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Abstract

In survival analysis, the classical Koziol-Green model under random censorship is commonly used for infor-

mative censoring. We propose in this paper an extension of this model in which we derive a non-parametric

estimator for the distribution function of a survival time under two types of informative censoring. As first

type of informative censoring, we assume that the censoring time depends on the survival time through

the expression of their joint distribution by an Archimedean copula. For the second type of informative

censoring, we assume that the marginal distribution of the censoring time is a function of the marginal

distribution of the survival time where this function is found through a section of a known copula function

on the observed lifetime and the censoring indicator. We prove in this paper the uniform consistency of the

new estimator and show the weak convergence of the associated process. Afterwards we give some finite

sample simulation results and illustrate this estimator on a real life data set.

Keywords: Almost sure representation; copula function; exponential bound; informative censoring; right
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1 Introduction

Suppose Y1, Y2, ..., Yn are independent and identically distributed copies of a non-negative random variable Y

with continuous distribution function F . As often occurs in clinical trials or industrial life tests, these random

variables are subject to right censoring. That is, for each Yi (i = 1, 2, 3, ..., n), there exists an independent

and identically distributed random variable Ci of a censoring variable C with distribution function G such

that we only observe the pair (Zi, δi), where

Zi = min(Yi, Ci) and δi = 1{Yi ≤ Ci}
1Corresponding author, E-mail: roel.braekers@uhasselt.be
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For each i, Zi and δi are respectively copies of the observed lifetime Z = min(Y,C) ∼ H and the censoring

indicator δ = 1{Y ≤ C}.

To estimate the distribution function F from the observed data, we need to make a non-verifiable assumption

about the dependency between Y and C (Tsiatsis 1975). In survival analysis, it is common to assume

independence between these random variables. Under this assumption, Kaplan and Meier (1958) developed

the product limit estimator as standard estimator for F . However we note that in some situations, this

independence assumption is not satisfied. For example, in a cancer study where the time of interest is the

time until recurrence of a cancer tumor and the censoring time is time until death, or in industrial testing,

it may occur that a piece of equipment is taken away (i.e. censored) because it shows signs of future failure.

Zheng and Klein (1995) proposed an extension of the product limit estimator under dependent censoring

by using a copula function to describe the dependence structure between Y and C. This idea was later

investigated by Rivest and Wells (2001) in the class of Archimedean copulas. They derived a closest form

expression for this copula-graphic estimator.

Another type of informative censoring which is often used in survival analysis is the Koziol-Green sub-

model (Koziol and Green (1976)). In this sub-model of the general random censorship model, the time

until an event Y is assumed independent of the censoring time C but also the marginal survival function

of the censoring time is assumed to be a power of the survival function of the survival time. An important

consequence of these assumptions is that the assumption on the marginal survival functions is equivalent

with the result that the observable variables Z and δ are independent. This sub-model was further studied

by many authors. For example, Abdushukurov (1987) and Cheng and Lin (1987) independently pointed out

that the survival distribution function estimator in this sub-model outperforms the general Kaplan-meier

product limit estimator in terms of asymptotic efficiency. Csörgő (1988) developed a test to check the validity

of this model based on the independence of the observable variables.

In the current paper we extend the Koziol-Green sub-model to allow on the one hand for dependency between

Y and C, and on the other hand for a more general relationship between the marginal distribution functions

of the time until an event and the censoring time. We generalize the classical Koziol-Green sub-model in two

different ways at the same time. Hereby we wish to provide a solution for a major critic of this classical model

that it would be too restrictive to be often true in practice. Furthermore, since this extended model will lead

to a sub-model for the Rivest and Wells copula-graphic estimator in which also the marginal distribution

of the censoring time contributes information for the estimation of the distribution F of the time until an

event, the estimator for F in this extended model will also outperform the Rivest and Wells copula-graphic

estimator in terms of asymptotic efficiency. To define the extended Koziol-Green model under dependent

censoring we first assume, as in Rivest and Wells (2001), that the joint survival function of the time until an

event and the censoring time is given by

S(t1, t2) = P (Y > t1, C > t2) = ϕ[−1]
(

ϕ(F̄ (t1)) + ϕ
(

Ḡ(t2)
))

(1)

where F̄ (t) = 1− F (t) and Ḡ(t) = 1−G(t) are survival distribution functions of Y and C respectively. The

function ϕ : [0, 1] → [0,∞] is a generator of a known Archimedean copula and is a continuous, convex and

strictly decreasing function with ϕ(1) = 0. We denote by ϕ[−1] the pseudo-inverse of ϕ which is defined as

in Nelsen (2006),

ϕ[−1] =







ϕ−1(s) 0 ≤ s ≤ ϕ(0)

0 ϕ(0) ≤ s ≤ ∞
.

Since a copula function only determines the association structure between the continuous variables Y and
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C, we can model the marginal distribution functions separately. In this paper, we assume that the marginal

distributions of Y and C are linked through

Ḡ(t) = µ(F̄ (t)), t ≥ 0 (2)

where µ(w) is a non-decreasing function on [0, 1] with µ(0) = 0 and µ(1) = 1. We define this function µ(w)

indirectly by assuming some known copula function C which satisfies

Hu(t) = P (Z ≤ t, δ = 1) = C (γ,H(t)) (3)

where γ = P (δ = 1) is the proportion of uncensored observations and H(t) = P (Z ≤ t) is the distribution

function of the observed lifetime. We note in (3) that we do not need the full copula function to model the

sub-distribution Hu(t) of the uncensored observations, but only a section of it at γ. Since the censoring

indicator δ is a discrete variable, we know from Sklar’s theorem (Nelsen (2006)) that the copula function C
is not unique. In Klement et al. (2007), the set of all copulas with the same vertical γ - section is studied.

