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Abstract—Smart grid design depends on the availability of The amount of energy required yearly for a household EV
realistic data. In the near future, energy demand by electt s of the same order of magnitude as the current household
vehicles will be a substantial component of the overall denral electric energy consumption. According to figures publishe

and peaks of required power could become critical in some . - . . . .
regions. Transportation research has been using micro-simation " Oxford University Environmental Change Institutebsite

based activity-based models for traffic forecasting. The multing  Statistics pages ([4]) the average yearly consumption for a
trip length distribution allows to estimate to what extent internal ~ belgian household amounts to 3899 [kWh/year]. A similar
combustion engine vehicles can be substituted by electriehicles. figure (3500 [kWh/year]) for Belgium is mentioned by [5].
Second, combining the results emerging from activity based pg\yer demand while charging electric vehicles however de-
models with assumptions on electric vehicles market sharejlows ttenti . h ing ti dl fi hi :

to predict energy and power demand in time and space. Further Serves a e_n 1on since charging time 6_‘” oca |_0n ighflyin .
more, smart grid management effects can be investigated ugj €nce the size of peak demand. Perujo and Ciuffo [3] studied
activity based models because generated schedules detemmhow power demand for the Milan region using the assumptions
charging periods can float in time. This paper presents rests that people will not charge their car batteries everyday but
calculated for the Flanders region. only when needed and that charging starts between 16:00h
and 19:00h in the evening obeying a uniform distributionrove

. ) time. Those assumptions can be refined : [2] recognizes the
Activity based models (AB models) are behavioral mode|feeq for statistics on daily commuter trips for a particular

predicting activity schedules which can be used to deriyggion The study described in this article refines the agsum

transportation needs. Model parameters are calculated frg,ns ahout charging time and location by using the restlts o
census demographic data and from periodic dedicated rtyobili activity based transport demand model
surveys Onderzoek Verplaatsingsgedrag, OV@ synthetic

population is generated and an activity schedule is gengy-
ated for each household member on a typical working day.
The model output consists of predicted activities and trips In order to dimension the electric grid parameters, aceurat
for which origin, destination, motive, time-of-day, trausta- estimates for power demand as a function of time and location
tion mode, household characteristics and more attributes ¢ essential. Such estimates can be based on the results
known. AB models are based on microsimulation of individudf calibrated activity based (AB) transport demand models
actors. Because of the rich information content, resultslen Pecause those models deliver detailed location, timing and
used for various types of analysis [1]. motivation information about trips and activities for each
Several scenarios of electric vehicle (EV) market peniemat individual. Two strategies for battery charging have besadu
have been studied. First we explain what hypotheses about f9ycalculate peak power demand as a function of time and
drivers behavior have been made and how EV characterisfegation :

have been determined from literature and from availables Scenario 1: people start charging as soon as possible

I. INTRODUCTION

The use of activity based models

statistics. Next some details of the calculation are dbedri during the low tariff period. This scenario is used as a
Finally, results for the Flanders region (6 million inhaits, reference.

13000 square kilometers) in Belgium (11 million inhabigant « Scenario 2: people start charging at a uniformly dis-
30000 square kilometers) are presented. tributed moment in time and so that their cost is minimal

(maximum use of low tariff period) which looks like a
decentralised smartgrid strategy for peak shaving.

A. Energy vs. Power In both cases, charging period is assumed to be contiguous
According to several sources ([2],[3]) the total amount dfuninterrupted). Furthermore we hypothesize that everyon
energy drawn from the grid by electric vehicles is relagvelwill recharge batteries everyday due to the well known
small : a 30% market share EV would represent 3% of the totalnge anxiety This study has been limited to two scenarios.
annual electric energy consumption for the region of Milarjowever, since AB models are microsimulation based, each
Italy. individual actor behaves in its own specific way. Different

Il. CONTEXT



Motor cylinder volume . .

