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Abstract—Smart grid design depends on the availability of
realistic data. In the near future, energy demand by electric
vehicles will be a substantial component of the overall demand
and peaks of required power could become critical in some
regions. Transportation research has been using micro-simulation
based activity-based models for traffic forecasting. The resulting
trip length distribution allows to estimate to what extent internal
combustion engine vehicles can be substituted by electric vehicles.
Second, combining the results emerging from activity based
models with assumptions on electric vehicles market share,allows
to predict energy and power demand in time and space. Further-
more, smart grid management effects can be investigated using
activity based models because generated schedules determine how
charging periods can float in time. This paper presents results
calculated for the Flanders region.

I. I NTRODUCTION

Activity based models (AB models) are behavioral models
predicting activity schedules which can be used to derive
transportation needs. Model parameters are calculated from
census demographic data and from periodic dedicated mobility
surveys (Onderzoek Verplaatsingsgedrag, OVG). A synthetic
population is generated and an activity schedule is gener-
ated for each household member on a typical working day.
The model output consists of predicted activities and trips
for which origin, destination, motive, time-of-day, transporta-
tion mode, household characteristics and more attributes are
known. AB models are based on microsimulation of individual
actors. Because of the rich information content, results can be
used for various types of analysis [1].
Several scenarios of electric vehicle (EV) market penetration
have been studied. First we explain what hypotheses about EV
drivers behavior have been made and how EV characteristics
have been determined from literature and from available
statistics. Next some details of the calculation are described.
Finally, results for the Flanders region (6 million inhabitants,
13000 square kilometers) in Belgium (11 million inhabitants,
30000 square kilometers) are presented.

II. CONTEXT

A. Energy vs. Power

According to several sources ([2],[3]) the total amount of
energy drawn from the grid by electric vehicles is relatively
small : a 30% market share EV would represent 3% of the total
annual electric energy consumption for the region of Milan,
Italy.

The amount of energy required yearly for a household EV
is of the same order of magnitude as the current household
electric energy consumption. According to figures published
in Oxford University Environmental Change Institutewebsite
statistics pages ([4]) the average yearly consumption for a
belgian household amounts to 3899 [kWh/year]. A similar
figure (3500 [kWh/year]) for Belgium is mentioned by [5].
Power demand while charging electric vehicles however de-
serves attention since charging time and location highly influ-
ence the size of peak demand. Perujo and Ciuffo [3] studied
power demand for the Milan region using the assumptions
that people will not charge their car batteries everyday but
only when needed and that charging starts between 16:00h
and 19:00h in the evening obeying a uniform distribution over
time. Those assumptions can be refined : [2] recognizes the
need for statistics on daily commuter trips for a particular
region. The study described in this article refines the assump-
tions about charging time and location by using the results of
an activity based transport demand model.

B. The use of activity based models

In order to dimension the electric grid parameters, accurate
estimates for power demand as a function of time and location
are essential. Such estimates can be based on the results
of calibrated activity based (AB) transport demand models
because those models deliver detailed location, timing and
motivation information about trips and activities for each
individual. Two strategies for battery charging have been used
to calculate peak power demand as a function of time and
location :

• Scenario 1 : people start charging as soon as possible
during the low tariff period. This scenario is used as a
reference.

• Scenario 2 : people start charging at a uniformly dis-
tributed moment in time and so that their cost is minimal
(maximum use of low tariff period) which looks like a
decentralised smartgrid strategy for peak shaving.

