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In classical logics, the meaning of a formula is invariant with respect to the renaming of
bound variables. This property, normally taken for granted, has been shown not to hold in
the case of Independence Friendly (IF) logics. In this paper we argue that this is not an
inherent characteristic of these logics but a defect in the way in which the compositional
semantics given by Hodges for the regular fragment was generalized to arbitrary formulas.
We fix this by proposing an alternative formalization, based on a variation of the classical
notion of valuation. Basic metatheoretical results are proven. We present these results for
Hodges’ slash logic (from which these can be easily transferred to other IF-like logics)
and we also consider the flattening operator, for which we give novel game-theoretical
semantics.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Independence Friendly logic (IF, for short) was introduced and promoted as a new foundation for mathematics by Jaako
Hintikka over a decade ago [1,2]. Closely related to Henkin’s logic of branching quantifiers [3–6], IF is an extension of
first-order logic where each disjunction and each existential quantifier may be decorated with denotations of universally-
quantified variables:

∀x∀y∃z/∀y∃w/∀y[y = z ∨ /∀x,∀y w = y]. (1)

The intended meaning of a formula ∀x∃y/∀xϕ is that the value for y may not depend on x (in other words, it may not be a
function of x). This notion is nicely formalized using a two player game between Abélard and Eloïse, which, because of the
independence restrictions, is of imperfect information. In terms of expressive power, IF corresponds to the Σ1

1 fragment of
second-order logic [7], although the set of valid IF sentences is recursively isomorphic to that of full second-order logic [8].

It was conjectured by Hintikka that one could not formulate IF semantics in a composable way [1]. This was promptly
rebutted by Hodges in [9], where he achieves compositionality by taking as the interpretation of a formula ϕ(x1, . . . , xn)

over the domain A, the set of sets of n-tuples (called trumps) for which Eloïse has a uniform winning strategy. In doing this,
Hodges also provided formal semantics for non-sentences.

Two things are worth observing. First, in [9] Hodges introduced two slight modifications in syntax and semantics,
namely: conjunctions and universal quantifiers may also be decorated with restrictions, and restrictions on any of the
player’s choices may range also over any of his previous choices. In Hintikka’s presentation [1], no decorations with exis-
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tentially quantified variables occur. Hintikka adopts a convention, which remains implicit in the syntax, that Eloïse is not
allowed to take into account any of her previous choices. For implications of this fact see, e.g. [10].

For instance, formula (1) would be written in Hodges formulation as:

∀x∀y∃z/y∃w/y,z[y = z ∨ /x,y,w,z w = y].
Hodges later coined the name slash logic and stated [11]:

During recent years many writers in this area (but never Hintikka himself) have transferred the name ‘IF logic’ to slash
logic, often without realizing the difference. Until the terminology settles down, we have to beware of examples and
proofs that don’t make clear which semantics they intend.

We will use the term IF-like logics to encompass this variety of related logics. In [12], Hodges shows that even if one
restricts to Hintikka and Sandu’s original formulation of IF, compositionality can be obtained. The second thing to note is
that in both papers Hodges considers only a syntactic fragment called regular in which there can be no nested binding
of the same variable (i.e. along one branch of the syntactic tree) nor a variable that occurs both freely and bound in one
formula.1 This is a standard practice in first-order logic model theory. The underlying assumption is that, given an arbitrary
formula ϕ , one can appropriately rename its variables, so no generality is loss. As it was later pointed-out, this assumption
is not satisfied in Hintikka’s original semantics, and in fact it is not clear whether it is reasonable in the whole context of
IF-like logics [13,14].

Historically, Caicedo and Krynicki [15] were the first to attempt a generalization of Hodges’ semantics to non-regular
formulas. In their paper they give a prenex normal form theorem for slash logic (called Lii in their paper). Instead of n-
tuples, they used valuations to account for arbitrary formulas where variables occur in any order and may even get rebound.
This extension seemed so natural that in later papers (e.g. [10,14,16]) it was taken as the standard semantics of slash logic.

Based on this semantics, in [10], Janssen points-out several strange properties of these logics. At the root of them lies the
idea of signaling. Signaling is “the phenomenon that the value of a variable one is supposed not to know, is available through
the value of another variable” [14]. He observes, for instance, that the quantifier-context where a subformula occurs is of
vital importance. Already in [9], it was observed (with the formula ∀x∃z∃y/x[x = y]) that a seemingly vacuous existential
quantifier2 may be, due to signaling, the difference between a formula being true or not. Janssen [10] points out that
if variables are reused in a formula, signaling may be blocked and, thus, the truth-value of formulas that only differ on
bound-variables may vary. This can even be the case of formulas of IF-logic without restrictions, which would challenge
Hintikka’s claim of IF being a conservative extension of classical logic [1].

A systematic analysis of signaling in IF-like logics was later performed in [14], where several claims of “equivalence of
formulas under syntactic transformations” made in [15] are questioned due to signalings that may get unexpectedly blocked.
These results are fixed in [16], although the original semantics had to be subtly modified (valuations are required to have
finite domain) and equivalences are shown to hold only on certain contexts, depending on the variables occurring in the
formulas.

Summing up, on the one hand, we have a family of logics, aiming to be a conservative extension of first-order logic, for
which many results have been proved, but only for the regular fragment. On the other hand, we have that the attempts to
formulate general results for the whole fragment failed. In the face of this, Dechesne advocated for the restriction of IF-like
logics to the regular fragment (cf. Section 7.5 of [13]).

In this paper, we argue that there is no real need to restrict IF-like logics to regular formulas and that, in fact, most, if
not all, of previous results can be generalized to the irregular case in a safe and natural way. In a nutshell, we claim that
valuations as functions from variables to values are simply not adequate to formalize independence restrictions in a context
where variables can get rebound.

The paper runs as follows. In Section 2 we discuss in more detail the misbehavior of irregular formulas with respect
to signaling. We will also see that even when restricted to the regular fragment, the valuation-based semantics fails to
generalize Hodges’ compositional semantics. This motivates Section 3, were we first observe that, according to some results
of Section 2, there must be at least two different notions of independence for regular IF-like logic, one followed by [15,16]
and the other by [9]. We then give both game-theoretical and compositional semantics for slash logic carefully avoiding
these pitfalls. In Section 4 we move to slash logic with the flattening operator ↓ introduced by Hodges in [9] and illustrate
that irregular formulas can be handled uniformly also in this setting; while doing this, we provide a novel game semantics
for this logic.

1 Hodges does not explicitly restrict to the regular fragment, however this is implicitly done in his work by means of his formalism. Indeed, writing
ϕ(x1, . . . , xn) implies that the free variables of ϕ (according to our definition of Fv) occur in the list x1, . . . , xn , and he prevents this list from having
duplications [9, p. 559]. Then he defines the compositional semantics of ϕ(x1, . . . , xn) = ∃x/y1,...,yk ψ in terms of ψ(x1, . . . , xn, x), and when writing ψ in
this way, he is implicitly saying that x cannot be one of x1, . . . , xn .

2 By vacuous we mean that the bound variable does not occur in the subformula.
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2. Preliminaries

2.1. Syntax

From here on, we restrict ourselves to Hodges’ slash logic (but without indexed disjunctions) [9,11], in which Hintikka’s
IF logic can be trivially embedded. Formulas are built out of an infinite supply of constant symbols, function symbols and
relation symbols just like in first-order logic, using the following set of connectives: ∼, ∨/y1,...,yk and ∃x/y1,...,yk , where
y1, . . . , yk stands for a set of variables. The derived connectives ∧/y1,...,yk and ∀x/y1,...,yk are defined in the usual way. We
will also write ∧, ∨, ∃x and ∀x for ∧/∅ , ∨/∅ , ∃x/∅ and ∀x/∅ . Following [16] we don’t impose any restriction on the variables
occurring under the slashes. Observe that ∼ is game negation; in Section 4 we will consider also the flattening operator ↓
and, thus, classical negation ¬.

