concluding remarks

We have given a data model for trajectory data and an efficient way of model-
ing uncertainty via beads. We have studied transformations for which impor-

36

tant physical properties of trajectories, such as speed and beads, are invari-
ant. Finally, we have given first-order complete and computationally complete
query languages for queries invariant under these transformations.

The results discussed in this paper concern movement in the unrestricted two-
dimensional space. In particular beads are defined for free movement in R2.
For practical purposes, this is unrealistic however. In applications of trajec-
tory data, such as traffic management, movement is typically restricted to road
networks. Currently, we are working on understanding properties of beads on
road networks [13]. But the study of speed- and bead-preserving transforma-
tions on road networks and of query languages to express queries invariant
under such transformations is still an unexplored field.

Acknowledgments. This research has been partially funded by the European
Union under the FP6-IST-FET programme, Project n. FP6-14915, GeoP-
KDD: Geographic Privacy-Aware Knowledege Discovery and Delivery, and
by the Research Foundation Flanders (FWO-Vlaanderen), Research Project
G.0344.05.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.

[2] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic.
Journal of Logic and Computation, 4(5):531–579, 1994.

[3] M. Egenhofer. Approximation of geopatial lifelines. In SpadaGIS, Workshop on
Spatial Data and Geographic Information Systsems, 2003. Electr. proceedings,
4p.

[4] F. Geerts, S. Haesevoets, and B. Kuijpers. A theory of spatio-temporal database
queries. In Database Programming Languages (DBPL’01), volume 2397 of
Lecture Notes in Computer Science, pages 198–212. Springer, 2002.

[5] F. Geerts, S. Haesevoets, and B. Kuijpers. A theory of spatio-temporal database
queries. ACM Transactions on Computational Logic, 2008. To appear; see also
http://arxiv.org/abs/cs.DB/0503012.

[6] F. Geerts and B. Kuijpers. Linear approximation of planar spatial databases
using transitive-closure logic. In Proceedings of the 19th ACM SIGACT-
SIGART-SIGMOD Symposium on Principles of Database Systems (PODS’00),
pages 126–135. ACM Press, 2000.

[7] F. Geerts, B. Kuijpers, and J. Van den Bussche. Linearization and completeness
results for terminating transitive closure queries on spatial databases. SIAM
Journal on Computing, 35(6):1386–1439, 2006.

37

[8] Floris Geerts. Moving objects and their equations of motion. In Constraint
Databases (CDB’04), volume 3074 of Lecture Notes in Computer Science, pages
41–52. Springer, 2004.

[9] R. Güting and M. Schneider. Moving Object Databases. Morgan Kaufmann,
2005.

[10] M. Gyssens, J. Van den Bussche, and D. Van Gucht. Complete geometric query
languages. Journal of Computer and System Sciences, 58(3):483–511, 1999.

[11] T. Hägerstrand. What about people in regional science? Papers of the Regional
Science Association, 24:7–21, 1970.

[12] K. Hornsby and M. Egenhofer. Modeling moving objects over multiple
granularities. Annals of Mathematics and Artificial Intelligence, 36(1–2):177–
194, 2002.

[13] B. Kuijpers and W. Othman. Modeling uncertainty of moving objects on road
networks via beads. 2007. Manuscript.

[14] B. Kuijpers and W. Othman. Trajectory databases: Data models, uncertainty
and complete query languages. In Proceedings of the 11th International
Conference on Database Theory (ICDT’07), volume 4353 of Lecture Notes in
Computer Science, pages 224–238, 2007.

[15] J. Paredaens, G. Kuper, and L. Libkin, editors. Constraint databases. Springer-
Verlag, 2000.

[16] D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object
representations. In Advances in Spatial Databases (SSD’99), volume ???? of
Lecture Notes in Computer Science, pages 111–132, 1999.

[17] A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux. Handbook of First Order
Partial Differential Equations. Taylor & Francis, 2002.

[18] P. Revesz. Introduction to Constraint Databases. Springer-Verlag, 2002.

[19] W. Schwabhäuser, W. Szmielew, and A. Tarski. Metamathematische Methoden
in der Geometrie. Springer-Verlag, 1983.

[20] J. Su, H. Xu, and O. Ibarra. Moving objects: Logical relationships and queries.
In Advances in Spatial and Temporal Databases (SSTD’01), volume 2121 of
Lecture Notes in Computer Science, pages 3–19. Springer, 2001.

[21] O. Wolfson. Moving objects information management: The database challenge.
In Proceedings of the 5th Intl. Workshop NGITS, pages 75–89. Springer, 2002.

38

