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In a microarray experiment, intensity measurements tend to vary due to various systematic

and random effects, which enter at the different stages of the measurement process. Common

test statistics do not take these effects into account. An alternative is to use, e.g., ANOVA

models. In many cases, we can, however, not make the assumption of normally distributed

error terms. Purdom and Holmes [8] have concluded that the distribution of microarray inten-

sity measurements can often be better approximated by a Laplace distribution. In this paper,

we consider analysis of microarray data by using ANOVA models under the assumption of

Laplace-distributed error terms. We explain the methodology and discuss problems related

to fitting of this type of models. In addition to evaluating the models using several real-life

microarray experiments, we conduct a simulation study to investigate different aspects of the

models in detail. We find that, while the normal model is less sensitive to model misspec-

ifications, the Laplace model has more power when the data are truly Laplace distributed.

However, in the latter situation, neither of the models is able to control the FDR at the

pre-specified significance level. This problem is most likely related to sample size issues.
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study.

1. Introduction

Microarrays have been around since the early nineties of the XXth century. Though

the technology has evolved quite a bit since then, some of the problems, inherent

to a microarray experiment, are still present. Typically, such an experiment leads

to vast amounts of data needing to be analyzed. Unfortunately, the data available

per gene are generally limited, because, due to the high cost of a single slide,

the number of arrays available to a researcher tends to be small. In addition, the

technology itself is not without problems. Various stages of the experiment are

vulnerable to inclusion of systematic variability, originating from sources other

than the difference between the samples. Due to the complex design of a typical

microarray experiment, more sophisticated statistical methods might be required

for the normalization and analysis of the data.

Microarrays data are often analyzed by using non-parametric methods [13], em-

pirical Bayes methods like, e.g., LIMMA [10], permutations-based methods like,

e.g., SAM [12], or by ANOVA models [6]. In this paper, we focus on the latter.

Parametric models are in general more powerful than non-parametric techniques.

They offer more insight into the data and are less computationally intensive com-

pared to resampling methods. An ANOVA model can take into account several of

the systematic sources of variability present in microarray data. The error terms

of the model are assumed to be independent and identically distributed. The as-

sumption that they follow the normal distribution is, however, most of the time

not fulfilled. Purdom and Holmes [8] indicate that the distribution of the residuals

often tends to be heavy-tailed and/or to exhibit skewness of varying degrees.

Instead of relying on the normality assumption, a possible solution is to turn to
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bootstrap techniques [4, 6]. This is practical when dealing with a moderate number

of genes, but it becomes computationally intensive and time consuming for many

current microarrays, which contain tens of thousands of genes.

Another possible approach is to find a distribution that approximates better

that of microarray data. Purdom and Holmes [8] proposed to use the (asymmetric)

Laplace distribution. They found it to fit microarray data often better than the

normal distribution. The Laplace distribution is more peaked in the center and

more heavy-tailed, as compared to the normal. However, this approach is also not

without problems.

In this paper, we evaluate the use of ANOVA models with a Laplace distributed

error term to analyze microarray data. The models are fitted by using procedure

NLMIXED of SAS 9.1.3 with the quasi-Newton optimization algorithm. An exam-

ple of the code that was used is given in Appendix 1. We discuss a number of issues

related to the use of this type of models. The focus of the paper is concentrated on

cDNA microarrays; however, the technique can be considered for other platforms

as well, provided that the distributional assumption is fulfilled.

The paper is organized as follows. Section 2 contains details about the Laplace

distribution. In Section 3, we shortly describe the methodology involved in fitting

the Laplace model. Section 4 contains examples of the method applied to real-

life microarray case studies, while Section 5 describes a simulation study. A short

discussion is presented in Section 6.

2. Properties of the Laplace distribution

The symmetric Laplace distribution, also known as the double exponential distribu-

tion or the first law of Laplace, is commonly denoted by L(θ, σ), where θ ∈ (−∞,∞)

is the location parameter and σ > 0 is the scale parameter. The density function
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is given by

f(x) =
1√
2σ

exp

(

−
√

2 |x − θ|
σ

)

. (1)

In the literature, several parameterizations are used to describe the Laplace distri-

bution. Using the notation in (1), the mean of the Laplace distribution is equal to

θ and the variance is equal to σ2.

The distribution can be generalized to the asymmetric case, AL(θ, µ, σ), by the

inclusion of a skewness parameter µ [8]. Note that AL(θ, 0, σ) is equivalent to

L(θ, σ).

Furthermore, the distribution can be standardized with respect to the location

and scale parameters as follows:

X ∼ AL (θ, µ, σ) , (2)

X − θ

σ
∼ AL

(

0,
µ

σ
, 1
)

. (3)

However, standardization with respect to the skewness parameter µ is not possible.