V=100 | 1400 <V <2000 | 2000 <V power_full chqrger. On 'Fhe other hand, companies offering ca
EV category small medium Targe charging facilities provide powerful chargers in order &wves
Market share 0.496 0.364 0.140 time and extend the distance that can be bridged during one
[Bka;[t/e}g capacity 10 20 35 day. Furthermore, electric energy is hypothesized to bg les
Range [km] 100 130 180 expensive than fuel (mainly due to tax reasons).
Energy consump-| 0.095 0.138 0.175 . .
tion [kWh/km] C. Company cars in Belgium
: lower limit . .
Energy Consump- 0110 0169 071d Employers are believed to _aIIow company car (CC) drivers
tion [kWh/km)] to charge at the work location because that is less expen-
: upper limit sive than providing fuel cards to employees. However, for

TABLE | technical reasons, some companies cannot provide the re-

TECHNICAL CHARACTERISTICS FOR VEHICLES IN SPECIFIC CATEGARS. quired infrastructure. The fraCtiOﬂ Of actors WhO can CBarg
TO DETERMINE MARKET SHARE, EV CATEGORIES ARE MAPPED TACE batteries at the Work |Ocati0n has been determined as a
CATEGORIES FOR WHICH MARKET SHARE IS KNOWN
fraction of company car drivers. It has been assumed that 50%
(FRAC_WORK_CHARGERS in table IIl) of the work locations
provides suitable infrastructure for battery charging.
actor categories thus can show different preferences and penhe AB model predicts trips and provides information about
ticular scenarios based on specific actor classificationdbea car availability but not about car ownership. In order to
evaluated. estimate the number of people able to charge batteries at the
C. Related work work location, we need to estimate the fraction of work trips
) . traveled by company car.
Clement-Nyns et al. [6] evaluateoordinated charging the number of company car users has been derived from
strategies for a belgian case. In such systems customeals NBflowing sources. Gutierrez [10] page 2 cites a repotirsga
to specify time limits for charging (which can be produceg, 5 iy Belgium 20% of the employees have a company
by AB-models). Waraich et al. [7] evaluate energy tariff According to [11] (survey conducted by SD-WORX)
effects on charging behavior for the city of Berlin by cougli >g gos of the belgian employees had a company car available
MATSI m T (travel demand simulator framework) t_EVPSS in 2007. Many reports useompany car ownershigs an
(PHEV Management and Power Systems Simulation).  jhqependent variable to classify quantities like averaye t
I1l. GRID LOAD CALCULATION distance, willingness to change to public transport ...but

Since the EV market is only emerging, predictions canng not mention company car market share figures. On the

be based on extensive statistics. The assumptions made HAVE" hand, the CQCA (Company Car an_aly5|s) T?F’O” [12]
been explained and argued below. states that depending on the context, multiple definitidnas o

company caivoiture de société) are in use because both fiscal
A. Vehicle categories and operational aspects are concerned. The COCA definition

Electric cars are subdivided into the categorggmal |, (A company car is made available by a company to an
medi um | ar ge similar to what is done in [3]. In order €mployee for both professional and private Jiseused in our
to estimate the energy requirement, one needs to know fedy. The report only states that 45% of new car registatio
contribution of each one of those categories to the compldfeBelgium are for company cars but does not mention the
vehicle set. Belgian government statistics provide a tlasfaction of employees having a company car at their disposal
fication of internal combustion engine (ICE) vehicles basethe same COCA report states that, based on two belgian
on the motor cylinder volume : they provide a distributiof€Ports OVG for Flanders andERMMW for Wallonia), it
of the registered cars using that classification. We stage #An be concluded that 6% ...7% of the car fleet in use
one-to-one mapping of categories given in table | that shol¥ Pelgian households, is company owned (source [12] page
market share and technical characteristics for each categé1/80). Another method described in [12] page 31-80 esémat
Vehicle characteristics in the table have been derived frdf@t 10% of all registered cars in Belgium are company cars.
data in [3] and [8], the market share figures have been takenerefore, this report assumes for the model that 10% of the
from the belgian federal government 2009 statistics (PARICOactors driving to work, make use of a company car.