In both cases, charging period is assumed to be contiguous
(uninterrupted). Furthermore we hypothesize that everyone
will recharge batteries everyday due to the well known
range anxiety. This study has been limited to two scenarios.
However, since AB models are microsimulation based, each
individual actor behaves in its own specific way. Different



Motor cylinder volume
V < 1400 1400 ≤ V ≤ 2000 2000 < V

EV category small medium large
Market share 0.496 0.364 0.140
Battery capacity
[kWh]

10 20 35

Range [km] 100 130 180
Energy consump-
tion [kWh/km]
: lower limit

0.095 0.138 0.175

Energy consump-
tion [kWh/km]
: upper limit

0.110 0.169 0.214

TABLE I
TECHNICAL CHARACTERISTICS FOR VEHICLES IN SPECIFIC CATEGORIES.
TO DETERMINE MARKET SHARE, EV CATEGORIES ARE MAPPED TOICE

CATEGORIES FOR WHICH MARKET SHARE IS KNOWN.

actor categories thus can show different preferences and par-
ticular scenarios based on specific actor classifications can be
evaluated.

C. Related work

Clement-Nyns et al. [6] evaluatecoordinated charging
strategies for a belgian case. In such systems customers need
to specify time limits for charging (which can be produced
by AB-models). Waraich et al. [7] evaluate energy tariff
effects on charging behavior for the city of Berlin by coupling
MATSim-T (travel demand simulator framework) toPMPSS
(PHEV Management and Power Systems Simulation).

III. G RID LOAD CALCULATION

Since the EV market is only emerging, predictions cannot
be based on extensive statistics. The assumptions made have
been explained and argued below.

A. Vehicle categories

Electric cars are subdivided into the categoriessmall,
medium, large similar to what is done in [3]. In order
to estimate the energy requirement, one needs to know the
contribution of each one of those categories to the complete
vehicle set. Belgian government statistics provide a classi-
fication of internal combustion engine (ICE) vehicles based
on the motor cylinder volume : they provide a distribution
of the registered cars using that classification. We state the
one-to-one mapping of categories given in table I that shows
market share and technical characteristics for each category.
Vehicle characteristics in the table have been derived from
data in [3] and [8], the market share figures have been taken
from the belgian federal government 2009 statistics (PARC010
Transport Indicator) [9]

B. Available Chargers

Two types of chargers are considered : 3.3 [kVA] and
7.2 [kVA] chargers compatible with the flemish grid. Our
model distinguishes betweenhomeandwork locationchargers.
Charger type occurrence probability is given in table II. The
power value for home chargers is assumed to depend on
the car category : smaller cars are equipped with a less

powerfull charger. On the other hand, companies offering car
charging facilities provide powerful chargers in order to save
time and extend the distance that can be bridged during one
day. Furthermore, electric energy is hypothesized to be less
expensive than fuel (mainly due to tax reasons).

C. Company cars in Belgium

Employers are believed to allow company car (CC) drivers
to charge at the work location because that is less expen-
sive than providing fuel cards to employees. However, for
technical reasons, some companies cannot provide the re-
quired infrastructure. The fraction of actors who can charge
batteries at the work location has been determined as a
fraction of company car drivers. It has been assumed that 50%
(FRAC_WORK_CHARGERS in table III) of the work locations
provides suitable infrastructure for battery charging.
The AB model predicts trips and provides information about
car availability but not about car ownership. In order to
estimate the number of people able to charge batteries at the
work location, we need to estimate the fraction of work trips
traveled by company car.
The number of company car users has been derived from
following sources. Gutiérrez [10] page 2 cites a report stating
that in Belgium 20% of the employees have a company
car. According to [11] (survey conducted by SD-WORX)
28.9% of the belgian employees had a company car available
in 2007. Many reports usecompany car ownershipas an
independent variable to classify quantities like average trip
distance, willingness to change to public transport . . . but
do not mention company car market share figures. On the
other hand, the COCA (Company Car analysis) report [12]
states that depending on the context, multiple definitions of a
company car(voiture de société) are in use because both fiscal
and operational aspects are concerned. The COCA definition
(A company car is made available by a company to an
employee for both professional and private use) is used in our
study. The report only states that 45% of new car registrations
in Belgium are for company cars but does not mention the
fraction of employees having a company car at their disposal.
The same COCA report states that, based on two belgian
reports (OVG for Flanders andERMMW for Wallonia), it
can be concluded that 6% . . . 7% of the car fleet in use
by belgian households, is company owned (source [12] page
31/80). Another method described in [12] page 31-80 estimates
that 10% of all registered cars in Belgium are company cars.
Therefore, this report assumes for the model that 10% of the
actors driving to work, make use of a company car.