The sets of free and bound variables of ϕ , Fv(ϕ) and Bv(ϕ) respectively, are defined in the usual way:

• if ϕ is atomic, then Fv(ϕ) is the set of all free variables occurring in ϕ and Bv(ϕ) = ∅;
• if ϕ = ∼ψ , then Fv(ϕ) = Fv(ψ) and Bv(ϕ) = Bv(ψ);
• if ϕ = ψ ∨ /y1,...,ykρ , then Fv(ϕ) = Fv(ψ) ∪ Fv(ρ) ∪ {y1, . . . , yk} and Bv(ϕ) = Bv(ψ) ∪ Bv(ρ);
• if ϕ = ∃x/y1,...,yk ψ , then Fv(ϕ) = (Fv(ψ) \ {x}) ∪ {y1, . . . , yk} and Bv(ϕ) = Bv(ψ) ∪ {x}.

Observe that variables that occur under slashes must be taken into consideration. For example, that if θ := ∃x/x,y[x = z]
then Fv(θ) = {x, y, z} and Bv(θ) = {x}.

Following Dechesne [13], we will say that a formula ϕ is regular whenever Fv(ϕ) ∩ Bv(ϕ) = ∅ and there is no nested
quantification over the same variable. To follow Hodges’ presentation, when referring to regular formulas we will sometimes
make the context (i.e. the free variables in scope) a parameter of the formula by writing: ϕ(x1, . . . , xn), where (x1, . . . , xn)

is an n-tuple of distinct variables such that Fv(ϕ) ⊆ {x1, . . . , xn}. Observe that this means that for a fixed ϕ , ϕ(x, y) and
ϕ(x, y, z) will denote two non-equivalent formulas. See [9] for further details.

2.2. Semantics

We will consider two related semantics. On the one hand, there is Hodges’ trump semantics, which we will call T-
semantics. It is compositional and based on sets of tuples but its formalization requires regular formulas with the context as
a parameter. On the other, we have Caicedo and Kynicki’s extension of trump semantics to arbitrary formulas, which we will
call V-semantics. It is based on sets of valuations and has a natural game-based formulation from which compositionality
can be proved [15,16].

Let us begin with V-semantics. A formula ϕ is true in a model M under a set of valuations V , written M |
+ ϕ[V ],
iff Eloïse has a valid strategy that, when followed, wins every instance G(M,ϕ, v) (for v ∈ V ) of the classical satisfaction
game between Abélard and Eloïse (sometimes called Falsifier and Verifier). Dually, a formula is false, written M |
− ϕ[V ],
whenever Abélard has a valid strategy that is winning for every G(M,ϕ, v), v ∈ V .

For a strategy to be valid, it has to satisfy additional independence conditions. For a formal presentation refer to [15,16].
We illustrate these requirements with an example. Let us say that at some point of a game Eloïse must play in a position
given by the formula ∃x/y,zϕ; a valid strategy function for this point would be an f mapping valuations to elements of the
domain, with the restriction that f (v) = f (v ′) whenever v and v ′ differ, at most, on their values for y and z. We say that
this function f is {y, z}-independent.

Definition 1. Let f : AB → C and let Y ⊆ B . We say that f is Y -independent if for all g1, g2 ∈ AB : if g1(x) = g2(x) for all
x /∈ Y then f (g1) = f (g2).

In [15] there is no explicit definition of valuation for the V-semantics, but it seems it is intended that a valuation
should be defined on the full (infinite) set of variables.3 On the contrary, Hodges works with finite valuations, as the V-
semantics defined in [16]. He achieves this by restricting to regular formulas where the context is a parameter: a valuation
for ϕ(x1, . . . , xn) is simply an n-tuple (a1, . . . ,an). Let us say that v(a1,...,an) is a valuation such that v(a1,...,an)(xi) = ai when
1 � i � n and v(x) = c, for some fixed c, otherwise; then, intuitively, a trump (resp. cotrump) T for ϕ(x1, . . . , xn) in M,
written M |
+ ϕ(x1, . . . , xn)[T ] (resp. M |
− ϕ(x1, . . . , xn)[T ]), is just a set of n-tuples for which Eloïse (resp. Abélard) has
a strategy that is winning for every instance of the game G(M,ϕ, v(a1,...,an)) for (a1, . . . ,an) ∈ T . Using trumps, Hodges [9]
was able to prove that |
+ and |
− can be defined in a composable way.

Theorem 1 (Hodges, 1997). Let ψ(x̄) be a regular formula of signature σ (with x̄ = x1, . . . , xn), let M be a σ -structure and T ⊆ |M|n.
Then,

3 In Section 2.1 of [15] valuations should be defined on some X ⊆ Var. So it is not explicitly required to be finite.
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1. if ϕ(x̄) is atomic or negated atomic,
• M |
+ ϕ(x̄)[T ] iff M |
 ϕ(x̄)[vt] for all t ∈ T ;
• M |
− ϕ(x̄)[T ] iff M �|
 ϕ(x̄)[vt] for all t ∈ T ;

2. if ϕ(x̄) = ∼ψ(x̄),
• M |
+ ϕ(x̄)[T ] iff M |
− ψ(x̄)[T ];
• M |
− ϕ(x̄)[T ] iff M |
+ ψ(x̄)[T ];

3. if ϕ(x̄) = ψ1(x̄) ∨ /xn1 ,...,xnk
ψ2(x̄) for some {xn1 , . . . , xnk } ⊆ {x̄},

• M |
+ ϕ(x̄)[T ] iff there is a function g : T → {L, R} such that
– g is {n1, . . . ,nk}-independent;
– T L �= ∅ implies M |
+ ψ1(x̄)[T L], with T L = {t | t ∈ T , g(t) = L};
– T R �= ∅ implies M |
+ ψ2(x̄)[T R ], with T R = {t | t ∈ T , g(t) = R};

• M |
− ϕ(x̄)[T ] iff M |
− ψ1(x̄)[T ] and M |
− ψ2(x̄)[T ];
4. if ϕ(x̄) = ∃y/xn1 ,...,xnk

ψ(x̄, y), where y /∈ {x̄} and {xn1 , . . . , xnk } ⊆ {x̄},

• M |
+ ϕ(x̄)[T ] iff there is a function g : T → |M| such that
– g is {n1, . . . ,nk}-independent; and
– M |
+ ψ(x̄, y)[T ′], where T ′ = {(t̄, g(t̄)) | (t̄) ∈ T };

• M |
− ϕ(x̄)[T ] iff M |
− ψ(x̄, y)[T ′] for T ′ = T × |M|.4

Notation 1. Throughout this paper, “M |
± X iff M |
± Y ” will stand for “M |
+ X iff M |
+ Y , and M |
− X iff M |
−
Y ”.

In first-order logic, a formula ϕ of some signature σ is true in a σ -structure M with respect to a valuation v if
M |
 ϕ[v]. Equivalently ϕ is false in M with respect to v whenever M �|
 ϕ[v]. The meaning of a formula ϕ of some
signature σ , in a σ -structure M, is given by the set of all valuations for which ϕ is true and the set of all valuations for
which ϕ is false. Of course, in first-order logic, being true is equivalent to being not false. Therefore, the meaning of ϕ in a
structure M is simply given by the set of all v such that M |
 ϕ[v].

Similarly, in our setting of IF-like logics, a formula is said to be true when Eloïse has a winning strategy, and it is said to
be false when Abélard has one. Under imperfect information there are formulas for which none of the players has a winning
strategy, therefore there are formulas which are neither true nor false. The meaning of a formula, in a structure M, under
V- and T-semantics is formally defined as

MeaningV
M(ϕ) = 〈{

V | M |
+ ϕ[V ]},{V | M |
− ϕ[V ]}〉;
MeaningT

M
(
ϕ(x̄)

) = 〈{
T | M |
+ ϕ(x̄)[T ]},{T | M |
− ϕ(x̄)[T ]}〉

where x̄ = x1, . . . , xn . Intuitively two formulas are equivalent when they have the same meaning over any structure. So for
first-order logic ϕ and ψ are equivalent iff for every σ -structure M and every valuation v , M |
 ϕ[v] iff M |
 ψ[v]. From
the above notion of meaning for IF-like logics, we derive the following equivalences:

V-equivalence: ϕ1 ≡V ϕ2 iff for all M and every nonempty set of valuations V defined on Fv(ϕ1) ∪ Fv(ϕ2), M |
± ϕ1[V ]
iff M |
± ϕ2[V ].

T-equivalence (for a fixed tuple x̄ = x1, . . . , xn): ϕ1(x̄) ≡T ϕ2(x̄) iff for all M and every ∅ ⊂ T ⊆ |M|n , M |
± ϕ1(x̄)[T ] iff
M |
± ϕ2(x̄)[T ].