Transport Indicator) [9] D. Method overview

B. Available Chargers TheFeat her s software [13] created by the Transportation
Two types of chargers are considered : 3.3 [kVA] anBesearch Institute (IMOB) has been used to genexetigity-

7.2 [kVA] chargers compatible with the flemish grid. Outravel scheduleqdaily agenda for each individual of the

model distinguishes betwe&omeandwork locationchargers. flemish population). Each schedule consists of trip and ac-

Charger type occurrence probability is given in table lleThtivities. For each trip, departure time, trip duration,gimiand

power value for home chargers is assumed to depend agstination zones are predicted. For each activity, thpqae

the car category : smaller cars are equipped with a le@gork, shop, bring-get, ...) is predicted. In this studylyon



Car category| Pmb(k?(.)?r[]léwn | Prob(7.2)[kW] Car Users
small 0.8 0.2
medium 0.4 0.6
large 0.1 0.9
Work
small 0.1 0.9
medium 0.1 0.9 NoWorkTrip WorkTrip
large 0.1 0.9
TABLE 1l
CHARGER TYPE DISTRIBUTION

DCD_FRAC Deep charge depletion fraction 0.1 POC cC
of f 2real Correcti on | Range reduction factor 0.85
CC_PROBABI LI TY Fraction of employees driving & 0.1

company car
FRAC_WORK_CHARGERS | Fract of CC drivers charging aft 0.5

work location
| owTari ffFirst Low tariff period first minute 22:00h can charge cannot charge
| owTari f f Last Low tariff period last minute 05:59h at work at work

TABLE Il

SIMULATION PARAMETERS

work and non-work activities are distinguisheeeat her s
results apply to a single 24-hour period. A working da%

simulation has been used in this study.

An application has been written to compute energy and pong}(

demand fronFeat her s results in 3 steps as follows :
« In a first step, schedules having at least one car trip dre Vehicle characteristics determination

extracted and data structures are set up.

Fig. 1. Car users partitioning : market share is specifiecsfaded subsets

E. Vehicle ownership

Cars not used for any work trips are assumed to be privately
wned cars. From the cars used for work trips, a fraction is
en to be a company car according to the data given in
section IlI-C.

Vehicle characteristics are determined by random selectio

In the second step, car ownership, possibility of worindependently of schedule characteristics.

location charging, car characteristics (range, distapee s
cific energy consumption, battery capacity) and the types
of home and work location charger used, are determined.,
In this way, an electric car is assigned to each schedule in
order to calculate the feasibility of electrification. Higa

a feasibility indicator is calculated : it tells whether atn

« Vehicle categoryis randomly selected from the distribu-

tion specified in table |

The probability for work location charging (configuration
setting) and the type of charger are determined (from
table I1).

« Vehiclerangeis selected from table I.

the schedule can be .executed using the assigned elgctrig Vehicle consumptionis randomly selected using a uni-
car. Each schedule is assumed to be executed using & form distribution in the interval specified for the vehicle

single car and a predefined fraction of the company cars
can get recharged at the work location as explained in
section I1I-C; for details, refer to section IlI-G. The sdt o
electrically feasibleschedules is used for stochastic sam-
pling during the third step. Feasible schedules are kept,
as a population from which to draw items to implement
different electrification scenariasThe set of electrically
feasible schedules is partitioned as specified in diagram,
1. For each one of the leaf node parts, the market share
has been specified : the results shown in this report hold
for 10% no-work trip and 5%work trip electrification.

In the third step, charging scenarios are evaluated. Sched-
ules are sampled from the partitions set up in the second
step and the start time for each charging operation is
determined. Energy requirement and power demand are
accumulated for every minute of the day for each zone.

All parameters mentioned below have been smmarized in table

category (from table I). This is the consumption deter-
mined by official US and European standard (FTP,WP.29,
etc) test suites that do not account for cabin clima (heat-
ing, airco) nor for frequent acceleration and deceleration
The battery capacity is derived from range and distance
specific consumption and has been verified with data
found in literature ([8],[14],[15]).

The specific energy consumption as determined by euro-
pean standard methods (UNECE WP.29 R101) is argued
to be an underestimation. The standardised test conditions
differ from operating conditions : hence,range reduc-
tion coefficien{of f 2r eal Correcti onin table Ill) of
0.85 has been applied. After battery capacity calculation,
the range reduction coefficient is used to adjust the spe-
cific consumption (which is used in schedule feasibility
and energy demand calculations).