Furthermore from Genest and Nešlehová (2007), it is clear that this copula function alone is not sufficient

to describe the association structure between Z and δ. The marginal distributions are also needed for this.

However, the non-uniqueness of the copula function C does not have any consequence on the estimator of

the distribution function F . In the following section, we will see that this estimator does not change when

a copula function with the same vertical γ-section is chosen.

The remaining part of this paper is organized as follows. In the next section, we derive an estimator for

the distribution function F in the extended Koziol-Green model under dependent censoring. Hereby we will

show in some examples that the Archimedean copula in (1) and the copula function C in (3) can be different

copulas function in practical settings. After specifying some definitions and assumptions in Section 3, we

give an exponential bound and an almost sure representation for this estimator. Furthermore, we show in

the same section the strong consistency and weak convergence of the process associated with this estimator.

In Section 4, we investigate the finite sample performance of the survival distribution function estimator in

the extended Koziol-Green model by means of a simulation study. Finally, we apply this estimator to a real

data set in Section 5. In the Appendix, we give the proof of the theorems.

2 The Extended Koziol-Green Model

In this section, we develop an estimator for the distribution function F in the extended Koziol-Green model

under dependent censoring. We distinguish in this model two different informative censoring structures. On

the one hand, we assume that the censoring time C depends on the survival time Y through their joint

survival function which is given by (1). On the other hand, for the second informative censoring structure,

it is assumed that the marginal distributions of the censoring time and the survival time are linked as in

(2) where the function µ(w) is indirectly defined by the relationship (3) between the observable random

variables Z and δ.

To find an estimator for F in this model, we obtain from (1), as in Tsiatis (1975), that

dHu(t)

dt
= − ∂

∂t1
S(t1, t2)

∣

∣

∣

∣

t=t1=t2

=
ϕ′(F̄ (t))

ϕ′ (S(t, t))

dF (t)

dt
=

ϕ′(F̄ (t))

ϕ′
(

H̄(t)
)

dF (t)

dt

with ϕ′(u) = d
duϕ(u) and S(t, t) = ϕ−1

(

ϕ(F̄ (t)) + ϕ(Ḡ(t))
)

= 1−H(t) = H̄(t).
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Reorganizing this equation, gives

ϕ′
(

F̄ (t)
) dF (t)

dt
= ϕ′

(

H̄(t)
) dHu(t)

dt

By integrating on both sides and with ϕ(F̄ (0)) = ϕ(1) = 0, we obtain that

F̄ (t) = ϕ−1

(

−
∫ t

0

ϕ′(H̄(s))dHu(s)

)

. (4)

This result is also given in Rivest and Wells (2001) and is valid in any model where the underlying association

structure between Y and C is assumed to follow an Archimedean copula as in (1).

For the second informative censoring structure in this extended Koziol-Green model, we find from (2) that

dHu(s) = C2 (γ,H(s)) dH(s)

where C2(u, v) = ∂
∂vC(u, v) is the partial derivative of the general copula function C(u, v) with respect to the

second coordinate.

Introducing this result into (4), we obtain after a variable transformation, that

F̄ (t) = ϕ−1

(

−
∫ H(t)

0

ϕ′(1 − w)C2 (γ, w) dw
)

(5)

We now find an estimator for the distribution function F (t) in the extended Koziol-Green model under

dependent censoring by replacing γ and H(t) in (5) by their empirical counterparts which are defined as

Hn(t) =
1

n

n
∑

i=1

1{Zi ≤ t} and γn =
1

n

n
∑

i=1

1{δi = 1}.

Hence, we find an estimator for the distribution function F (t) of the survival time by

F̄n(t) = ϕ−1

(

−
∫ Hn(t)

0

ϕ′(1− w)C2 (γn, w) dw
)

. (6)

For brevity, we shall henceforth refer to this estimator as the EKG estimator.

Some remarks:

• If we take C such that Z and δ are independent (Hu(t) = γH(t)), we see that the estimator in (6)

simplifies to

F̄n(t) = ϕ−1
(

γnϕ(H̄n(t))
)

. (7)

This is an unconditional version of an estimator which was studied by Braekers and Veraverbeke (2008)

in a fixed design regression setting.

Moreover, if we also assume that the censoring time and the survival time are independent, this

estimator reduces to the classical Koziol-Green estimator,

F̄n(t) = (1−Hn(t))
γn .

This estimator was also studied by Abdushuskurov (1987) and Cheng and Lin (1987). It is known as

the ACL estimator.
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• We note that we do not need a closed form expression for the function µ(w) in (2) to find an expression

for the estimator of the distribution function F . It suffices to know the γ-section of the copula C in (3).

Numerically, it is possible to find the function µ(w) as the solution of the set of equations, ∀w ∈ [0, 1],

w = ϕ−1






−

1
∫

m(w)

ϕ′(s)C2(γ, 1− s)ds







µ(w) = ϕ−1(ϕ(m(w)) − ϕ(w))

• Due to the dependent censoring, we can consider the EKG model as a competing risks problem in

which an assumption is made on the association structure between some underlying latent variables.

Hereby we assume a known Archimedean copula function to describe this association. On the other

hand, we model a link function between the marginal distribution functions of the lifetime and the

censoring time indirectly through condition (3) on the observed sub-distribution function Hu(t) of the

uncensored observations. We can rewrite this condition in terms of the sub-hazard function of these

observations,

λ∗(t) =
dHu(t)

H̄(t)
= C2(γ,H(t))

dH(t)

H̄(t)
= C2(γ,H(t))λ(t)

with λ(t) the overall hazard function.