T-equivalence (over all tuples): ϕ1 ≡T ϕ2 iff for all

{x1, . . . , xn} ⊇ Fv(ϕ1) ∪ Fv(ϕ2),

we have ϕ1(x1, . . . , xn) ≡T ϕ2(x1, . . . , xn).

Notice that in the last two cases, ϕ1 and ϕ2 must be regular formulas (see footnote 1).

2.3. Signaling kicks in

It was first observed by Janssen [10] that V-semantics and signaling don’t interact well. Consider, for instance, the
following example (from [10], Section 7, formulas (32) and (33)):

θ1 := ∀x∀y∀z
[
x = y ∨ ∃u∃w/x[w �= x ∧ u = z]],

θ2 := ∀x∀y∀z
[
x = y ∨ ∃y∃w/x[w �= x ∧ y = z]].

4 Observe that we take T × |M| to be {(t̄,a) | (t̄) ∈ T ,a ∈ |M|}.
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Clearly, θ1 is a regular formula while θ2 is not. Moreover, they only differ in the symbol used for a bound variable: u vs. y.
Since variable symbols are expected to be simple placeholders, both formulas should be equivalent. Now, Eloïse has a
winning strategy for θ1, regardless the structure:

f∨(v) =
{

L if v(x) = v(y),

R otherwise,
f∃u(v) = v(z), f∃w/x(v) = v(y).

Let us check that this is indeed a valid and winning strategy for Eloïse in any suitable model. Whatever values Abélard
chooses for x, y and z, when Eloïse gets to pick L or R , either v(x) = v(y) or v(x) �= v(y). In the first case, choosing L is
the only sensible thing to do. But this means that if Eloïse ever gets to use f∃u and f∃w/x , then v(x) �= v(y) must hold;
this is a global invariant of her strategy. So, let us assume that indeed, v(x) �= v(y); now Eloïse has to pick a value for u
and since Abélard can challenge it later, her only choice is to pick v(z). Finally, she has to provide a value for w other
than v(x). However, since the quantifier has a restriction on x, not every strategy function is valid. As one can see, f∃w/x is
a valid strategy function and, because of the global invariant, returns a proper result. Observe that Eloïse’s strategy for θ1
relies heavily on signaling: she needs a value other than v(x) but her strategy function may not depend on x; however, y is
signaling such a value.

The problem is that Eloïse has no analogous winning strategy for θ2: whenever Abélard picks different initial values for
x and y, Eloïse will be forced to reset the value of y to that of z, breaking the global invariant of the strategy (i.e., blocking
the signal). In fact, it is not hard to show that for arbitrary structures, Eloïse has no winning strategy at all for θ2, which
implies that θ1 �≡V θ2.

Now, although this is an already known example, we feel its significance has been overlooked. In our opinion, variables
(and specially those that are bound) ought to be a mere syntactic device, a simple placeholder. They should bear no meaning
in itself. The only thing we should care about two bound variables x and y is that they are distinct and, as such, stand for
distinct placeholders.5 In that sense u, v or w should be as good as y. The idea of variables as a mere syntactic device is
reinforced with the fact that, at least in classical first-order logic, one could drop variables altogether and replace them with
de Bruijn indices [17]. Of course, using de Bruijn indices is to somehow ‘regularizing the logic’.

This crucial notion has a name: α-equivalence. Two formulas ϕ1 and ϕ2 are said to be α-equivalent (ϕ1 ≡α ϕ2) if their
syntactic trees are isomorphic, they have the same occurrences of free variables and for each occurrence of a bound variable
the quantifier that binds it matches. For example, if θ := ∃x∃y[x = z], then θ ≡α ∃y∃w[y = z] but θ �≡α ∃z∃y[z = z] and
θ �≡α ∃x∃x[x = z] (for formal definitions see any textbook on λ-calculus, e.g. [18]).

In every sensible formalism, α-equivalence implies equivalence. We already saw this does not hold in slash logic under
V-semantics in general and the following example shows that it neither does restricted to regular formulas. Consider these
α-equivalent, regular formulas:

θ3 := ∃y∃z/x,y[z = x], θ4 := ∃u∃z/x,u[z = x].
For V = {v | v(x) = v(u)} and ‖M‖ � 2 it is easy to see that M |
+ θ3[V ] but M �|
+ θ4[V ]. The above example shows the
kind of problems that we are going to solve in this paper. Observe that in θ1 and θ2 of page 336 one can reconstruct the
context of the subformulas from the sentence in which they are introduced, that is syntactically. In θ3 and θ4, the context is
in the structure of V , but there is no traceable syntactic counterpart to that. In [16] this problem is solved by relativizing
the equivalence by restricting to valuations that avoid the bound variables occurring in the formulas.

Invariance under α-equivalence is such a basic property that it is not surprising that neither Hodges nor Caicedo and
Krynicki mention it in their papers. However the latter two claimed in [15, Lemma 3.1(a)] that it holds and this led to
some flawed results (see [14]). In the face of this, it is worth verifying that, fortunately, α-equivalence does hold under
T-semantics.

Proposition 1. ϕ1(x̄) ≡α ϕ2(x̄) implies ϕ1(x̄) ≡T ϕ2(x̄), for x̄ = x1, . . . , xn.

Proof. Because ≡T is a transitive relation, one only needs to prove the implication for the case where ϕ1(x̄) and ϕ2(x̄)
differ in at most one bound variable. This is carried out by induction on ϕ1(x̄). The case that matters is when ϕ1(x̄) is of
the form ∃u/z1,...,zk ψ1(x̄, u) and ϕ2(x̄) is ∃v/z1,...,zk ψ2(x̄, v), where ψ2(x̄, v) is obtained from ψ1(x̄, u) by replacing the free
variable u by v . These two subformulas match on the bound variables but differ in one free variable (u vs. v). However,
now we can prove by a straightforward induction that M |
± ψ1(x̄, u)[T ] iff M |
± ϕ2(x̄, v)[T ] for all suitable M and T .
The key point here is that at item 1 of Theorem 1 the name u or v is irrelevant, as long as they come in the same order in
the lists (x̄, u) and (x̄, v). �
Corollary 2. Let ϕ1 and ϕ2 be regular. If ϕ1 ≡α ϕ2 then ϕ1 ≡T ϕ2 .

Proof. Immediate from the definition of T -equivalence over all tuples. �
5 That is, in the formula ∀x∃y[x �= y], x and y are distinct and that is why we expect it to be equivalent to ∀y∃z[y �= z] but not to ∀y∃y[y = y].
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Now, observe that formulas θ3 and θ4 above are regular and α-equivalent. Hence, by Corollary 2, θ3 ≡T θ4. But we have
already seen that θ3 �≡V θ4. That is, θ3 and θ4 have the same meaning under T-semantics but different meaning under
V-semantics. This clearly shows that V-semantics simply fails to be a generalization of T-semantics.

Proposition 2. There are regular formulas which are T-equivalent but not V-equivalent. Therefore, V-semantics is not an extension of
T-semantics.

3. Uniform semantics for regular and irregular formulas

Failure of α-equivalence has been regarded in the literature as an unexpected, unusual yet, characteristic feature of IF-
like logics. This begs a simple question: what is the precise relation between independence restrictions and α-equivalence?
Or, in other words, in what sense is this an unavoidable feature of these logics?

We believe that in order to answer these questions, one first needs to untangle the exact notion of independence being
used. That is, we must realize what is the intended meaning6 of the slashed quantifier in the formula ∃x/yϕ . At first sight,
it may seem like the answer is clear and simple enough: the independence restriction in this case is meant to be informally
read “there exists a value for x, independent of the value of y, such that it makes ϕ true”.

Arguably, it is this notion of “independence with respect to values” that lies behind the formal semantics in the tradition
of [15,16], which we have called V-semantics. Since independence restrictions range over the values of variables, in these
game-theoretical formalizations one only needs to hold the current value of each variable. But this means that each time
a variable is rebound there is a loss of information, typically observed as a signaling that gets blocked. This prevents α-
equivalence from holding in the irregular case.

This informal argument is not enough to conclude that the failure of α-equivalence is an intrinsic characteristic of IF-like
logics, though. In particular, Proposition 2 already shows that there are at least two distinct semantics for regular IF-like
formulas, one where α-equivalence holds and one where it does not.