D. Method overview

TheFeathers software [13] created by the Transportation
Research Institute (IMOB) has been used to generateactivity-
travel schedules(daily agenda for each individual of the
flemish population). Each schedule consists of trip and ac-
tivities. For each trip, departure time, trip duration, origin and
destination zones are predicted. For each activity, the purpose
(work, shop, bring-get, . . . ) is predicted. In this study, only



Car category Prob(3.3[kW]) Prob(7.2)[kW]
Home

small 0.8 0.2
medium 0.4 0.6
large 0.1 0.9

Work
small 0.1 0.9
medium 0.1 0.9
large 0.1 0.9

TABLE II
CHARGER TYPE DISTRIBUTION

DCD_FRAC Deep charge depletion fraction 0.1
off2realCorrection Range reduction factor 0.85
CC_PROBABILITY Fraction of employees driving a

company car
0.1

FRAC_WORK_CHARGERS Fract of CC drivers charging at
work location

0.5

lowTariffFirst Low tariff period first minute 22:00h
lowTariffLast Low tariff period last minute 05:59h

TABLE III
SIMULATION PARAMETERS

work and non-work activities are distinguished.Feathers
results apply to a single 24-hour period. A working day
simulation has been used in this study.
An application has been written to compute energy and power
demand fromFeathers results in 3 steps as follows :

• In a first step, schedules having at least one car trip are
extracted and data structures are set up.

• In the second step, car ownership, possibility of work
location charging, car characteristics (range, distance spe-
cific energy consumption, battery capacity) and the types
of home and work location charger used, are determined.
In this way, an electric car is assigned to each schedule in
order to calculate the feasibility of electrification. Finally,
a feasibility indicator is calculated : it tells whether or not
the schedule can be executed using the assigned electric
car. Each schedule is assumed to be executed using a
single car and a predefined fraction of the company cars
can get recharged at the work location as explained in
section III-C; for details, refer to section III-G. The set of
electrically feasibleschedules is used for stochastic sam-
pling during the third step. Feasible schedules are kept
as a population from which to draw items to implement
different electrification scenarios. The set of electrically
feasible schedules is partitioned as specified in diagram
1. For each one of the leaf node parts, the market share
has been specified : the results shown in this report hold
for 10% no-work trip and 5%work trip electrification.

• In the third step, charging scenarios are evaluated. Sched-
ules are sampled from the partitions set up in the second
step and the start time for each charging operation is
determined. Energy requirement and power demand are
accumulated for every minute of the day for each zone.

All parameters mentioned below have been smmarized in table
III.

Fig. 1. Car users partitioning : market share is specified forshaded subsets

E. Vehicle ownership

Cars not used for any work trips are assumed to be privately
owned cars. From the cars used for work trips, a fraction is
taken to be a company car according to the data given in
section III-C.

F. Vehicle characteristics determination

Vehicle characteristics are determined by random selection,
independently of schedule characteristics.

• Vehicle categoryis randomly selected from the distribu-
tion specified in table I

• The probability for work location charging (configuration
setting) and the type of charger are determined (from
table II).

• Vehicle range is selected from table I.
• Vehicle consumptionis randomly selected using a uni-

form distribution in the interval specified for the vehicle
category (from table I). This is the consumption deter-
mined by official US and European standard (FTP,WP.29,
etc) test suites that do not account for cabin clima (heat-
ing, airco) nor for frequent acceleration and deceleration.

• The battery capacity is derived from range and distance
specific consumption and has been verified with data
found in literature ([8],[14],[15]).