3 Asymptotic Results

In this section, we give three theorems which summarize some asymptotic results of the EKG estimator

given in (6). We give an exponential bound and a strong consistency result in Theorem 1 while in Theorem

2 and 3, we present an almost sure representation of this estimator and show the weak convergence of the

associated process. The proof of the different theorems is relegated to the Appendix. Before we state the

theorems, we first give the following basic definitions and regularity conditions that are important in the

development of the asymptotic results. For any distribution function K, we denote the right endpoint of its

support by TK = inf{t : K(t) = 1}.

A1. For a copula function C, we define C1(u, v) = ∂
∂uC(u, v), C2(u, v) =

∂
∂vC(u, v), C12(u, v) = C21(u, v) =

∂2

∂u∂vC(u, v), C11(u, v) = ∂2

∂u2 C(u, v), C22(u, v) = ∂2

∂v2 C(u, v). Furthermore we assume that C11(u, v),
C22(u, v) and C12(u, v) exist and are continuous for all (u, v) ∈ [0, 1]2.

A2. For the generator of an Archimedean copula ϕ, we define ϕ′(u) = d
duϕ(u), ϕ

′′(u) = d2

du2ϕ(u), ϕ
′′′(u) =

d3

du3ϕ(u) and assume that ϕ′′′(u) exists and is continuous for all u ∈ (0, 1].

Theorem 1. Assume A1, A2, ϕ′(1) < 0 and T < TH , then

(a) For all ε > 0, we have

P

(

sup
0≤t≤T

|Fn(t)− F (t)| > ε

)

≤ 2 exp

(

− nα2

6(3γ + β)

)

+D exp
(

−nα2
)

where D is a finite positive constant,

α =
ϕ′(1)ε

2ϕ′
(

ϕ[−1]
(

ϕ(1 −H(T ))− ϕ′(1)ε
2

)) and β = 1−H(T )− ϕ[−1]

(

ϕ(1−H(T ))− ϕ′(1)ε

2

)
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(b) As n → ∞, then

sup
0≤t≤T

|Fn(t)− F (t)| = O
(

n−1/2 (logn)
1/2
)

a.s.

Theorem 2. Assume A1, A2, ϕ′(1) < 0 and T < TH . Then, as n → ∞,

Fn(t)− F (t) =
1

n

n
∑

i=1

k (t;Zi, δi) + rn(t)

where

k (t;Zi, δi) =
1

ϕ′(F̄ (t))

{

(1{δi = 1} − γ)

∫ H(t)

0

ϕ′(1− w)C12 (γ, w) dw (8)

+ (1{Zi ≤ t} −H(t))ϕ′(H̄(t))C2 (γ,H(t))

}

and

sup
0≤t≤T

|rn(t)| = O
(

n−1 logn
)

a.s.

Theorem 3. Assume the conditions of Theorem 2. As n → ∞, then

√
n (Fn(·)− F (·)) → W (·) in ℓ∞[0, T ]

where W (·) is a zero mean Gaussian process with covariance function

Γ(s, t) =
1

ϕ′(F̄ (s))ϕ′(F̄ (t))

{

γ(1− γ)

∫ H(s)

0

ϕ′(1− w)C12 (γ, w) dw
∫ H(t)

0

ϕ′(1− w)C12 (γ, w) dw

+(Hu(s)− γH(s))ϕ′(H̄(s))C2 (γ,H(s))

∫ H(t)

0

ϕ′(1− w)C12 (γ, w) dw

+(Hu(t)− γH(t))ϕ′(H̄(t))C2 (γ,H(t))

∫ H(s)

0

ϕ′(1− w)C12 (γ, w) dw

+(H(s ∧ t)−H(s)H(t))ϕ′(H̄(s))ϕ′(H̄(t))C2 (γ,H(s)) C2 (γ,H(t))

}

4 A Simulation Study

In this section, we investigate the finite sample performance of the proposed nonparametric EKG estimator

via a simulation study. Hereto we assume that the survival times Yi ∼ Exp(λ) (i = 1, 2, 3, . . . , n) are

independent random variables with λ = 0.5. Since there are two different types of informative censoring in

this model, we take on the one hand that the joint survival function of the survival time and the censoring

time is defined by the Archimedean Clayton copula with generator function ϕ(t) = 1
2

(

t−2 − 1
)

. For the

second type of informative censoring, we assume that the marginal distribution of the censoring time is a

function of the distribution function of the survival time. We consider a section of the Plackett copula in

(3), given by

C(u, v) = 1 + (θ − 1)(u+ v)−
√

[1 + (θ − 1)(u + v)]2 − 4uvθ(θ − 1)

2(θ − 1)
(9)
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EKG RW BV

n γ = 0.25 γ = 0.50 γ = 0.75 γ = 0.25 γ = 0.50 γ = 0.75 γ = 0.25 γ = 0.50 γ = 0.75

20 0.2811 0.0021 0.0034 0.1758 0.0001 0.0010 0.3917 0.0051 0.0584

50 0.1540 0.0008 0.0006 0.1425 0.0007 0.0004 0.3911 0.0075 0.0580

100 0.0727 0.0011 0.0003 0.1166 0.0006 0.0003 0.3909 0.0089 0.0405

150 0.0463 0.0003 0.0007 0.0955 0.0002 0.0003 0.3911 0.0087 0.0595

200 0.0292 0.0003 0.0003 0.0897 0.0007 0.0005 0.3904 0.0078 0.0586

250 0.0226 0.0002 0.0004 0.0770 0.0001 0.0004 0.3906 0.0087 0.0413

Table 1: Absolute biases for the Extended Koziol-Green estimator (EKG), Rivest and Wells (2001) estimator (RW)

and Braekers and Veraverbeke (2008) estimator (BV)

EKG RW

n γ = 0.25 γ = 0.50 γ = 0.75 γ = 0.25 γ = 0.50 γ = 0.75

20 0.4221 0.2524 0.2499 0.3146 0.2524 0.2495

50 0.3430 0.2505 0.2495 0.2988 0.2504 0.2494

100 0.2896 0.2499 0.2494 0.2913 0.2498 0.2494

150 0.2713 0.2497 0.2493 0.2862 0.2496 0.2493

200 0.2615 0.2495 0.2493 0.2833 0.2495 0.2492

250 0.2577 0.2495 0.2493 0.2809 0.2495 0.2493

Table 2: Variances under the Extended Koziol-Green estimator (EKG), Rivest and Wells (2001) estimator (RW).

with θ = 20, to express the link-function between both marginal distributions.