In a way, this paper is built on the observation that ∃x/yϕ can alternatively be read as “there exists a value for x,
independent of the last value chosen for y, such that it makes ϕ true”. The difference is subtle: by talking about “the last value
for y” it is implied that there might have been previous values and that we don’t want to forbid the use of these values in
picking a new value for x. Of course, a precise definition of this notion is required (in particular, what it means for variables
that are free), and this is what will be done in this section. It will be also shown that the obtained logic coincides with
T-semantics on regular formulas and that it has α-equivalence for the whole fragment. This clearly shows that failure of
α-equivalence is not inherent to IF-like logics.

There are many equivalent ways in which this alternative notion of independence can be formalized. We have opted to
simply decouple chosen values from valuations; others may prefer, for example, to map each variable to the list of all its
previous values. As long as the finite history of moves is part of the game board, equivalent game-theoretical semantics can
be given.

It is worth making two closing observations. First, game-theoretical semantics for classical first-order logic is based on a
game of perfect information; in this context the history of moves is irrelevant. Second, in T-semantics, a tuple (a1, . . . ,an)

represents a precise finite history of moves for ϕ(x1, . . . , xn). In this setting, the history grows up one element at a time, as
a consequence of each player’s move for a ∃ or ∀. That is, when some player picks a value an+1 for xn+1 in ϕ(x1, . . . , xn) =
∃xn+1/y1,...,yk ψ , the new history becomes (a1, . . . ,an,an+1) and the new formula becomes ψ(x1, . . . , xn, xn+1). But since
T-semantics is restricted to the regular fragment, the value chosen for xn+1 will be an+1 all along the play, and therefore both
notions of independence coincide after all.

The fact that both notions of independence coincide in game-theoretical semantics for classical first-order and in T-
semantics, might explain why the necessity of “history preserving” valuations for correctly dealing with independence
restrictions has been so far overlooked.

Let’s now move to a more technical field and define in a precise way what will be our history, how this history will
interact with rebinding and finally what will be our semantics of unrestricted IF-like formulas. Recall that we will base our
semantics upon the observation that ∃x/yϕ should be read as “there exists a value for x, independent of the last value chosen
for y, such that it makes ϕ true”. It is clear that in this setting, classical valuations are an inadequate device to formalize
this semantics: under rebinding of variables, they simply fail to keep track of all the previous choices. Our plan is, roughly,
to replace valuations with tuples 〈s, p〉, where s ∈ |M|ω is an infinite sequence of choices, and p is a mapping of variables
into positions of s. A variable x gets thus interpreted as s(p(x)). Observe that one can think of the composition s ◦ p as
denoting a classical valuation. Almost all of our presentation can be done using sequences of finite length (see item 2 of
Theorem 4 below). In this case, s ◦ p would represent a valuation with finite domain, as the presentation of [16]. We opted
for using infinite sequences for the sake of clarity.

Using games, we will define what we call S-semantics, that is, the relations M |
+ ϕ[S, p,h] and M |
− ϕ[S, p,h] where
S is a nonempty set of sequences of |M|ω , and h < ω can be regarded as indicating how many “previous choices” are in

6 Here we are using the word meaning in its informal, non-technical sense.
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scope. After checking that under this formalization some of the nice properties of classical logics hold, we will verify that,
on regular formulas, S-semantics and T-semantics coincide.

The game G(M,ϕ, S, p,h) we are about to define deviates from the customary semantic game for IF-like logics: it is
a one-turn game where Abélard and Eloïse pick functions instead of elements. Although in this formulation the game-
theoretic nature of the semantics becomes arguably less apparent, we prefer it since the higher-order nature of the logic
becomes more evident.7 In Section 4, this game will be generalized to an n-turn game to provide natural game-theoretical
semantics for Hodges’ flattening operator.

Before we go into the definitions, we need some notation for the manipulation of functions (and, in particular, infinite
sequences). Let f : A → B be any function; we denote with f [a �→ b] the function

f [a �→ b](x) =
{

b if x = a,

f (x) otherwise.

As usual, if A′ ⊆ A then f � A′ : A′ → B will be the restriction of f to A′ .

The board. The game is played over the syntactic tree of a formula. Every node of the tree, except the ∼-nodes, belong
to one of the players: those initially under an even number of ∼-nodes belong to Eloïse, the rest belongs to Abélard. The
initial assignment of nodes to a player will be remembered along the game. Furthermore, some nodes may be decorated
with functions during the game:

1. ∃-nodes can be decorated with any function f : |M|ω → |M|.
2. ∨-nodes can be decorated with any function f : |M|ω → {L, R}.

Initially, these nodes have no decoration. Plus, there is a triple 〈S, p,h〉 and a placeholder (initially empty) for a sequence
in |M|ω .

The turn. The turn is composed of two clearly distinguished phases. In the first phase, both players decorate all their nodes
with proper functions. The order in which they tag their nodes is not important as long as they don’t get to see their
opponent’s choices in advance. For simplicity, we will assume they both play simultaneously. For the second phase, we
introduce a third agent, sometimes known as Nature, that can be seen as generating random choices. Nature first picks
some sequence from S and puts it in the placeholder. Next, it proceeds to evaluate the result of the turn using the following
recursive procedure:

R1 If the tree is of the form ∼ψ , Nature replaces it with ψ and evaluation continues.
R2 If the tree is of the form ψ1 ∨ /y1,...,yk ψ2, then its root must have been decorated with some f : |M|ω → {L, R}. Nature

then picks a sequence r ∈ |M|ω such that r(i) = s(i) for every i ∈ {0, . . . ,h − 1} \ {p(y1), . . . , p(yn)}, where s stands for
the sequence on the placeholder, and evaluates f (r). Observe that the values the player was not supposed to consider
are replaced with arbitrary values prior to evaluating the function. The tree then is replaced with ψ1 if the result is L
or with ψ2 otherwise, and evaluation proceeds.

R3 If the tree is of the form ∃x/y1,...,yk ψ , then it must be decorated with some f : |M|ω → |M|. Nature here also picks a
sequence r ∈ |M|ω such that r(i) = s(i) for every i ∈ {0, . . . ,h − 1} \ {p(y1), . . . , p(yn)}, where s stands for the sequence
on the placeholder, and evaluates f (r). Let us call this value b. Nature records this choice by replacing the sequence in
the placeholder with s[h �→ b]; x is bound to b by replacing p with p[x �→ h] and h is incremented by one. Finally, the
tree is replaced with ψ and evaluation proceeds.

R4 Finally, if the root of the tree is of the form R(t1, . . . , tk), the evaluation ends. Eloïse is declared the winner of the
match whenever this node belongs to her and M |
 R(t1, . . . , tk)[s ◦ p], or the node belongs to Abélard and M �|

R(t1, . . . , tk)[s ◦ p]. In any other case, the winner is Abélard.

One could argue that the in the play described above there is no such thing as turns, which usually implies alternation
of some kind. The reason why we call it the turn will become more clear in Section 4.

Winning strategies. A strategy for a player of the game G(M,ϕ, S, p,h) is just the collection of functions used to decorate
the syntactic tree of ϕ . Furthermore, the strategy is winning if it guarantees that the player will win every match of the
game, regardless the strategy of the opponent and the choices made by Nature. Observe that since Abélard and Eloïse
must play simultaneously (i.e. ignoring the opponent move) this is a game of imperfect information. Furthermore, the initial
valuation is “randomly” picked by Nature.8 Therefore, some games are probably undetermined, that is, none of the players
have a winning strategy (Example 3 in Section 4 exhibits one such game).

7 In this sense, our formulation is very close to the one due to Väänänen [19] in which Eloïse has to pick functions. In our case, both players pick
functions for there are also restrictions on Abélard’s moves.

8 The elements picked by Nature during the evaluation phase are irrelevant in this respect: the game can be formulated without this although in a less
convenient way: during evaluation, the player who did not play the function being evaluated picks the elements to obfuscate the current valuation. Caicedo
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We are now ready to give our game-semantic notion of truth and falsity. Observe, though, that this will be restricted to
only certain p and h. The rationale for this will become clear later (cf. Example 1 and Lemma 6).

Definition 2 (Proper context). We say that p : Vars → ω and h < ω are a proper context for a formula ϕ if p � Fv(ϕ) is injective
and {p(x) | x ∈ Fv(ϕ)} ⊆ {0, . . . ,h − 1}.