The log-likelihood function LL(θ, σ) for a sample of n independent, identical ran-

dom variables distributed according to the symmetric Laplace distribution, given

in (1), is

n
∑

i=1

{

− log(
√

2σ2) −
√

2 |xi − θ|
σ

}

. (4)

The maximum likelihood estimators, obtained from the log-likelihood (4), are pre-

sented in Purdom and Holmes [8].

The estimation of the variance-covariance matrix of the maximum likelihood

estimates is usually based on the inverse of the observed Hessian matrix. The

latter contains the second-order partial derivatives of the log-likelihood function.

However, the matrix is not positive definite when based on the log-likelihood defined
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in (4), as its determinant is always negative. The inverse of the negative Hessian

matrix is, therefore, also not positive definite. Thus, it does not produce valid

estimates of the variance-covariance matrix.

3. Methodology

The process of removing systematic effects from microarray data consists of several

steps. The first one usually involves applying a transformation g(.) to the intensity

measurements. Microarray data are commonly analyzed on a logarithmic scale.

However, other transformations might be necessary to eliminate non-linear effects

that can exist on the log-scale [2, 16]. Many of the remaining sources of variation

can be taken into account by using an ANOVA model, as proposed by Kerr et al.

[6]. An example of such a model is given as follows:

g(Yijksgm) = µ + Ai + Dj + Tk + Gg + L + LDj

+AGig + DGjg + TGkg + SGisg + LGg + LDGjg + εijksgm,

(5)

where Yijksgm are the signal intensity measures, µ is the overall mean, Ai, Dj , and

Gg represent the effect of the ith array (i = 1, 2, ..., ni), the jth dye (j = 1, 2), and

gene g (g = 1, 2, ... G), respectively. Tk stands for the overall effect of treatment or

group k (k = 1, ..., K), L represents the linear effect of the laser power used to scan

the arrays [16], while LDj stands for the interaction term between the laser power

and dye. Terms AGjg, DGjg, TGkg, LGg, and LDGjg represent, respectively, the

gene-specific array, dye, treatment, laser power, and laser power∗dye interaction

effects, while SGisg stands for the gene-specific spot effect nested within an array.

The error terms εijksgm are assumed to be independent and identically distributed

with mean zero.

Due to the large number of parameters, it is practically impossible to fit the

model in one step. Instead, the model is split up into two stages [17]. The first
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stage consists of a normalization model:

g(Yijksgm) = µ + Ai + Dj + Tk + L + LDj + ξijksgm. (6)

All the effects shared by the genes are thus removed from the data. The estimated

residuals of this model, denoted by Rijksgm, are used for the second stage, the gene-

specific model. In this stage, the following model is fit for each gene separately:

Rijksgm = η + Ai + Dj + Tk + Sis + L + LDj + εijksgm. (7)

Whether the normalization and gene-specific model, presented in (6) and (7),

respectively, represent the classic ANOVA model for normally distributed data

(Normal model) or an ANOVA model for Laplace distributed data (Laplace model),

depends on the assumption made concerning the distribution of the error terms.

The latter is obtained when the model is fit under the condition that ξijksgm and

εijksgm are independent and identically Laplace distributed. The corresponding

log-likelihood function is then defined in (4), where µ = 0 and θ is a linear function

of the parameters involved in (6) and (7).

3.1 Hypothesis testing

As the estimation of variances of parameters is not straightforward for the ANOVA

model with the Laplace distribution, hypothesis tests, based on model (7), are

performed by means of likelihood ratio tests. The latter does not make use of the

estimates of the variance-covariance matrix. The tests are conducted for every gene

separately. To maintain an overall significance level of 5%, a multiplicity adjustment

is required. We will consider the Benjamini-Hochberg procedure (BH, [1]) to control

the false discovery rate (FDR).
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4. Case studies

For illustration purposes, we use microarray data from case studies designed to

investigate the effect of certain vegetable diets on gene-expression in colon and

lung tissue of mice. Two different types of experiments were performed: a dose-

response study and a treatment-control study. Both were conducted using colon

tissue and repeated for lung tissue. This leads to four microarray datasets in total.

4.1 Dose-response study

The dose-response vegetable study was designed to investigate the dose effect of a

mixture of four vegetables on the gene expression in colon and lung tissue of mice

[14, 15]. Four groups of mice were formed, each receiving a different diet with either

0% (control group), 10%, 20%, or 40% of the vegetable mix. For each dose group,

three samples consisting of equal amounts of total RNA pooled from two-three

mice were available. The use of different pools assured the presence of biological

variability in the data. To each of the three sets of pooled samples, a loop design

with four cDNA microarrays was applied (0%→10%→20%→40%→0%, where each

arrow indicates a microarray, with the head indicating the sample labeled by the

red dye and the tail indicating the sample labeled with the green dye). In total,

12 arrays were used, each containing 602 genes that were spotted three times on

every slide.