The data generation process in the simulation study consists of the following steps:

1. We generate two independent uniform (0,1) random variables u and t.

2. We set v = c−1
u (t), where cu(v) =

∂
∂u

{

ϕ[−1] (ϕ(u) + ϕ(v))
}

and c−1
u is the inverse of cu.

3. We obtain h as a solution to the equation

1− h = ϕ[−1]

(

−
∫ h

0

ϕ′(1− w)C2 (γ, w) dw + ϕ(u)

)

with γ being the desired proportion of uncensored observations.

4. We set Y = − 1
λ log(v) and C = − 1

λ log
(

ϕ−1 (ϕ(1− h)− ϕ(u))
)

5. We set Z = min(Y,C) and δ = 1{Y ≤ C}

In the algorithm above, Step 2 generates a pair of uniform variables whose joint distribution is an Archimedean

copula with generator function ϕ. By this step, the future couple (Y,C) will satisfy (1). Afterwards in Step

3 and 4, we alter the marginal distributions of the pair (Y,C) such that also (3) holds. We investigate

in this simulation study the effect of the censoring intensity on the EKG estimator by considering dif-

ferent values of γ (i.e. γ = 0.25, 0.50, 0.75). For each value of γ and for different sample sizes n (i.e.

n = 20, 50, 100, 150, 200, 250), we generate 10000 samples. For each sample size, we determine the bias in

estimating F (t) at a pre-specified point t = 1.5 as the average difference between Fn(1.5) and F (1.5).
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In Table 1, we give for the different sample sizes and censoring intensities, the absolute biases for the EKG

estimator. For the purpose of comparison, this table also includes the biases based on the estimators of

Rivest and Wells (2001), and Braekers and Veraverbeke (2008) as given in (7). We observe that the results

based on the EKG estimator and the estimator of Rivest and Wells (2001) are close. This was expected since

the EKG model is a sub-model of the Rivest and Wells model. Their estimator only considers the dependent

censoring between the lifetime Y and the censoring time C, but leaves the marginal distributions of both

times unspecified. Therefore we have that data which is generated under the EKG model also satisfies the

Rivest and Wells model and the biases for both estimators are almost the same. On the other hand, if we

take a different sub-model of the Rivest and Wells model by considering a different copula function in (3)

as in the estimator linked to Braekers and Veraverbeke (2008), we note in Table 1 that the bias of this

estimator is for each sample size extremely larger than the bias on the EKG estimator. For an increasing

sample size, these biases will probably diminish but a substantial bias will always remain due to the wrong

copula function for C on Z and δ.

In Table 2 we compare the variances of the simulated estimates of the EKG estimator and the Rivest and

Wells estimator. We note that the variances for the Rivest and Wells estimator and the EKG estimator

are almost the same when there is a large probability of uncensored observations. For a small amount of

uncensored observations and a large sample size, we have that the variance of the EKG estimator is smaller

than for the Rivest and Wells estimator. We expect such a behavior since the EKG model is more efficient

than the Rivest and Wells model for the generated data. Taking the extra information contained in the

distribution of the censored observations into account improves the estimate of the survival time distribution

when the amount of censoring is high in the data set. For a small sample size and a small probability of

uncensored observations, we note in Table 2 that the variance of the Rivest and Wells estimator is smaller

than for the EKG estimator. This result contradicts the asymptotic efficiency of the EKG model, however

we are still investigating whether this difference is substantial or merely the result of our simulation.

To get further insight, we repeated the simulation process for other choices of the underlying Archimedean

copula between the survival time Y and censoring time C in (1). However, we do not report these additional

results because the conclusions are the same as above.

5 Real Data Application: Worcester heart attack study

In this section, we apply the estimator developed in Section 2 to a real data set. The data comes from the

Worcester heart attack study (WHAS) which has information on more than 8000 admissions. The main

objective of this study was to describe trends over time in the incident and survival rates following hospital

admission of acute miocardia infarction (AMI) patients. However, we will only consider the 10% random

sample of the original data set presented by Hosmer and Lemeshow (1999,p.24,25). Only a small subset of

variables as well as patients with no missing values are included in this sub-sample. As a result, the data

we utilize in the section has information on only 481 patients. Of these patients, 82 (17%) died while in

admission (uncensored), whereas 399 (83%) were discharged (censored). Also, we will mainly be concerned

about the time until death in hospital of such patients. Note that the results of this section are only for

illustrative purpose, and not to be compared with the analysis of the complete data set. See Hosmer and

Lemeshow (1999) for more details and pointers towards the findings from the complete WHAS data.