Definition 3 (|
+ and |
− for S-semantics). Given a formula ϕ , a suitable model M, a nonempty set S ⊆ |M|ω and a proper
context for ϕ , p : Vars → ω and h < ω, we define:

• M |
+ ϕ[S, p,h] iff Eloïse has a winning strategy for G(M,ϕ, S, p,h);
• M |
− ϕ[S, p,h] iff Abélard has a winning strategy for G(M,ϕ, S, p,h).

When S is the singleton set {s} we may alternatively write M |
+ ϕ[s, p,h] and M |
− ϕ[s, p,h]. Furthermore, we will
write M |
+ ϕ if M |
+ ϕ[|M|ω, p,h] whenever p and h are a proper context for ϕ (and analogously for M |
− ϕ).

Example 1. Consider θ := ∃x [x �= y]. One would expect that for any M with at least two elements, M |
+ θ[S, p,h] should
hold for any S ⊆ |M|ω , and for any (not necessarily proper contexts for θ ) p : Vars → ω and h < ω. However, Eloïse has no
winning strategy on G(M, θ, S, p,h) when p(y) = h. The problem here is that the value selected by Eloïse’s function for x,
whatever it is, will be recorded in position h, thus overwriting the value of y. Observe, though, that if p and h are a proper
context for θ , then it cannot be the case that p(y) � h.

The restriction to proper contexts is essential, and can be seen as the counterpart to the restrictions imposed in [16,
Definitions 6.1 and 6.10] going from G-equivalence to the Z -equivalence, in order to avoid clashes. The role of h is to keep
the domain of the ‘valuations’ essentially finite, which they are as well in [16]. What is different in this formalization is that
the S carries potentially more information than values assigned to values, as becomes clear in the next example.

Example 2. Let us revisit the irregular formula

θ2 := ∀x∀y∀z
[
x = y ∨ ∃y∃w/x[w �= x ∧ y = z]]

from Section 2.3 (page 336). We shall verify that for any model M, M |
+ θ2. For this, consider the following strategy for
Eloïse for the game G(M, θ2, S, p,h):

f∨(s) =
{

L if s(h) = s(h + 1),

R otherwise,
f∃y(s) = s(h + 2), f∃w/x(s) = s(h + 1).

The reader should verify that this is essentially the same strategy used for θ1 in Section 2.3. Observe that, for example,
s(h + 1) plays the same role that v(y) played in the latter, except that by using an offset from h (i.e., from the position in
s where the value for the outermost quantifier was recorded) instead of the variable name, we escape from the deathtraps
created by the rebinding of variables. In fact, Eloïse’s winning strategy in this example works for any renaming of variables
of θ2. The only information Eloïse needs to know is that the value picked by the first three universal quantifiers will be
stored in s(h), s(h + 1) and s(h + 2), respectively.

Even though the inner variable y (i.e. the one quantified existentially) now refers to the value stored at location h + 3,
it is within the strategy still possible to refer to the value stored at location h + 1, which is the value for the outer y (i.e.
the one quantified universally). What is different here from [16] is that the value is preserved even though no free variable
within the formula refers to this position anymore, assuming p is a proper context. (It might actually be the case that some
other, non-occurring variable still refers to location h + 1, but this is irrelevant.) While the main problems addressed in [16]
involve situations where the choice of a value for a bound variable in the formula overwrites a crucial value it previously
had even if it did not occur free in the formula, this overwriting no longer happens in this formalism. Therefore, it is possible
to define all notions on the basis of the (visible) free variables of the formula, rather than also having to take domains of
valuations into account (which is what [16] does).

So far we have defined |
+ and |
− with respect to sets of sequences using a game theoretical approach. We can also
give a compositional characterization, in the line of [9] and [15].

Theorem 3 (S-semantics compositionality). Let M be a suitable model, let S ⊆ |M|ω and let p : Vars → ω and h < ω be a proper
context. Then

and Krynicki suggest that Nature can be completely removed, by making the opponent of the player who owns the node closest to the root be the one
who picks the initial valuation [15, p. 20, Remark ii.]. However, this selection cannot be part of the player’s strategy, as this example shows: let v and v ′
be a constant and an injective valuation respectively; now, if Abélard is allowed to use the strategy “pick v ′ as initial valuation”, then N |
− x = y[{v, v ′}]
which violates the standard compositional definition of |
− .
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1. M |
+ R(t1, . . . , tk)[S, p,h] iff M |
 R(t1, . . . , tk)[s ◦ p] for all s ∈ S;

2. M |
− R(t1, . . . , tk)[S, p,h] iff M �|
 R(t1, . . . , tk)[s ◦ p] for all s ∈ S;

3. M |
+ ∼ψ[S, p,h] iff M |
− ψ[S, p,h];
4. M |
− ∼ψ[S, p,h] iff M |
+ ψ[S, p,h];
5. M |
+ ψ1 ∨ /y1,...,yk ψ2[S, p,h] iff there is an f : S → {L, R} such that

• f is {p(y1), . . . , p(yk)} ∪ {h,h + 1, . . .}-independent;
• SL �= ∅ implies M |
+ ψ1[SL, p,h], where SL = {s | s ∈ S, f (s) = L};
• S R �= ∅ implies M |
+ ψ2[S R , p,h], where S R = {s | s ∈ S, f (s) = R};

6. M |
− ψ1 ∨ /y1,...,yk ψ2[S, p,h] iff M |
− ψ1[S, p,h] and M |
− ψ2[S, p,h];
7. M |
+ ∃x/y1,...,yk ψ[S, p,h] iff there is a function f : S → |M| such that

• f is {p(y1), . . . , p(yk)} ∪ {h,h + 1, . . .}-independent; and
• M |
+ ψ[S ′, p[x �→ h],h + 1], where S ′ = {s[h �→ f (s)] | s ∈ S};

8. M |
− ∃x/y1,...,yk ψ[S, p,h] iff M |
− ψ[S ′, p[x �→ h],h + 1] for

S ′ =
⋃

a∈|M|

{
s[h �→ a] | s ∈ S

}
.

Proof. For the right-to-left implication, one proceeds by structural induction and shows that, for the ∃ and ∨ cases, the
function f plus the strategy for the subformula(s) constitute a winning strategy. For the left-to-right implication, one only
needs to see that if a player has a winning strategy on the game G(M,ϕ, S, p,h), then he also has a winning strategy in
which all the functions that constitute it satisfy the independence restriction, and this is relatively straightforward (the full
details can be seen, e.g. in [16, Theorems 4.7 and 4.8]). In every case, one also has to check that contexts are proper, but
this is trivial. �

In first-order logic, satisfaction is invariant under modification of the values assigned to variables that are not free in the
formula (i.e., if M |
 ϕ[v] and v and v ′ differ only on variables that are not free in ϕ , then M |
 ϕ[v ′]). We will show
next that in our setting, there are three operations on valuations that preserve satisfaction. In what follows, for S ⊆ Aω , we
define S � n = {(s(0), . . . , s(n − 1)) | s ∈ S}; we use the term h-permutation for any bijective function π : ω → ω such that
π(i) = i for all i � h; and S ◦ π = {s ◦ π | s ∈ S}.

Theorem 4. For all suitable M, nonempty S ⊆ |M|ω and proper contexts for ϕ , p and h:

1. M |
± ϕ[S, p,h] iff M |
± ϕ[S, p̃,h] whenever p̃ � Fv(ϕ) = p � Fv(ϕ).

2. M |
± ϕ[S, p,h] iff M |
± ϕ[ S̃, p,h] whenever S̃ � h = S � h.

3. M |
± ϕ[S, p,h] iff M |
± ϕ[S ◦ π,π ◦ p,h] whenever π is an h-permutation.

Proof. We only prove the last equivalence; the other are similar. We proceed by induction on ϕ and rely on Theorem 3.
For the base case, it is enough to observe that since π is a permutation, then (s ◦ π) ◦ (π ◦ p) = s ◦ p for every s ∈ |M|ω .
Negation follows trivially by inductive hypothesis. Suppose now that ϕ is of the form ∃x/y1,...,yk ψ . We know that M |
+
∃x/y1,...,yk ψ[S, p,h] iff M |
+ ψ[S ′, p[x �→ h],h + 1], where S ′ = {s[h �→ f (s)] | s ∈ S} and f is {p(y1), . . . , p(yk)} ∪ {h,h +
1, . . .}-independent. Let f ′ be such that f ′(s) = f (s ◦ π), which implies f ′(s ◦ π) = f (s). Furthermore, since, by hypothesis,
π(i) = i for all i � h we have that f ′ is {π ◦ p(y1), . . . ,π ◦ p(yk)} ∪ {h,h + 1, . . .}-independent. We only need to verify that
M |
+ ψ[S ′′, (π ◦ p)[x �→ h],h] where S ′′ = {s[h �→ f ′(s)] | s ∈ S ◦ π}. But because π(h) = h, we have:

S ′′ = {
s
[
h �→ f ′(s)

] ∣∣ s ∈ S ◦ π
} ={

(s ◦ π)
[
h �→ f ′(s ◦ π)

] ∣∣ s ∈ S
} ={

(s ◦ π)
[
h �→ f (s)

] ∣∣ s ∈ S
} ={

s
[
h �→ f (s)

] ◦ π
∣∣ s ∈ S

} = S ′ ◦ π

and the rest follows by inductive hypothesis using the fact that (π ◦ p)[x �→ h] = π ◦ (p[x �→ h]). The remaining cases are
analogous. �

Observe that item 2 of Theorem 4 illustrates that h makes our given alternative to valuations essentially finite.
In [9, Theorem 7.6], Hodges shows that the regular fragment of slash logic has the full abstraction property. This basically

says that two formulas with the same free variables have the same semantic value (i.e. the same meaning) if and only if
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replacing one of them by the other in a sentence never changes the truth value of the sentence. We agree with Hodges that
“any sensible compositional semantics must be fully abstract” [9, p. 541]. Before verifying that S-semantics preserves full
abstraction, we need to give a precise definition of the meaning of a formula in a structure.

Definition 4 (Meaning for S-semantics). The meaning of a formula ϕ of signature σ over a σ -structure M is defined as
MeaningS

M(ϕ) = 〈a,b〉 where

a = {
(S, p,h) | p,h is a proper context for ϕ and M |
+ ϕ[S, p,h]};

b = {
(S, p,h) | p,h is a proper context for ϕ and M |
− ϕ[S, p,h]}.

As before, we say that two formulas are equivalent whenever their meanings coincide over any appropriate structure.

Definition 5 (≡h and ≡). We write ϕ1 ≡h ϕ2, if for every suitable M, S and p such that p,h is a proper context for
both ϕ1 and ϕ2, M |
± ϕ1[S, p,h] iff M |
± ϕ2[S, p,h]. We use ϕ1 ≡ ϕ2 (S-equivalence) whenever ϕ1 ≡h ϕ2 for every
h � ‖Fv(ϕ1) ∪ Fv(ϕ2)‖.

Theorem 5 (Full abstraction). Let ϕ1 and ϕ2 be two formulas of signature σ such that Fv(ϕ1) = Fv(ϕ2). The following are equivalent:

1. For any σ -structure M, MeaningS
M(ϕ1) = MeaningS

M(ϕ2).
2. For any sentence ψ and for any appropriate structure M, if ψ ′ comes from ψ by replacing an occurrence of ϕ1 as a constituent of

ψ by an occurrence of ϕ2 , M |
± ψ iff M |
± ψ ′ .

Proof. The implication (1) ⇒ (2) is straightforward from Theorem 3. For (2) ⇒ (1), suppose that MeaningS
M(ϕ1) �=

MeaningS
M(ϕ2) for some σ -structure M, where Fv(ϕ1) = {x1, . . . , xn}. Without loss of generality, assume there is a

nonempty set S ⊆ |M|ω , a natural number k � n and a function p : Vars → ω such that

M |
+ ϕ1[S, p,k] and M �|
+ ϕ2[S, p,k]. (2)

(The case M |
− ϕ1[S, p,k] and M �|
− ϕ2[S, p,k] is similar.) By item 2 of Theorem 4 above, one may assume that if s ∈ S
and s′ � k = s � k then s′ ∈ S . Furthermore, by item 3 one may also assume that p(xi) = i − 1 for i ∈ {1, . . . ,k}. Observe that
xn+1, . . . , xk are not free variables of ϕ1.

Let us extend σ with a new k-relation symbol R and let M′ be the model extending M with R interpreted as S � k. By
the properties of S described above, s ∈ S iff s � k ∈ R M′

. For i = 1,2 let

χi := ∀x1 · · · ∀xk
(∼R(x1, . . . , xk) ∨ ϕi

)
.

It is clear that χ1 and χ2 are both sentences and that χ2 comes from χ1 by replacing the occurrence of ϕ1 by ϕ2. To
conclude the proof, we now show that

M′ |
+ χ1
[|M|ω, p,0

]
and M′ �|
+ χ2

[|M|ω, p,0
]
.

The winning strategy for Eloïse on the game G(M′,χ1, |M|ω, p,0) consists in playing, for the outermost ∨ of χ1, an
f∨ such that f∨(s) = L iff s /∈ S , in combination with the strategy she already has – according to (2) – for G(M,ϕ1, S, p,k).
Indeed, after evaluating the first k functions played by Abélard, Nature ends up with some sequence s ∈ |M|ω in the
placeholder, h = k and the pointer function p. Then Nature evaluates f∨(s); in case s /∈ S then Nature picks ∼R(x1, . . . , xk)

and evaluates it in s ◦ p. Since s � k /∈ R M′
, then M′ �|
 R(x1, . . . , xk)[s ◦ p] and therefore Eloïse wins. Alternatively, if s ∈ S

then Nature continues with ϕ1 and Eloïse wins since her strategy is winning for G(M,ϕ1, S, p,k).
On the other hand, Eloïse does not have a winning strategy for the game G(M′,χ2, |M|ω, p,0), as having such strategy

would imply having one for G(M,ϕ2, S, p,k) – just remove the function picked for the outermost ∨-node – and this would
contradict (2). �

Since strategies for the game G(M,ϕ, S, p,h) must deal with sequences but not with variable values, it is straightfor-
ward to verify the following:

Proposition 3. If ϕ1 ≡α ϕ2 then ϕ1 ≡ ϕ2 .

We are now ready to show that, when restricted to regular formulas, the equivalence notions of S-semantics and T-
semantics match. Of course, this implies that the set of valid (regular) formulas of both logics is the same and, because of
Proposition 3, S-semantics is a proper generalization of T-semantics. To do this, we will use the following technical lemma.
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Lemma 6. Let ϕ(x0, . . . , xh−1) be a regular formula such that in every branch of its syntactic tree, variables are bound in the same
order. Furthermore, let p : Vars → ω be such that p(xi) = i for 0 � i < h. Then M |
± ϕ[S, p,h] iff M |
± ϕ(x0 . . . xh−1)[S � h].

Proof. Let x̄ = x0, . . . , xh−1. Suppose the list of occurrences of bound variables appearing in each branch of the syntactic
tree of ϕ(x̄) (from the root to the leaves) is a prefix of xh, xh+1, xh+2, . . . . The proof goes by induction in the complexity
of ϕ . Both the base case and outermost negation are straightforward. Let us analyze the case ϕ = ∃xh/xn1 ,...,xnk

ψ(x̄, xh), for
some {n1, . . . ,nk} ⊆ {0, . . . ,h − 1}.

For the left-to-right implication, suppose M |
+ ϕ(x̄)[S, p,h]. Just like we did in the proof of Theorem 5, we may
assume, without loss of generality, that if s ∈ S and s′ � h − 1 = s � h − 1, then s′ ∈ S . By Theorem 3 (item 7), M |
+
ψ(x̄, xh)[S ′, p[xh �→ h],h + 1], where S ′ = {s[h �→ f (s)] | s ∈ S}, for some f : S → |M| such that f is {p(xn1 ), . . . , p(xnk )} ∪
{h,h + 1, . . .}-independent. Since p = p[xh �→ h], by inductive hypothesis we get M |
+ ψ(x̄, xh)[S ′ � h + 1]. Fix a ∈ |M| and
define g : S � h → |M| as g(s0, . . . , sh−1) = f (s0 . . . sh−1aaa . . .) for every (s0, . . . , sh−1) ∈ S � h. Since s0 . . . sh−1aaa . . . ∈ S
(because of the above assumption), g is clearly well defined; moreover, because f is {p(xn1 ), . . . , p(xnk )} ∪ {h,h + 1, . . .}-
independent, g is {n1, . . . ,nk}-independent. But this means that S ′ � h + 1 = {(s0, . . . , sh−1, g(s0, . . . , sh−1)) | (s0, . . . , sh−1) ∈
S � h} and, therefore, by Theorem 1 (item 4), M |
+ ϕ(x̄)[S � h].