4.2 Treatment-control study

The vegetables, present in the mix used for the dose-response study (see Sec-

tion 4.1), were investigated separately in a second vegetable study [14, 15]. Diets

of cauliflower (T1), carrots (T2), peas (T3), and onions (T4) were compared with

a control diet (R) that contained no vegetables. Three samples of genetic material,
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pooled from two or three mice, were available for the control group and for the four

treatment groups. Using each of the three sets of pooled samples, the four treat-

ment groups were compared to the control group by applying a reference design.

This led to 12 arrays. For each of them, dye-swap was performed, which doubles

the number of arrays. Thus, in both studies, 24 arrays were used in total, each

containing 602 genes, spotted three times on every slide.

4.3 Analysis of the vegetable studies

The ANOVA model, presented in equation (6), was applied to the intensity values,

where g(.) represents the background-dependent transformation [16]. For some of

the case studies, the null-hypothesis that a particular effect of model (6) was equal

to zero, could not be rejected. This is the case for (LD)j for the dose-response

experiment in colon tissue, for Tk for the treatment-control experiment in colon

tissue, and for L and (LD)j for the dose-response lung study. Those effects were

removed from the model. Subsequently, for each gene we fit the gene-specific model,

presented in equation (7), to the estimated residuals of normalization model (6).

In (6) and (7), ξijksgm and εijksgm are both assumed to be either normally- or

Laplace distributed with mean zero and a gene-specific variance σ2
g . The model

thus intrinsically allows for between-gene heterogeneity. The symmetric Laplace is

used in stead of the asymmetric Laplace distribution, as the distribution of the

data appears to be symmetric in most cases (Figure 1). Under the assumption of

normality, the model can be fit using two different methods: maximum likelihood

estimation (ML) and restricted maximum likelihood estimation (REML). Both are

applied to the datasets.

FIGURE 1

Figure 1 displays QQ-plots for the standardized residuals of the normal REML
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and the Laplace model. The normal ML model leads to a very similar picture as the

REML model (figures not shown). All QQ-plots contain a reference line obtained

by a least squares regression. The distribution of the residuals deviates considerably

from the normal distribution in the tails. For the dose-response studies in colon and

lung, and for the treatment-control colon vegetable study, the Laplace distribution

approximates the true distribution of the residuals more closely. This is consistent

with the findings of Purdom and Holmes [8]. There are minor discrepancies in the

center of the plots, as the data seem to be even more peaked than the Laplace

distribution. However, the proportion of genes for which a deviation is seen in the

tails, is much smaller as compared to the normal distribution. For the treatment-

control lung study, deviations from the reference line are also visible for the Laplace

distribution. The QQ-plots show that both the normality and Laplace assumption

are not very appropriate for that dataset. We therefore delete it from the analysis.

The ANOVA models can be used for hypothesis testing. For the dose-response

studies, the null hypothesis of interest states that there is no dose effect on gene ex-

pression. For the treatment-control studies, we test the hypothesis that none of the

vegetables have an effect on the expression levels of the genes. These gene-specific

hypothesis tests can be performed by the likelihood ratio or F-tests. Likelihood ra-

tio tests are only valid under the maximum likelihood estimation, while the F-test

can also be performed under the restricted maximum likelihood estimation. The

tests are carried out at the 5% overall significance level; the BH method is used to

correct for multiple testing. The results of the hypothesis tests based on the models

fitted under the normality or Laplace assumption are presented in Table 1.

TABLE 1

In general, we would expect only a small number of genes from the entire genome

to respond to the treatment. However, the experiments in the vegetable studies were
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performed on a specific subset of approximately 600 genes. The genes represented

a selection of biologically relevant gene sequences involved in inflammation, DNA

damage and repair, oxidative stress, cell signaling, cell proliferation, metabolism,

transcription, and apoptosis. It is therefore quite difficult to make any prediction

about the number of genes from this subset that should be found to have significant

results. We do see that more genes are found to be differentially expressed using the

maximum likelihood under the normality assumption compared to the restricted

maximum likelihood estimation. A similar trend can be seen for the LR-test as

compared to the F-test. When evaluating the model fitted by ML under the nor-

mality and Laplace assumptions, the LR-test seems to lead to somewhat different

results. For instance, for the dose-response colon study, 30 genes (413 minus 383

genes) are found to be differentially expressed when assuming normality in stead of

a Laplace distribution, while the reverse is true for 70 genes (453 minus 383 genes).

It is therefore important to base the conclusions on the proper model. For the case

studies, the Laplace distribution fits better to the data. Thus, it seem that the list

of genes declared significant by the model under the Laplace assumption, is more

appropriate.

Examining the individual profiles of a number of the genes found to be significant

by the Laplace model and not by the normal, and vice versa (data not shown),

did not reveal a possible cause for the difference in conclusions, nor did it reveal

these genes to be outliers in any way. However, before drawing any conclu-

sions, the Laplace model needs to be examined further to find out, for

instance, why the LR-test based on the Laplace model always leads to

more rejections of the null hypothesis as compared to the normal model.