In this study, we observe that a patient with severe health conditions is likely to die within the first few
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Figure 1: Graphical test of the copula function for the relationship between observed variables

days of admission. However, if such patient does not die, then he/she is most likely to spend many days in

a hospital bed. Therefore, we believe that the time until death in the hospital Yi increases with the time

spent in the hospital Ci (i.e. the time spent in the hospital has a positive influence on the time until death

in hospital). Moreover, we believe that the occurrence of these censoring is a manifestation of the patients

medical condition. Therefore, we suspect that censoring time is additionally informative to the time until

death in the hospital through its distribution function. As such, the EKG estimator could be the outstanding

candidate to estimate the survival distribution of the time spent in hospital admission of such patients.

In this practical data illustration, we first assume that the underlying association structure of the time

until death and the time until discharge is given by the Clayton copula with generator function ϕ(υ) =
1
0.9

(

υ−0.9 − 1
)

. Since this is an unverifiable assumption, we will afterwards perform a small sensitivity anal-

ysis in which we assume that the time until death and the time until discharge are independent. For the

second type of informative censoring based the marginal distributions, we have to find a copula function

C such that the condition (3) holds. Unlike the underlying association structure, we can verify this con-

dition from the observed data. To find a suitable copula function we look at the empirical counterpart of

condition (3),

Hu
n (t) = C (γn, Hn(t))

where

Hu
n(t) =

1

n

n
∑

i=1

1{Zi ≤ t, δi = 1} , Hn(t) =
1

n

n
∑

i=1

1{Zi ≤ t} , γn =

n
∑

i=1

1{δi = 1}

with Zi and δi denoting respectively, the observed time and censoring indicator for each i(i = 1, 2, 3, ..., n).

This readily suggests an informal visual procedure to find a copula function C. In Figure 1, we compare the

empirical quantity Hu
n

(

H−1
n (p)

)

where H−1
n (p) = inf{t : Hn(t) > p} is the quantile function of Hn(t), with

the γn-section of different known copula functions as Fréchet-Hoeffding lower bound (W), Fréchet-Hoeffding

upper bound (M), Product (Π), Plackett, Clayton and Frank copulas. We note in this figure that the Plackett

9
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Figure 2: Survival distribution estimates for the acute miocardia infarction patients. In (a), a Clayton copula is

assumed for the underlying association structure between death time and censoring time, while in (b) death time and

censoring time are assumed independent.

copula with parameter θ = 6 gives the best approximation to the empirical quantity and as such it is the

most plausible candidate for this data set.

In Figure 2(a), we present the EKG estimate of the distribution function for the time until death. We assume

in the figure that the underlying association between the time until death and the time until discharge is

given by a Clayton copula as mentioned above. For the second type of informative censoring, we assume

a Plackett copula with θ = 6 based on the result in Figure 1. Furthermore we show in this figure also

the Rivest and Wells (2001) copula graphic estimate (RW estimate), and Braekers and Veraverbeke (2008)

estimate (BV estimate) of the survival distribution. This allows us to compare between the different models.

Unlike for the BV estimate, we do not observe much difference between RW and EKG estimates, except for

longer death times. This is expected since the RW estimate only uses the uncensored observations and these

have mainly smaller values. Therefore, we know that the choice for the Plackett copula function in condition

(3) is satisfied in this data set and is clearly different from the independence copula as in the BV estimate.

In Figure 2(b), we assume that the death time and censoring time are independent. Although we know that

this assumption may be wrong for this data set, we show it as a form of sensitivity analysis. Under this

assumption, the RW and BV estimates reduce to the Kaplan-Meier (KM) and the ACL estimates respectively.

From the figure, we observe that the EKG and KM estimates are close to each other. Again, this suggest that

the true underlying relationship between the observed time and censoring indicator is well approximated in

this data set. Comparing both association structures in Figure 2, we observe that the probability of dying

in the hospital is overestimated (bias) under the independence assumption. This last observation is a well

known phenomenon in survival analysis. It has also been pointed out by Zheng and Klein (1995), and Rivest

and Wells (2001), among others.
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Appendix

Here, we give the proof of the Theorems presented in Section 3. First, we give the following two lemmas

which are vital in establishing the proofs.

Lemma 1. Suppose 0 ≤ a < 1−H(T ), b ≥ 0 and a = bϕ′(1)
2ϕ′(1−H(T )−a) . Then for all T < TH ,

bϕ′(1)

2ϕ′
(

ϕ[−1]
(

ϕ(1−H(T ))− b
2ϕ

′(1)
)) ≤ a ≤ 1−H(T )− ϕ[−1]

(

ϕ(1 −H(T ))− b

2
ϕ′(1)

)

Proof. By the mean value theorem, we have

ϕ(1 −H(T )− a)− ϕ(1 −H(T )) = −ϕ′(1 −H(T )− a∗)a (10)

where a∗ is a point between zero and a.

Next, we note from the conditions of the lemma that

− b

2
ϕ′(1) = −ϕ′(1−H(T )− a)a ≥ −ϕ′(1−H(T )− a∗)a (11)

Substituting (11) into (10), gives after some straight forward calculations that

a ≤ 1−H(T )− ϕ[−1]

(

ϕ(1−H(T ))− b

2
ϕ′(1)

)

(12)

Using (12), we also get that

a =
bϕ′(1)

2ϕ′(1−H(T )− a)
≥ bϕ′(1)

2ϕ′
(

ϕ[−1]
(

ϕ(1−H(T ))− b
2ϕ

′(1)
))

which concludes the proof.