• The specific energy consumption as determined by euro-
pean standard methods (UNECE WP.29 R101) is argued
to be an underestimation. The standardised test conditions
differ from operating conditions : hence, arange reduc-
tion coefficient(off2realCorrection in table III) of
0.85 has been applied. After battery capacity calculation,
the range reduction coefficient is used to adjust the spe-
cific consumption (which is used in schedule feasibility
and energy demand calculations).

• Finally, the charger power is randomly selected for both
home and work location chargers using the distribution



specified in table II.

G. Electrifiedschedules

In order to be feasible, each location in the schedule shall
be reachable when starting with a fully charged battery in the
morning. A schedule shall fulfil the condition

∀i : Cb +

j<i∑

j=0

cd,j ∗ cp,j − dO,i ∗ con ≥ Cb ∗DCD (1)

wherei andj are location indices,Cb is the battery capacity,D
is the set of all destinations,cd,i is the charge-period duration
at the i-th location andcp,i is corresponding power,dO,i is
the total distance from the first origin to the i-th destination,
cons is the distance specific energy consumption andDCD

is the maximal deep charge depletion.
• A deep charge depletioncoefficient (DCD_FRAC table

III) of 0.1 has been applied to specify the minimal battery
level that shall be available at all times. It is used to model
range anxietyand is used in electrification feasibility
calculation.

H. Charging parameters - Scenarios

1) Assumptions valid for all scenarios concerned:
• Energy cost is assumed to conform to the current tariff

scheme used in Belgium : it consists of one contiguous
regular tariff period and one contiguouslow tariff period
during the night (from 22:00h to 06:00h) (see table III).

• The schedules apply to a working day and schedules
are assumed to repeat on successive days. This assump-
tion allows to determine the period of time available
for recharging overnight. Everyone charging at home is
assumed

– to recharge batteries everyday
– to minimise energy cost by charging during the low

tariff period as much as possible
• Charging occurs during a single uninterrupted period of

time.
For each schedule and each charging opportunity, therequired
charge duration for full recharge and theavailablecharge pe-
riod are calculated. The available charge periode is determined
from the arrival and departure times at the charge location.If
the available period length is larger than the required charge
duration, their difference is theslack time(otherwise slack
time equals zero). A non-zero slack time implies a degree of
freedom for selecting the time to start charging. In many cases,
there is an interval∆t = [t0, t1] of starting timests such that
∀ts ∈ ∆t the energy cost is the same. The charge period either
overlaps completely or not at all with the low tariff period.

2) Scenario specific assumptions:
• Scenario 1 : If the interval∆t is contained in the low

tariff period, the actor starts charging as soon as possible;
otherwise, the actor starts charging as late as possible
thereby pushing energy demand to the morning hours.

• Scenario 2 : The charge period start timets is chosen
from ∆t by random selection using a uniform distribu-
tion.

nActorsWorking / nActors 0.406
nCarUsers / nActors 0.555
nCarUsersWorking / nCarUsers 0.531
avgTripsPerActor 3.670
avgWorkRelatedCarTripDistance [km] 19.376
nTrips[work] / nTripsAll 0.160
nTrips[atHome] / nTripsAll 0.403
nTrips[bringGet] / nTripsAll 0.091
nTrips[shoppingOne] / nTripsAll 0.103
nTrips[social] / nTripsAll 0.054
nTrips[services] / nTripsAll 0.056
nTrips[touring] / nTripsAll 0.029
nTrips[leisure] / nTripsAll 0.044
nTrips[other] / nTripsAll 0.059

TABLE IV
FEATHERS RESULTS STATISTICS

Partition Fraction of the
car using sched-
ules

Electrically feasible schedules without work trips
POC

0.377

Electrically feasible schedules with work trips POC0.374
Electrically feasible schedules with work trips CC,
no chargeAtWork