A similar trend is visible for the LR-test compared to the F-test under

the normality assumption.
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FIGURE 2

Figure 2 shows the distribution of the different test statistics, for which results

are presented in Table 1. The plots support the statements drawn based on Table 1.

For instance, under the Laplace model, the distribution of the LR-test statistic is

shifted slightly toward the larger values, as compared to the one obtained under the

Normal model. This results in a larger number of positive findings for the former

model. We do not know, however, whether these positive findings are

true positives or false positives. To study these issues and other aspects of the

model under controlled settings, we performed a simulation study.

5. Simulation study

In the previous section, we have applied an ANOVA model under the Laplace

assumption to real-life microarray data. In this section, we describe a simulation

study, conducted to investigate how the Laplace assumption affects the point esti-

mated of the model parameters, and the distribution of the test statistics. We use

a variation of the simulation model presented by Van Sanden et al. [16].

5.1 Data simulation

We assume the setting of an experiment corresponding to the real-life experiments

presented in the previous section, using two-channel cDNA microarrays and a dye-

swap design. Two classes of samples (a treatment and a control group, say) are

compared. For every setting of interest, 100 simulation datasets are created, each

containing 50 arrays. On each array we simulate 600 genes, spotted three times.

The arrays contain 100 genes that are differentially expressed. A linear mixed

effects model is utilized to simulate observations subject to various systematic and

random effects usually present in real microarray experiments [6, 17].
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An observation Yijgk, assumed to be the signal intensity for array i (i = 1, . . . , 50),

dye j (j = 1, 2) and gene g (g = 1, . . . , 600), is generated by the following model:

log2(Yijgk) = µ + Ai + Dj + Gg + TGg + εijgk, (8)

where µ is the overall mean, Ai stands for the array effect, Dj for the dye effect and

Gg for the gene effect. Term TGg represents the gene specific treatment effect, while

εijgk is a random error. Some of these effects are fixed: µ = 9, Dj = 1 × I(j = 1),

and TGg = T × I(g ≤ 100, i = odd, j = 1), where I(X) is an indicator function,

equal to one if X is true, and zero otherwise.

Other effects are random and drawn from a normal or symmetric Laplace distri-

bution. The array and gene effects Ai and Gg are distributed according to distri-

butions F1(0, 0.25) and F1(0, σ2
G), respectively, while the error term εijgk follows

distribution F2(0, σ2), where F1 and F2 are assumed to be either the normal or

symmetric Laplace distribution. The chosen values for the parameters of the sim-

ulation model are based on the estimated parameters of an ANOVA-model fitted

to the vegetable studies (see Section 4).

The five settings considered with regard to the size of the treatment effect and

variance components (σ2
G, T , σ2) are defined as follows: S1=(5, 0, 0.14), S2=(0.14,

0, 5), S3=(5, 0, 5), S4=(5, 0.2, 0.14), S5=(5, 0.1, 0.14). In what follows, the data

will be referred to as N when they are normally distributed (F1, F2 are both normal

distributions), L when they are Laplace distributed (F1, F2 are both Laplace), NL

when F1 is a normal distribution and F2 is a Laplace distribution, and LN when

F1 is a Laplace distribution and F2 is normal.
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5.2 Analysis of the simulated datasets

The simulated data are analyzed by the two-stage fixed effects ANOVA model

introduced in Section 3. For each of the 100 datasets of every simulation setting, the

following normalization and gene-specific model are fit to the simulated intensity

measures:

log2(Yijkm) = µ + Ai + Dj + ξijkm, (9)

R
g
ijkm = ηg + T

g
k + ε

g
ijkm, (10)

where ξijkm and εijkm are assumed to be either normally or Laplace distributed

with mean zero and variances σ2
1 and σ2

2g, respectively. Note that ηg, T
g
k , and σ2

2g

contain a gene-specific index g, as model (10) is fit for every gene separately. Only

the results for the normal and Laplace distributed data (N and L) are included.

The results of the NL and LN datasets are not shown, but are briefly discussed.

5.2.1 Estimation of the model parameters

Using the SAS NLMIXED procedure, we obtain the estimates for the model pa-

rameters. Each dataset consists of 50 arrays. We therefore have 49 estimated array

effects (the estimate of the remaining array is always put equal to 0, and is thus

contained in the intercept). For every dataset, we first take the average of the 50

array effects. Similarly, we also average over all 600 gene-specific model parame-

ters. They are then summarized, together with the other parameter estimates, by

the mean value and standard deviation over all simulations datasets. For illustra-

tion purposes, some of the parameter estimates for two particular settings, S1 and

S2, are displayed in Table 2. In setting S1, the variance of the gene-effect is large

compared to that of the error term, while the reverse is true for setting S2.