Proof of Theorem 1: We have that

Fn(t)− F (t) =
(

1− F̄n(t)
)

−
(

1− F̄ (t)
)

= F̄ (t)− F̄n(t)

= −
{

ϕ−1

(

−
∫ Hn(t)

0

ϕ′(1− w)C2(γn, w)dw
)

− ϕ−1

(

−
∫ H(t)

0

ϕ′(1− w)C2(γ, w)dw
)}

Using the mean value theorem, we get

Fn(t)− F (t) = (γn − γ)A(γ∗, H∗(t)) + (Hn(t)−H(t))B(γ∗, H∗(t))

where

A(γ∗, H∗(t)) =

∫H∗(t)

0
ϕ′(1− w)C12(γ∗, w)dw

ϕ′
(

ϕ−1
(

−
∫H∗(t)

0
ϕ′(1− w)C2(γ∗, w)dw

))

and

B(γ∗, H∗(t)) =
ϕ′(1−H∗(t))C2(γ∗, H∗(t))

ϕ′
(

ϕ−1
(

−
∫H∗(t)

0 ϕ′(1− w)C2(γ∗, w)dw
))
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with γ∗ between γn and γ, and H∗(t) between Hn(t) and H(t). Using integration by parts, and noting that

ϕ′(1)C1(γ∗, 0) = 0, we further obtain

A(γ∗, H∗(t)) =
ϕ′(1−H∗(t))C1(γ∗, H∗(t)) +

∫H∗(t)

0
ϕ′′(1− w)C1(γ∗, w)dw

ϕ′
(

ϕ−1
(

−
∫H∗(t)

0 ϕ′(1− w)C2(γ∗, w)dw
))

Using Condition A1, this gives after some calculations that

sup
0≤t≤T

|A(γ∗, H∗(t))| ≤ 3

|ϕ′(1)| sup
0≤t≤T

|ϕ′(1−H∗(t))| (13)

Similarly, we also find that

sup
0≤t≤T

|B(γ∗, H∗(t))| ≤ 1

|ϕ′(1)| sup
0≤t≤T

|ϕ′(1 −H∗(t))| (14)

Using (13) and (14), we find for all ε > 0 and η > 0 that

P

(

sup
0≤t≤T

|Fn(t)− F (t)| > ε

)

≤ P

(

3

|ϕ′(1)| sup
0≤t≤T

|ϕ′(1 −H∗(t))| |γn − γ| > ε

2

)

+ P

(

1

|ϕ′(1)| sup
0≤t≤T

|ϕ′(1−H∗(t))| sup
0≤t≤T

|Hn(t)−H(t)| > ε

2

)

for which the right hand side of the inequality can be written as

P

(

3

|ϕ′(1)| sup
0≤t≤T

|ϕ′(1−H∗(t))| |γn − γ| > ε

2
, sup
0≤t≤T

|Hn(t)−H(t)| ≤ η

)

+ P

(

3

|ϕ′(1)| sup
0≤t≤T

|ϕ′(1−H∗(t))| |γn − γ| > ε

2
, sup
0≤t≤T

|Hn(t)−H(t)| > η

)

+ P

(

1

|ϕ′(1)| sup
0≤t≤T

|ϕ′(1−H∗(t))| sup
0≤t≤T

|Hn(t)−H(t)| > ε

2
, sup
0≤t≤T

|Hn(t)−H(t)| ≤ η

)

+ P

(

1

|ϕ′(1)| sup
0≤t≤T

|ϕ′(1−H∗(t))| sup
0≤t≤T

|Hn(t)−H(t)| > ε

2
, sup
0≤t≤T

|Hn(t)−H(t)| > η

)

With 0 < η < 1−H(T ) such that sup0≤t≤T |ϕ′(1−H∗(t))| < |ϕ′(1−H(T )− η)|, the preceding quantity is

further bounded above by

P

(

|γn − γ| > ϕ′(1)ε

6ϕ′(1−H(T )− η)

)

+ P

(

sup
0≤t≤T

|Hn(t)−H(t)| > ϕ′(1)ε

2ϕ′(1 −H(T )− η)

)

+ 2P

(

sup
0≤t≤T

|Hn(t)−H(t)| > η

)

Choosing η = ϕ′(1)ε
2ϕ′(1−H(T )−η) , we easily find that

P

(

sup
0≤t≤T

|Fn(t)− F (t)| > ε

)

≤ P
(

|γn − γ| > η

3

)

+ 3P

(

sup
0≤t≤T

|Hn(t)−H(t)| > η

)

Using Bernstein’s inequality on the first term at the right hand side of the preceding inequality followed by

an application of Dvoretzky, Kiefer and Wolfowitz theorem on the second term of the same inequality, yields

P

(

sup
0≤t≤T

|Fn(t)− F (t)| > ε

)

≤ 2 exp

(

− nη2

6(3γ + η)

)

+D exp
(

−2nη2
)

13



where D is a finite positive constant. Using the Lemma 1, we see that this is further bounded above by

2 exp

(

− nα2

6(3γ + β)

)

+D exp
(

−2nα2
)

with α = ϕ′(1)ε

2ϕ′

(

ϕ[−1]
(

ϕ(1−H(T ))−ϕ′(1)ε
2

)) and β = 1−H(T )− ϕ[−1]
(

ϕ(1 −H(T ))− ϕ′(1)ε
2

)

If we take εn = ε = Kn−1/2 (logn)
1/2

for some positive constant K, then we note that εn is small for large

n. Thus, by the Borel-Cantelli lemma we find the strong consistency of Fn.