For the other direction, suppose M |
+ ϕ(x̄)[S � h]. By Theorem 1 (item 4), there exists some function g : S � h → |M|
that is {n1, . . . ,nk}-independent and such that M |
+ ψ(x̄, xh)[T ′], with

T ′ = {(
t1, . . . , th, g(t1, . . . , th)

) ∣∣ (t1, . . . , th) ∈ S � h
}
.

Observe that T ′ = S ′ � h + 1, where S ′ = {s[h �→ g(s(0), . . . , s(h − 1))] | s ∈ S}. By inductive hypothesis and the fact that
p[xh �→ h] = p, we conclude that M |
+ ψ(x̄, xh)[S ′, p[xh �→ h],h + 1].

Define f : S → |M| as f (s) = g(s(0), . . . , s(h − 1)) for s ∈ S . By definition, f does not depend on positions {h,h + 1, . . .},
and since g is {n1, . . . ,nk}-independent, then f is {p(n1), . . . , p(nk)}∪ {h,h + 1, . . .}-independent. By Theorem 3 (item 7) we
conclude M |
+ ϕ(x̄)[S, p,h].

The case for |
− and ϕ = ∃xh/xn1 ,...,xnk
ψ(x̄, xn) is straightforward. A similar argument can be used for the case ϕ(x̄) =

ψ1(x̄) ∨ /xn1 ,...,xnk
ψ2(x̄). �

Theorem 7. If ϕ1 and ϕ2 are regular then the following are equivalent:

1. ϕ1(x0, . . . , xh−1) ≡T ϕ2(x0, . . . , xh−1).
2. ϕ1 ≡h ϕ2 .

Proof. We will only show it for |
+ , the argument for |
− is similar. In what follows x̄ will stand for x0, . . . , xh−1. To see
that (1) implies (2), by the counterpositive, suppose that M |
+ ϕ1(x̄)[S, p,h] and M �|
+ ϕ2(x̄)[S, p,h], for some suitable
model M and some p such that p, h is a proper context for ϕ1 and ϕ2. One can build an h-permutation π such that
π(p(xi)) = i for 0 � i < h and using Theorem 4 one gets M |
+ ϕ1(x̄)[S ◦ π,π ◦ p,h] but M �|
+ ϕ2(x̄)[S ◦ π,π ◦ p,h]. By
Proposition 3, we can pick regular ϕ′

1 ≡α ϕ1 and ϕ′
2 ≡α ϕ2 where variables are bound in the same order on every branch

of their syntactic trees and, using Lemma 6 we obtain M |
+ ϕ′
1(x̄)[S ◦ π � h] and M �|
+ ϕ′

2(x̄)[S ◦ π � h], which implies
ϕ1(x̄) �≡T ϕ2(x̄) using Proposition 1.

For the other direction, suppose ϕ1(x̄) �≡T ϕ2(x̄), i.e., M |
+ ϕ1(x̄)[T ] and M �|
+ ϕ2(x̄)[T ], for some suitable model
M and some trump T ⊆ |M|h . Define S = {t1 · · · ths | (t1, . . . , th) ∈ T , s ∈ |M|ω} and p(xi) = i. Since Fv(ϕ1) ⊆ {x̄} and
Fv(ϕ2) ⊆ {x̄}, it follows that p,h is a proper context for both ϕ1 and ϕ2. Again, using invariance under α-equivalence and
Lemma 6 we conclude M |
+ ϕ1[S, p,n] and M �|
+ ϕ2[S, p,n]. �
Corollary 8. If ϕ1 and ϕ2 are regular, then ϕ1 ≡T ϕ2 iff ϕ1 ≡ ϕ2 .

Proof. From left to right, suppose that for all {y1, . . . , yk} ⊇ Fv(ϕ1) ∪ Fv(ϕ2), ϕ(y1, . . . , yk) ≡T ψ(y1, . . . , yk). Given h �
‖Fv(ϕ1) ∪ Fv(ϕ2)‖, let

{x0, . . . , xh−1} ⊇ Fv(ϕ1) ∪ Fv(ϕ2).

By Theorem 7 it follows that ϕ1 ≡h ϕ2.
From right to left, suppose ϕ1 ≡h ϕ2 for every h � ‖Fv(ϕ1) ∪ Fv(ϕ2)‖. Given any {x1, . . . , xn} ⊇ Fv(ϕ1) ∪ Fv(ϕ2) it is clear

that ϕ1 ≡n ϕ2, since n � ‖Fv(ϕ1) ∪ Fv(ϕ2)‖. By Theorem 7 it follows that ϕ1(x1, . . . , xn) ≡T ϕ2(x1, . . . , xn). �
From this corollary we may conclude that S-semantics is in fact an extension of T-semantics to arbitrary formulas (cf. Propo-
sition 2).
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4. Game theoretical semantics for IF with flattening

It is clear that if M |
+ ϕ then M �|
− ϕ , and if M |
− ϕ then M �|
+ ϕ . However there are sentences which may be
neither true nor false in a model; Example 3 below exhibits one such sentence. When working with imperfect information,
being false is in general stronger than being not true.

Example 3. Let θ := ∀x∃y/x[y �= x] and let M be an arbitrary model with at least two elements. For h = 0, Eloïse has
certainly no winning strategy, but whatever Abélard chooses for x, it may happen that Eloïse is able to “accidentally guess”
it. Thus M �|
+ θ and M �|
− θ .

Hodges [9] considers the problem of adding classical negation (¬) to slash logic. He wants, for instance, M |
± ¬ϕ iff
M �|
± ϕ to hold; restoring, for sentences, the identity between being not-true and being false with respect to classical
negation. To this end, he introduces the flattening operator ↓, and stipulates ¬ψ ≡ ∼ ↓ ψ .

Since in this section we move to slash logic enriched with the flattening operator, we assume from here on that ↓ may
occur freely in a formula. First of all, we need to specify its semantics. Hodges used a compositional definition; therefore,
we will take Theorem 3 to be a compositional definition of |
+ and |
− for slash logic and extend it to handle ↓. Observe
we are simply adapting his notation according to our presentation.

Definition 6 (|
+ and |
− for S-semantics with ↓). We define |
+ and |
− as the relation induced by clauses 1–8 of Theo-
rem 3, plus

9. M |
+↓ ψ[S, p,h] iff M |
+ ψ[s, p,h] for every s ∈ S;
10. M |
−↓ ψ[S, p,h] iff M �|
+ ψ[s, p,h] for every s ∈ S .

Example 4. Observe from Example 3 that M �|
+ θ and M �|
+ ∼θ , since ∼ is game-negation. Let us see what happens if
we use ¬ instead (recall ¬ψ is defined as ∼↓ ψ ). Using Theorem 3 (item 3) and Definition 6 (item 10), one gets M |
+ ¬θ

iff M |
− ↓ θ iff M �|
+ θ[s, p,h] for every s ∈ |M|ω and proper context p, h. Since for no s ∈ Mω Eloïse has a winning
strategy for G(M, θ, S, p,h), we conclude M |
+ ¬θ .

Hodges could not provide a game-theoretical counterpart for the ↓ operator.9 Next, we will fill this gap by defining the
game G↓(M,ϕ, S, p,h), that extends the rules of the game described in Section 3 to handle formulas containing arbitrary
occurrences of ↓, and proving its equivalence.

The board. The board is essentially the same one used for G(M,ϕ, S, p,h). The syntactic tree of the formula now may
contain ↓-nodes; these are assigned to players using the same criteria: those under an even number of ∼-nodes belong to
Eloïse, the remaining ones to Abélard. Just like the leaves of the tree, ↓-nodes will not be decorated.

The turns. Unlike the one of Section 3, this game may last more than one turn. At any point of the game, the remaining
number of turns will be bounded by the number of nested occurrences of ↓-nodes in the game-board. The opening turn
is played exactly like in Section 3, although we still need to stipulate what happens, during the evaluation phase, if Na-
ture arrives to a formula of the form ↓ ψ . Observe that this means that if no ↓ occurs in ϕ , then G(M,ϕ, S, p,h) and
G↓(M,ϕ, S, p,h) are essentially the same game.