In Table 2, Var[Ai] stands for the variance of the parameter estimates for Ai
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over all arrays. Every array has 600 different genes spotted on it; η and σ2
2 are the

mean values of ηg and σ2
2g, respectively, over the 600 genes. The estimate for the

variance of η is denoted by Var[η].

TABLE 2

For most of the estimated parameters, the mean values correspond closely to the

values used in the simulation model. Some deviations are noticeable between the

normal and Laplace model. For instance, the normal model seems to underestimate

the value of σ2
1 when the distribution of the random effects, F1, is Laplace. The

Laplace model, on the other hand, overestimates the value when F1 is normal. For

setting S2, where the residual variance is relatively large, the performance of the

normal model is good, and thus less sensitive to the model misspecification. The

Laplace model, on the other hand, remains sensitive to the model misspecification,

but performs reasonably well when the error distribution, F2, is Laplace.

5.2.2 Hypothesis tests

For the differentially expressed genes, a treatment effect (T g
k 6= 0) is incorporated

in the intensity measures of the treatment group. When we test the null hypotheses

of no treatment effect (H0 : T
g
k = 0) based on the gene-specific models, we should

only reject the hypothesis for the models corresponding to the 100 differentially

expressed genes. The tests are performed at the overall 5% significance level. As

the hypothesis is tested for all 600 genes, we have to correct the obtained p-values

for multiple testing. The BH procedures is considered to control the FDR, which

can be estimated based on the 100 simulated datasets.

The results of these calculations for settings S1-S5 are displayed in Table 3.

Even with the BH procedure, we do not always obtain an FDR smaller than or

equal to 0.05. For the model fit under the Laplace assumption, the FDR is not
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controlled. When the Laplace model is applied to normally distributed data, the

FDR is generally over 50%. For Laplace distributed data, the FDR is still generally

over 10%. On the other hand, when the normal model is applied to the Laplace

distributed data, the FDR is also not controlled and, in most cases, even larger

than that for the Laplace model. When the total variability of the data increases

(setting S3), so does the FDR, even for the normal model.

For settings S4-S5, for which a treatment effect is simulated, the deviations from

0.05 are less severe as compared to settings S1-S3. This is because the FDR measure

takes the ratio of false discoveries into account, relative to the total number of

discoveries. The FDR for the normal model applied to Laplace distributed data is

again similar or higher as compared to the Laplace model.

The lack of control we observe for the FDR under several conditions can be a

result of a deviation of the distribution of the LR-test statistic from the chi-squared

distribution. As the test statistic is only asymptotically chi-squared distributed, the

cause of the deviation could be related to the sample size of the experiment. We

investigate this issue in Section 5.3.

TABLE 3

The power for a particular setting, for which differentially expressed genes exist,

can be estimated by taking the average power over the 100 simulated datasets.

The results for the power calculations are displayed in Table 3. In setting S5, the

treatment effect is relatively small compared to the variance in the data. Hence,

it becomes more difficult to pick up the truly differentially-expressed genes, which

results in a low power. While the power estimates for the normal model remain

reasonably stable over the different data distributions, the Laplace model clearly

has more power to detect the differentially expressed genes under the proper dis-

tributional assumption.
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5.3 Distribution of the LR-test

To investigate the distribution of the LR-test and its sensitivity to sample size for

the model fit under the Laplace distribution, we conducted a small and straightfor-

ward simulation for group comparison under different distributional assumptions.

Measurements for various sample sizes were both simulated and analyzed by the

following model:

Yi = µ + εi, (11)

with εi ∼ N(0; 1) or L(0; 1), and µ = 2. Hence, there is no actual difference

created between the measurements of the two groups. Per sample size setting,

10,000 datasets were simulated using model (11). The results for the hypothesis

test of no difference between the two groups, performed for all the datasets, are

displayed in Table 4. This table contains the fraction of hypotheses that were

(falsely) rejected at the 5% significance level out of the 10,000 datasets. One would

expect about 500 datasets, for which the null hypothesis should be rejected. When

the sample size is small (10 per group), too many hypothesis are rejected.

TABLE 4

For both the normal and Laplace model, the Type I error converges approxi-

mately to the expected value when the sample size is large enough. However, for

the Laplace distribution, the convergence rate is slower. Therefore, the increased

FDR, seen in Table 3 for the model assuming Laplace-distributed error terms, seem

to be sample size related as only 50 arrays were simulated.

A second simulation study was set up to study the distribution of the LR-test

under circumstances closer to those encountered in the microarray experiments. We

repeat the simulation of setting S1 with a varying number of arrays and replicates.

However, to keep the computation time of the study feasible, we only simulate data
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for two genes. A separate model has to be fit for every gene. Therefore, the number

of genes has a significant influence on the computation time of the simulation study.

Moreover, we do not expect that the number of tests to be performed and taken

into account using the Benjamini-Hochberg procedure has a considerable influence

on the results and conclusions of the study.