Proof of Theorem 2: To establish the asymptotic representation of Fn(t), we start with a second order

Taylor expansion to get

Fn(t)− F (t) =
1

ϕ′(F̄ (t))

{

∫ Hn(t)

0

ϕ′(1− w)C2 (γn, w) dw −
∫ H(t)

0

ϕ′(1− w)C2 (γ, w) dw
}

+ rn1(t) (15)

where

rn1(t) =
ϕ′′(ϕ−1(η(t)))

2 [ϕ′(ϕ−1(η(t)))]
3

{

∫ Hn(t)

0

ϕ′(1− w)C2 (γn, w) dw −
∫ H(t)

0

ϕ′(1− w)C2 (γ, w) dw
}2

with η(t) between −
∫Hn(t)

0 ϕ′(1 − w)C2 (γn, w) dw and −
∫H(t)

0 ϕ′(1− w)C2 (γ, w) dw. We denote by

I(t) =

∫ Hn(t)

0

ϕ′(1− w)C2 (γn, w) dw −
∫ H(t)

0

ϕ′(1− w)C2 (γ, w) dw.

and find that

sup
0≤t≤T

|rn1(t)| ≤
1

|ϕ′(1)|3 sup
0≤t≤T

ϕ′′(ϕ−1(η(t))) sup
0≤t≤T

|I(t)|2

Using Condition A1, we note that −
∫Hn(t)

0 ϕ′(1 − w)C2 (γn, w) dw and −
∫H(t)

0 ϕ′(1 − w)C2 (γ, w) dw are

respectively bounded above by ϕ(1 − Hn(T )) and ϕ(1 − H(T )). On noting that ϕ′′(·) is a decreasing

function, we further get

sup
0≤t≤T

|rn1(t)| ≤
1

|ϕ′(1)|3 sup
0≤t≤T

ϕ′′(ϕ−1(η(t))) sup
0≤t≤T

|I(t)|2 ≤ 1

|ϕ′(1)|3ϕ
′′(1−HM (T )) sup

0≤t≤T
|I(t)|2

where HM (T ) = max(Hn(T ), H(T )). Furthermore, we use the mean value theorem to get

I(t) = [γn − γ]

∫ H∗(t)

0

ϕ′(1− w)C12(γ∗, w)dw + [Hn(t)−H(t)]ϕ′(1 −H∗(t))C2(γ∗, H∗(t))

with γ∗ between γn and γ; and H∗
n(t) between Hn(t) and H(t). This gives

sup
0≤t≤T

|I(t)| ≤|γn − γ| sup
0≤t≤T

∣

∣

∣

∣

∣

∫ H∗(t)

0

ϕ′(1 − w)C12(γ∗, w)dw

∣

∣

∣

∣

∣

+ sup
0≤t≤T

|Hn(t)−H(t)| sup
0≤t≤T

|ϕ′(1−H∗(t))C2(γ∗, H∗(t))|

Using integration by parts and recalling that C1(γ∗, 0) = 0 for all γ∗ ∈ (0, 1], we obtain

sup
0≤t≤T

∣

∣

∣

∣

∣

∫ H∗(t)

0

ϕ′(1− w)C12(γ∗, w)dw

∣

∣

∣

∣

∣

= sup
0≤t≤T

|ϕ′(1 −H∗(t))C1(γ∗, H∗(t))|

+ sup
0≤t≤T

∣

∣

∣

∣

∣

∫ H∗(t)

0

ϕ′′(1 − w)C1(γ∗, w)dw

∣

∣

∣

∣

∣
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By similar deductions as in the proof of Theorem 1, we obtain

sup
0≤t≤T

∣

∣

∣

∣

∣

∫ H∗(t)

0

ϕ′(1− w)C12(γ∗, w)dw

∣

∣

∣

∣

∣

≤3|ϕ′(1−HM (T ))|

Using the preceding inequality, we get after some calculations that

sup
0≤t≤T

|I(t)| ≤3|ϕ′(1−HM (T ))||γn − γ|+ |ϕ′(1−HM (T ))| sup
0≤t≤T

|Hn(t)−H(t)|

As a consequence of the Law of Iterated Logarithm, we also have that

|γn − γ| = O
(

n−1/2 (logn)1/2
)

a.s. and sup
0≤t≤T

|Hn(t)−H(t)| = O
(

n−1/2 (logn)1/2
)

a.s. (16)

Since H(T ) < 1 and Hn(T ) → H(T ) a.s. (see Strong Law of large numbers), we may suppose that T < THn
.

Hence, we obtain that

sup
0≤t≤T

|I(t)| = O
(

n−1/2 (logn)
1/2
)

a.s.

and

sup
0≤t≤T

|rn1(t)| = O
(

n−1 logn
)

a.s.

We can further decompose the main term in (15) by using a second order Taylor expansion to get

∫ Hn(t)

0

ϕ′(1 − w)C2 (γn, w) dw −
∫ H(t)

0

ϕ′(1− w)C2 (γ, w) dw

= [γn − γ]

∫ H(t)

0

ϕ′(1− w)C12 (γ, w) dw + [Hn(t)−H(t)]ϕ′(1 −H(t))C2 (γ,H(t))

+ rn2(t) + rn3(t) + rn4(t)

(17)

where

rn2(t) =
1

2
[γn − γ]

2
∫ H∗(t)

0

ϕ′(1 − w)C112 (γ∗, w) dw

rn3(t) =
1

2
[Hn(t)−H(t)]

2 {ϕ′(1−H∗(t))C22 (γ∗, H∗(t)) − ϕ′′(1 −H∗(t))C2 (γ∗, H∗(t))}

rn4(t) = [γn − γ] [Hn(t)−H(t)]ϕ′(1−H∗(t))C12 (γ∗, H∗(t))

with C112(u, v) = ∂3C(u,v)
∂u2∂v and γ∗ between γn and γ; and H∗(t) between Hn(t) and H(t). We now determine

the rate of convergence of rn2(t), rn3 (t) and rn4(t). Integrating by parts, we have

rn2(t) =
1

2
[γn − γ]2

{

ϕ′(1−H∗(t))C11(γ∗, H∗
n(t))− ϕ′(1)C11(γ∗, 0) +

∫ H∗(t)

0

ϕ′′(1− w)C11(γ∗, w)dw

}

Working as before, we get

sup
0≤t≤T

|rn2(t)| ≤ 4|ϕ′(1−HM (T ))| sup
0≤u,v≤1

|C11(u, v)| [γn − γ]2.