0.021

Electrically feasible schedules with work trips CC,
chargeAtWork

0.024

Infeasible 0.204

TABLE V
SCHEDULE PARTITIONS WITH RESPECT TO FEASIBILITY FOR

ELECTRIFICATION

IV. RESULTS FORFLANDERS REGION

Feathers statistics have been summarized in table IV.
Results are presented in diagrams showing the power demand
as function of time for the locations having respectively
maximal energy requirement and power demand values over
the complete day and during the specific tariff periods. It
is interesting to note the ratio between peak power values
for both scenarios. Even a simple random charging period
allocation reduces peak power demand drastically. Diagram
2 shows the distribution function for accumulated daily car
trip distances. One easily sees that at least 70% of the daily
distances driven are less than the range of an electric vehicle
(even after reduction for range anxiety and without recharging
at work). Table V shows the fractions of feasible schedules
determined in the second step (accounting for work location
recharge). Note that only 10% (seeCC_PROBABILITY in
table III) of the schedules having a work trip have been
assigned a CC (see section III-C). All power diagrams apply
to scenarios where EV market penetration is 10% for non-
workers and 5% for workers. Diagram 3 applies to the area
with maximal power demand during low tariff period for
scenario 1. Diagram 4 applies to the area with maximal power
demand during regular tariff period for scenario 1. Diagram
5 applies to the area with maximal power demand during
low tariff period for scenario 2. Diagram 6 applies to the
area with maximal power demand during regular tariff period
for scenario 2. Figure 7 projects the energy drawn from the
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Fig. 2. Distribution function for average car trip distance
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Fig. 3. Scenario 1 : Power demand for the zone having the biggest power
demand peak duringlow tariff period

grid during the 24h period considered. Figure 8 shows the
peak power demand during low tariff hours for each zone for
the same period. Darker shading on the maps corresponds to
higher values.

V. CONCLUSION

Activity based transportation demand modelling uses census
and survey data to model human behavior by microsimulation.
It produces daily activity schedules for a synthetic population.
It has been used to predict energy demand and power peaks
due to electric vehicle charging as a function of time and
location for several market penetration scenarios. Results
have been calculated for the Flanders region : the power
demand peak shaving effect of a simple charging strategy has
been shown. Location specific predictions are available for
smartgrid design. Daily overall trip distance distribution only
provides a rough indication of the fraction of ICE vehicles
that can be substituted by EV. On the other hand, AB-model
microsimulation provides the data required for electrification
feasibility calculations and smartgrid strategies evaluation.
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Fig. 4. Scenario 1 : Power demand for the zone having the biggest power
demand peak duringregular tariff period
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Fig. 5. Scenario 2 : Power demand for the zone having the biggest power
demand peak duringlow tariff period

VI. FUTURE RESEARCH

Although activity based models have a firm statistical basis,
some aspects of reality do not yet have been translated to
AB-model parameters. Therefore, this study shall be the base
for two research paths. On one hand, more accurate technical
and market related data need to be determined from literature,
surveys and experimentation. Data about distance specific
energy consumption in real situations are unreliable and need
to be refined (cabin clima). The amount of car users who are
able to charge at home has not been considered a limiting
factor for the current study but could be one of the main factors
when estimating EV market share.
On the other hand, more charging scenarios (e.g. using non
contiguous periods) are to be investigated : the software allows
for easy replacement of the charging strategy. A first software
extension will remove the constraint of using a single vehicle
for schedule trips executed by multi-car households.
Finally, AB-models and smartgrid models need to get inte-
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Fig. 7. Total energy requirement (EV only) over 24 hours : darker shading
corresponds to higher value

grated in a closed loop. Since typical activity based models
account for price elasticity and allow for learning, results
feedback allows for evaluation of smartgrid strategies for
charging timeslot allocation. Evaluation of the V2G concept
requires integration of smartgrid controllers with AB-models.
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