So, summing up, when the game starts, both players decorate their nodes simultaneously; then Nature picks a sequence
and puts it in the placeholder, and finally starts the evaluation phase (cf. rules R1–R4 in Section 3). If evaluation reaches a
leaf (i.e., an atom), then the game ends, and the winner is determined according to rule R4. For the extra case we add the
following rule:

R5 If the tree is of the form ↓ ψ , then the turn ends.

The initial turn differs slightly from the subsequent ones, where the formula on the board will be always of the form ↓ ψ .
Now both players get to redecorate their nodes, except that in this case, they proceed one after the other. The player who
owns the ↓-node at the root gets to do it first. After this, Nature replaces the tree with ψ and proceeds to the evaluation
phase following rules R1–R5.

Observe that in G↓(M,↓ ψ, S, p,h) what Abélard and Eloïse do in their first turn is completely irrelevant: they will
get to redecorate ψ in the second turn. Furthermore, notice that if S is a singleton set, then the first turn can be ignored

9 “In the presence of ↓, we can’t define a game G(φ, A) for arbitrary A and φ.” [9, p. 556].
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altogether (Nature has to pick a valuation from a singleton set) and thus the game becomes of perfect information (cf.
footnote 8 on page 339).

We won’t go into a formal description of a winning strategy for G↓(M,ϕ, S, p,h). We simply take it to be some form
of oracle that, when followed, guarantees that the game will end in a winning position, regardless what the opponent or
Nature may play.

Theorem 9 (Game semantics for ↓). Given a formula ϕ , a suitable model M, a nonempty set S ⊆ |M|ω and a proper context for ϕ ,
p : Vars → ω and h < ω, the following holds:

• M |
+ ϕ[S, p,h] iff Eloïse has a winning strategy for G↓(M,ϕ, S, p,h);
• M |
− ϕ[S, p,h] iff Abélard has a winning strategy for G↓(M,ϕ, S, p,h).

Proof. The proof goes by induction on ϕ and is, essentially equivalent to the one for Theorem 3 except that we also have to
account for the case where ϕ is ↓ ψ . Suppose first M |
+ ↓ ψ[S, p,h]; this means that M |
+ ψ[s, p,h] for all s ∈ S . We
want to construct a winning strategy for Eloïse for the game G↓(M,↓ ψ, S, p,h). The first turn is irrelevant; for the second
one, Eloïse simply has to consider the valuation s in the placeholder and use the winning strategy for G↓(M,ψ, {s}, p,h)

that, by inductive hypothesis, she has. For the other direction, suppose Eloïse has a winning strategy for G↓(M,↓ ψ, S, p,h).
This implies she has a winning strategy for G↓(M,ψ, {s}, p,h) for all s ∈ S: play whatever she would play as her second
turn in G↓(M,↓ ψ, S, p,h) if Nature happened to pick s. By inductive hypothesis, this means M |
+ ψ[s, p,h] for all s ∈ S
and, thus, M |
+↓ ψ[S, p,h].

Suppose, now, M |
−↓ ψ[S, p,h]; this implies that for every s ∈ S , M �|
+ ψ[s, p,h]. From here we derive a winning
strategy for Abélard on the game G↓(M,↓ ψ, S, p,h) as follows. The first turn is irrelevant; for the second one, an s ∈ S
has been picked and Eloïse has played first following some strategy. Observe that this strategy is also a possible strategy
for G↓(M,ψ, {s}, p,h). But by inductive hypothesis, since M �|
+ ψ[s, p,h], it cannot be a winning strategy for this game,
i.e. Abélard has some strategy that defeats hers. Abélard simply has to use this strategy from this point on and will win
the game. Analogously, if Abélard has a winning strategy for G↓(M,↓ ψ, S, p,h), then for every s ∈ S picked by Nature and
any strategy followed by Eloïse, there is a way in which Abélard can play and win the game. But this means that for no
s ∈ S , Eloïse has a winning strategy for G↓(M,ψ, {s}, p,h) and, thus, by inductive hypothesis, M �|
+ ψ[s, p,h] and, finally,

M |
−↓ ψ[S, p,h]. �
We can now use game semantics as an alternative tool to reason about the properties of ↓, as illustrated by the following

two results.

Theorem 10. Let ψ ′ be the formula obtained from ψ by removing from the slashed connectives every variable that occurs free in ψ .
Then, for every S and every proper context for ψ , p and h, M |
± ↓ ψ[S, p,h] iff M |
± ↓ ψ ′[S, p,h].

Proof. The left-to-right implication is trivial: any winning strategy for the game G↓(M,↓ ψ, S, p,h) is also a winning
strategy for G↓(M,↓ ψ ′, S, p,h). For the other direction, we show how to proceed in the case of Eloïse, for Abélard a
similar argument applies. Let us suppose, then, M |
+ ↓ ψ ′[S, p,h]; this means that for all s ∈ S , M |
+ ψ ′[s, p,h]. Now,
take any arbitrary s ∈ S; Eloïse has a winning strategy for G↓(M,ψ ′, {s}, p,h), let us call it Ts . Consider the next strategy:
“whenever Ts mandates to play a function f for a slashed connective and x1, . . . , xn are free variables of ψ that occur among
the restrictions of the connective, play f ′(r) = f (r[p(x1) �→ s(p(x1)), . . . , p(xn) �→ s(p(xn))]) instead”. It is straightforward to
see that this is a winning strategy for G↓(M,ψ, {s}, p,h) and, thus, M |
+ ↓ ψ ′[S, p,h]. �

Observe that in the above theorem, ↓ ψ ′ may have fewer free variables than ↓ ψ . In that case, they will not be equivalent
formulas.

Theorem 11. Let ψ be a formula such that in its syntax tree there is a path from the root to a ↓-node and every node in the path is
either an ∼-node or is under an even number of ∼-nodes. Furthermore, let ψ ′ be the formula obtained by replacing that ↓-node in ψ

by its descendent. Then, for all S and every proper context for ψ , p and h, M |
± ↓ ψ[S, p,h] iff M |
± ↓ ψ ′[S, p,h].

Proof. It suffices to observe that in this case, whatever Abélard plays in the second turn of the game G↓(M,↓ ψ, S, p,h),
it cannot modify any node in the path between the root of ψ and the ↓-node in question. Thus there is nothing Eloïse can
exploit if she gets the chance to redecorate the subtree below this node. �

In particular, the above result implies that if a formula contains two consecutive occurrences of ↓ without any occurrence
of ∼ between them, then the second occurrence can be eliminated, leaving the meaning of the formula unaltered.
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5. Conclusions

It is well known that IF-like formulas are very sensitive to context; much more than formulas in classical logics. The
failure of basic properties (e.g. no α-equivalence, ϕ �≡ ϕ ∨ϕ , etc. [10]) witnessed to this fact. However, one of the points we
tried to make in this paper is that so far there has been a disagreement in what is the context of an IF-like formula. This
clearly follows, we believe, from Proposition 2.

Hodges [9] opted to split the context in two: syntactically, a list of variables in scope is a constituent of every formula;
semantically, the value assigned to each variable is denoted by a list. In [16], the context is expressed only at the semantic
level: the finite domain of valuations tries to capture the idea that only a finite number of variables have been bound.
Similarly, we express the context of a formula only at the semantic level. Like in [9], our contexts contain a finite list of
values (the prefixes of length h of S , cf. item 2 of Theorem 4) but since we don’t want to restrict to regular formulas, we
need to be able to interpret the free variables.

We have shown that the logic we obtain is an extension to the whole fragment of Hodges’ trumps semantics (cf. Corol-
lary 8). We can thus say that there are two alternative IF-like logics. Given the choice, we believe α-equivalence is a key
property, one we would rather not sacrifice. For instance, because α-equivalence now holds, it is straightforward to take
the flawed normal form results of [15] and show them to work under S-semantics. For most of the part one can simply
reproduce Caicedo and Krynicki’s original argument. Observe that they have also been fixed for V-semantics in [16] but it
required a lot of technical effort (and yet, the equivalence results are context-dependent).

The last part of the paper was devoted to investigate the ↓-operator from a novel game-theoretical perspective. This
lead us to some insight about its properties, specially when occurring nested and deeply inside a formula (cf. Theorems 10
and 11). Furthermore, the alternating selection of functions in the game-theoretical semantics for ↓ is suggesting that one
can express alternating higher-order quantifiers although the precise expressive power of the operator still needs to be
pinpointed.
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