For every sample size setting, we calculate the FDR based on the 100 simulated

datasets. The whole experiment is repeated 50 times and the average FDR and

standard deviation over the 50 repetitions are reported in Table 5.

TABLE 5

The normal model leads again to very stable results, as the FDR barely changes

with the increasing sample size. As the number of replicates on an array increase,

the FDR for the Laplace model, applied to Laplace distributed data, decreases to

even below 0.05. Using more arrays does, however, not have the same effect. The

FDR seems to remain almost constant as the number of arrays varies. This might

be explained by the following argument. When a gene is spotted several times on

an array, we have uncontaminated replicates of the measurements. If, on the other

hand, arrays are added to the experiment, the sample size becomes larger, but we

also increase the variability in the data and the number of model parameters that

have to be estimated. We suspect this to be the reason why we do not see any

benefit, with respect to controlling the FDR, of increasing the number of arrays.

FIGURE 3

Figure 3 displays the distribution of the LR-test statistic, corresponding to the

first part of Table 5. We do not present all the figures, as the results for the settings

with 30, 40, or 50 arrays are similar to the setting with 20 arrays.
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The distributions in Figure 3 illustrate the findings in Table 5. When both the

model and the distribution of the data are normal, the empirical and theoretical

(i.e., under the null hypothesis) distributions coincide. The FDR is therefore

controlled at 0.05%. If the normal model is applied to the Laplace distributed data,

the tail of the empirical distribution starts to fall below the tail of the theoretical

one when the number of replicates increases. Thus, the FDR decreases with the

increasing number of replicates. In the case of a Laplace model and Laplace dis-

tributed data, the tails of the empirical and theoretical distribution become close

to each other for 6 and 9 replicates, so only then the FDR is controlled. When ap-

plying the Laplace model to normally distributed data, however, we always observe

a thicker tail for the empirical distribution, so the FDR is not controlled.

Based on the results of the simulation studies, we can reevaluate the findings for

the case studies. As the sample sizes are small, 12 or 24 arrays with three replicates

per gene, we can expect an increase of the probability of the Type I error for the

hypothesis tests based on the Laplace model. Due to model misspecification, such

an increase is also expected for the normal model. When the distribution of the data

closely approximates the Laplace, as it is the case for the dose-response studies, the

Laplace model has more power compared to the normal. The increase of both the

probability of the Type I error and the power could be the cause of the high rate

of positive findings for the Laplace model. Based on the simulations, we cannot

unambiguously explain the difference seen between the F-test and the LR-test, as

such difference did not occur in the simulated data.

6. Discussion

It has been shown by Purdom and Holmes [8] that the Laplace distribution can

provide a better fit to microarray data as compared to the normal distribution.
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This appears to be also the case for the vegetable studies presented in this pa-

per. However, when trying to incorporate the Laplace distribution in an ANOVA

modeling approach, we encountered several problems.

Caution is needed when interpreting the hypothesis testing results of the Laplace

model. Using a simulation study, we showed that the distribution of the LR-test

statistic deviates from the chi-square for small sample sizes. The convergence rate

to this asymptotic distribution is slower compared to the test-statistics based on the

normal distribution. As a result, the Benjamini-Hochberg multiple testing proce-

dure does not control the FDR of the Laplace model at the pre-specified significance

level.

Small sample sizes are very common for microarray experiments. The problem is

therefore particularly relevant for this type of experiments. We can only conclude

that when the data are clearly Laplace distributed, the Laplace model is preferred

over the normal. In this situation, both models suffer from an increased FDR, but

the Laplace model has more power.

For the case studies at hand, the distribution of the error terms was fairly sym-

metric. Therefore, the symmetric Laplace distribution was favored over the asym-

metric distribution. The ANOVA model considered in this paper can also be applied

using the asymmetric Laplace distribution. There are, however, several issues re-

lated to the use of the latter distribution. For instance, it requires the estimation

of one extra parameter, the skewness. Moreover, assessing the fit of such a model is

not straightforward, as standardization of the Laplace distribution with respect to

the skewness parameter is not possible. Therefore, QQ-plots for the standardized

residuals, as those presented in Section 4, cannot be easily constructed.

In this paper, we focus on the use of the Laplace distribution in a gene-by-gene

analysis. In recent years, more emphasis has been put on methods that borrow
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information across genes [3, 9]. Such methods should also be incorporated into the

Laplace modeling approach.

The effects of model misspecification on the parameter estimates, the Type I

error, and the power were also examined by simulation data using model (8), where

the random effects were normally distributed and the error terms were Laplace

distributed, and vice versa (results not shown). The normal model seemed to be

less affected by to this type of model misspecification, as compared to the Laplace

model.