For rn3(t), we have

sup
0≤t≤T

|rn3(t)| ≤
{

ϕ′(1 −HM (T )) sup
0≤u,v≤1

|C22(u, v)|+ ϕ′′(1−HM (T ))

}

sup
0≤t≤T

|Hn(t)−H(t)|2
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Since H(T ) < 1 and Hn(T ) → H(T ) a.s. (see Strong Law of large numbers), we suppose as before that

T < THn
. Consequently, we obtain

sup
0≤t≤T

|rn2(t)| = O
(

n−1 logn
)

a.s. and sup
0≤t≤T

|rn3(t)| = O
(

n−1 logn
)

a.s.

Similarly, we also get that

sup
0≤t≤T

|rn4(t)| = O
(

n−1 logn
)

a.s.

Let rn(t) = rn1(t) +
1

ϕ′(F̄ (t))
(rn2(t) + rn3(t) + rn4(t)). It is straight forwards to see that

sup
0≤t≤T

|rn(t)| = O
(

n−1 logn
)

a.s.

since ϕ′(F̄ (t)) ≤ ϕ′(1) < 0 for all t ∈ [0, T ]. Using this together with (17) and (15), concludes the proof.

Proof of Theorem 3: To show the weak convergence of the process
√
n (Fn(·)− F (·)), we note that by

Theorem 2 we only have to prove the weak convergence of the main term in the asymptotic representation

which is given by

Wn(t) = n−1/2
n
∑

i=1

k (t;Zi, δi) .

with k (t;Zi, δi) i.i.d. and defined by (8). After some calculations we get that, for all t ∈ [0, T ],

E [k (t;Z, δ)] = 0

and, for all 0 ≤ s, t ≤ T ,

Γ(s, t) = Cov [k (s;Z, δ) , k (t;Z, δ)] = E [k (s;Z, δ) , k (t;Z, δ)]

=
1

ϕ′(F̄ (s))ϕ′(F̄ (t))
×

{∫ H(s)

0

ϕ′(1− w)C12 (γ, w) dw
∫ H(t)

0

ϕ′(1− w)C12 (γ, w) dwE
[

(1{δ = 1} − γ)2
]

+ϕ′(H̄(s))C2 (γ,H(s))

∫ H(t)

0

ϕ′(1− w)C12 (γ, w) dwE [(1{δ = 1} − γ) (1{Z ≤ s} −H(s))]

+ϕ′(H̄(t))C2 (γ,H(t))

∫ H(s)

0

ϕ′(1− w)C12 (γ, w) dwE [(1{δ = 1} − γ) (1{Z ≤ t} −H(t))]

+ϕ′(H̄(s))ϕ′(H̄(t))C2 (γ,H(s)) C2 (γ,H(t))E [(1{Z ≤ s} −H(s)) (1{Z ≤ t} −H(t))]

}

=
1

ϕ′(F̄ (s))ϕ′(F̄ (t))
×

{

γ (1− γ)

∫ H(s)

0

ϕ′(1 − w)C12 (γ, w) dw
∫ H(t)

0

ϕ′(1 − w)C12 (γ, w) dw

+(Hu(s)− γH(s))ϕ′(H̄(s))C2 (γ,H(s))

∫ H(t)

0

ϕ′(1− w)C12 (γ, w) dw

+(Hu(t)− γH(t))ϕ′(H̄(t))C2 (γ,H(t))

∫ H(s)

0

ϕ′(1 − w)C12 (γ, w) dw

+(H(s ∧ t)−H(s)H(t))ϕ′(H̄(s))ϕ′(H̄(t))C2 (γ,H(s))C2 (γ,H(t))

}
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To prove the weak convergence of Wn(t), we verify the conditions of Theorem 2.5.6 of van der Vaart and

Wellner (2000). Hereto we show that the class of functions F given by

F = {k(t; z, d)|t ∈ [0, T ]}

is Donsker.

For the first term in (8), we note that (1{d=1}−γ)
ϕ′(F̄ (t))

∫H(t)

0 ϕ′(1 − w)C12 (γ, w) dw is uniformly bounded over t.

Furthermore we see that the second function z → (1{z≤t}−H(t))
ϕ′(F̄ (t))

ϕ′(H̄(t))C2 (γ,H(t)) is uniformly bounded

over t and is a monotone function of z. Hence, we have that k(t; z, d) is a monotone function of z and

sup
0≤t≤T

|k (t; z, d)| = sup
0≤t≤T

∣

∣

∣

∣

(1{d = 1} − γ)

ϕ′(F̄ (t))

(

ϕ′(H̄(t))C1(γ,H(t)) +

∫ H(t)

0

ϕ′(1 − w)C1(γ, w)dw
)

+
(1{z ≤ t} −H(t))

ϕ′(F̄ (t))
ϕ′(H̄(t))C2(γ,H(t))

∣

∣

∣

∣

≤ ϕ′(H̄(T ))

ϕ′(1)

(

3 + sup
0≤t≤T

C2(γ,H(t))

)

≤ M

where M is a finite positive constant. Using Theorem 2.7.5 of van der Vaart and Wellner (2000), we get that

the bracketing number N[ ] (ε,F , L2(P )) = O
(

exp
(

K
ε

))

with K a positive constant. Hence, we get that

∫ ∞

0

√

logN[ ] (ε,F , L2(P ))d(ε) < ∞

which shows the class F is Donsker and completes the proof.

17