Microarray experiments lead to datasets, which can differ a lot in properties,

often depending on the technology used. The latter can be very diverse. Therefore,

we do not expect that the Laplace distribution will always be a perfect match to

data. The properties of every dataset have to be examined independently.
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Appendix 1: SAS code for the Laplace model

In the first step, the normalization model is fit to the data. Starting values can, for

instance, be obtained from a standard ANOVA model.

title ’Normalization model’;

proc nlmixed data=dataset tech=QUANEW;

parms /data=startval;

mu=b0+b1*treat1+b2*treat2+ ...;

ll=-log(sqrt(2)*sig)-(sqrt(2)/sig)*abs(logexpvalue-mu);

model logexpvalue~general(ll);

predict mu out=norm;

run;

From the results, the residuals of the normalization model can be calculated as

follows:

data norm;

set norm;

residual=logexpvalue-pred;

run;

In the next step, a gene-specific model is fit to every gene separately, once with

(full model) and onces without the treatment effects (reduced model). Using the

estimated log likelihood from the two models, a likelihood ratio test can then be

performed to test for a significant treatment effect.

title ’Full model’;

proc nlmixed data=norm_gene1 tech=QUANEW;

parms /data=startval;
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mu=b0+b1*treat1+b2*treat2+ ...;

ll=-log(sqrt(2)*sig)-(sqrt(2)/sig)*abs(residual-mu);

model residual~general(ll);

ods output FitStatistics=testsfull;

run;

title ’Reduced model’;

proc nlmixed data=norm_gene1 tech=QUANEW;

parms /data=startval;

mu=b0+ ...;

ll=-log(sqrt(2)*sig)-(sqrt(2)/sig)*abs(residual-mu);

model residual~general(ll);

ods output FitStatistics=testsreduced;

run;
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Figure legends

Figure 1: Standardized residuals of the two-stage ANOVA model, fitted under

the assumption of normally (resp. Laplace) distributed data, plotted versus

the quantiles of the normal (resp. Laplace) distribution, with a reference line

obtained by least squares regression.

Figure 2: Empirical and theoretical (i.e., under the null hypothesis) distribution

of the test statistics (first row: F-test Normal model under REML and under

ML; second row: LR-test Normal model and Laplace model) for the D-R, T-C

colon, and D-R lung study.

Figure 3: Empirical and theoretical (i.e., under the null hypothesis) distribution of

the LR-test statistic from the second simulation study described in Section 5.3

(setting S1; 20 arrays; 3, 6 or 9 replicates). Each figure is followed by a close-up

of the tails of the distributions.

Tables legends

Table 1: Number of genes, for which the null hypothesis is rejected (in parenthesis

the number of genes in common between the model fit under the normality and

Laplace assumption). To correct for multiple testing, the Benjamini-Hochberg

(BH) procedure is applied.

Table 2: The mean value (standard deviation ×10E03) of some of the estimated

model parameters and related values for the 100 simulated datasets from set-

tings S1 and S2. The models are fit under the assumption of normally dis-

tributed (Normal) and Laplace distributed (Laplace) errors, using the ML

estimation method.

Table 3: FDR and average power (standard deviation) for the different settings

of the simulation study. The models are fit under the assumption of normally
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distributed (Normal) and Laplace distributed (Laplace) errors, using the ML

estimation method. To correct for multiple testing (600 genes), the Benjamini-

Hochberg (BH) procedure is applied.

Table 4: Rate of rejected null hypothesis at the 5% s.l. for the 10000 datasets,

and a 95% confidence interval.

Table 5: The average FDR (standard deviation) for the different sample size

settings of the simulation study for setting S1. The models are fit using the

ML estimation method. The LR-test is used for hypothesis testing at the

5% significance level. To correct for multiple testing, the Benjamini-Hochberg

(BH) procedure is applied. (A: number of arrays, R: number of replicates per

gene on one array).
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Figure 1. Standardized residuals of the two-stage ANOVA model, fitted under the assumption of normally

(resp. Laplace) distributed data, plotted versus the quantiles of the normal (resp. Laplace) distribution,

with a reference line obtained by least squares regression.
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Figure 2. Empirical and theoretical (i.e., under the null hypothesis) distribution of the test statistics

(first row: F-test Normal model under REML and under ML; second row: LR-test Normal model and

Laplace model) for the D-R, T-C colon, and D-R lung study.
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Figure 3. Empirical and theoretical (i.e., under the null hypothesis) distribution of the LR-test statis-

tic from the second simulation study described in Section 5.3 (setting S1; 20 arrays; 3, 6 or 9 replicates).

Each figure is followed by a close-up of the tails of the distributions.

Table 1. Number of genes, for which the null hypothesis is rejected (in parenthesis the number of genes in

common between the model fit under the normality and Laplace assumption). To correct for multiple testing, the

Benjamini-Hochberg (BH) procedure is applied.

εijksm ∼ N(0, σ2
g) L(0, σg)

Study F-test (REML) F-test (ML) LR-test (ML) LR-test (ML)

D-R, colon 208 (206) 398 (372) 413 (383) 453

T-C, colon 273 (273) 436 (421) 440 (424) 496

D-R, lung 102 (102) 327 (315) 342 (327) 435
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Table 2. The mean value (standard deviation ×10E03) of some of the estimated model parameters and related

values for the 100 simulated datasets from settings S1 and S2. The models are fit under the assumption of

normally distributed (Normal) and Laplace distributed (Laplace) errors, using the ML estimation method.

Par. Setting Data Normal Laplace

σ2
1

S1

N 5.09 (3.79) 6.37 (5.07)

L 4.31 (1.38) 4.67 (3.04)

S2

N 5.14 (19.1) 6.55 (26.6)

L 5.14 (47.6) 5.24 (43.4)

σ2
2

S1

N 0.14 (0.51) 0.18 (0.68)

L 0.14 (1.29) 0.14 (1.25)

S2

N 4.96 (18.7) 6.31 (25.7)

L 4.97 (47.3) 5.02 (42.6)

Var[Ai]

S1

N 0.24 (47.0) 0.24 (49.4)

L 0.26 (78.4) 0.26 (78.7)

S2

N 0.26 (55.4) 0.26 (57.5)

L 0.25 (92.5) 0.25 (92.5)

Var[η]

S1

N 4.96 (5.49) 4.96 (6.81)

L 4.18 (4.48) 4.18 (3.74)

S2

N 0.18 (6.21) 0.20 (7.15)

L 0.16 (4.93) 0.16 (4.46)
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Table 3. FDR and average power (standard deviation) for the different settings of the simulation study. The

models are fit under the assumption of normally distributed (Normal) and Laplace distributed (Laplace) errors,

using the ML estimation method. To correct for multiple testing (600 genes), the Benjamini-Hochberg (BH)

procedure is applied.

Setting Data Normal F-test Normal LR-test Laplace LR-test

F
D

R

S1

N 0.05 0.05 0.62

L 0.29 0.29 0.24

S2

N 0.03 0.03 0.55

L 0.27 0.27 0.26

S3

N 0.08 0.08 0.64

L 0.35 0.36 0.32

S4

N 0.04 0.04 0.16

L 0.10 0.10 0.10

S5

N 0.04 0.04 0.22

L 0.13 0.13 0.10

P
ow

er

S4

N 0.976 (0.020) 0.976 (0.020) 0.950 (0.023)

L 0.956 (0.021) 0.957 (0.020) 0.997 (0.005)

S5

N 0.216 (0.070) 0.218 (0.071) 0.320 (0.072)

L 0.288 (0.055) 0.289 (0.054) 0.632 (0.069)

Table 4. Rate of rejected null hypothesis at the 5% s.l. for the 10000 datasets, and a 95% confidence interval.

Sample size per group

εi 10 100 1000 10,000

N(0; 1)
0.0684 0.0544 0.0511 0.0485

[0.0635; 0.0733] [0.0500; 0.0588] [0.0468; 0.0554] [0.0443; 0.0527]

L(0; 1)
0.0784 0.0579 0.0511 0.0514

[0.0731; 0.0837] [0.0533; 0.0625] [0.0468; 0.0554] [0.0471; 0.0557]
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Table 5. The average FDR (standard deviation) for the different sample size settings of the simulation study

for setting S1. The models are fit using the ML estimation method. The LR-test is used for hypothesis testing

at the 5% significance level. To correct for multiple testing, the Benjamini-Hochberg (BH) procedure is applied.

(A: number of arrays, R: number of replicates per gene on one array).

Normal model Laplace model

A R Normal data Laplace data Normal data Laplace data

20 3 0.066 (0.025) 0.118 (0.037) 0.149 (0.039) 0.168 (0.045)

20 6 0.059 (0.023) 0.014 (0.014) 0.154 (0.039) 0.057 (0.026)

20 9 0.054 (0.028) 0.001 (0.004) 0.139 (0.043) 0.031 (0.019)

30 3 0.061 (0.021) 0.119 (0.034) 0.144 (0.044) 0.161 (0.044)

30 6 0.057 (0.022) 0.016 (0.012) 0.148 (0.033) 0.064 (0.027)

30 9 0.054 (0.023) 0.002 (0.005) 0.143 (0.035) 0.031 (0.021)

40 3 0.064 (0.027) 0.114 (0.034) 0.159 (0.031) 0.156 (0.040)

40 6 0.056 (0.024) 0.014 (0.013) 0.146 (0.041) 0.054 (0.027)

40 9 0.056 (0.020) 0.002 (0.005) 0.143 (0.035) 0.036 (0.019)

50 3 0.064 (0.025) 0.109 (0.031) 0.145 (0.041) 0.152 (0.041)

50 6 0.060 (0.021) 0.012 (0.011) 0.145 (0.034) 0.056 (0.025)

50 9 0.055 (0.023) 0.001 (0.004) 0.140 (0.038) 0.031 (0.018)