Finally, the charger power is randomly selected for both
home and work location chargers using the distribution



ified in table 1l nActorsWorking / nActors 0.406

specined in table 11. nCarUsers / nActors 0.555

G. Electrified schedules nCarUsersWorking / nCarUsers 0.531

) o avgTripsPerActor 3.670

In order to be feasible, each location in the schedule shialvgworkRelatedCarTripDistance [kn] 19.376

be reachable when starting with a fully charged battery & th “P!PSEW&V K/ T?'PTSA“ Al 8-‘118g
. . P nlripsjatmome nlrips. .

morning. A schedule shall fulfil the condition nTrips[bringGet] / nTripsAll 0091

Jj<i nTrips[shoppingOne] / nTripsAll 0.103

. ] o ) nTrips[social] / nTripsAll 0.054

Vi:Cy+ Z Cd,j * Cp,j doﬂ *con > Gy x DOD (1) nTrips[services] / nTripsAll 0.056

Jj=0 nTrips[touring] / nTripsAll 0.029

wherei and; are location indices;}, is the battery capacity) ﬂ::gi%ﬁ'ﬁg{f} L ?J;'g:ﬁ” 8'8‘5‘3
is the set of all destinations, ; is the charge-period duration :

TABLE IV

at the i-th location and, ; is corresponding powetlo ; is
the total distance from the first origin to the i-th destinati
cons is the distance specific energy consumption @&ndD
is the maximal deep charge depletion. Partition Eraction of the
« A deep charge depletionoefficient PCD_FRAC table C?r using sched-
IIf) of 0.1 has been app“ed to SpQCIfy the_mmlmal batter’IEIec:tricaIIy feasible schedules without work tripsgg??
level that shall be available at all times. It is used to modeboc

range anxietyand is used in electrification feasibility| Electrically feasible schedules with work trips POIC0.374
Electrically feasible schedules with work trips C(,0.021

FEATHERS RESULTS STATISTICS

calculation. no chargeAtWork
H. Charging parameters - Scenarios Electrically feasible schedules with work trips CC,0.024
. . . chargeAtWork
1) Assumptions valid for all scenarios concerned: Infeasible 0.204
« Energy cost is assumed to conform to the current tariff TABLE V
scheme used in Belgium : it consists of one contiguous  SCHEDULE PARTITIONS WITH RESPECT TO FEASIBILITY FOR
regular tariff period and one contiguolsw tariff period ELECTRIFICATION

during the night (from 22:00h to 06:00h) (see table III).

o The schedules apply to a working day and schedules
are assumed to repeat on successive days. This assump-
tion allows to determine the period of time available

for recharging overnight. Everyone charging at home is peat her s statistics have been summarized in table IV.

IV. RESULTS FORFLANDERS REGION

assumed Results are presented in diagrams showing the power demand
— to recharge batteries everyday as function of time for the locations having respectively

— to minimise energy cost by charging during the lowmaximal energy requirement and power demand values over
tariff period as much as possible the complete day and during the specific tariff periods. It

« Charging occurs during a single uninterrupted period @ interesting to note the ratio between peak power values
time. for both scenarios. Even a simple random charging period

For each schedule and each charging opportunityetyeired allocation reduces peak power demand drastically. Diagram
charge duration for full recharge and theailablecharge pe- 2 shows the distribution function for accumulated daily car
riod are calculated. The available charge periode is détexn trip distances. One easily sees that at least 70% of the daily
from the arrival and departure times at the charge locatfon.distances driven are less than the range of an electric leehic
the available period length is larger than the required giar(even after reduction for range anxiety and without recimarg
duration, their difference is thslack time(otherwise slack at work). Table V shows the fractions of feasible schedules
time equals zero). A non-zero slack time implies a degree @détermined in the second step (accounting for work location
freedom for selecting the time to start charging. In mangsasrecharge). Note that only 10% (s€C PROBABI LI TY in
there is an interval\¢ = [t, t1] of starting times; such that table Ill) of the schedules having a work trip have been
Vts € At the energy cost is the same. The charge period eithessigned a CC (see section 11I-C). All power diagrams apply
overlaps completely or not at all with the low tariff period. to scenarios where EV market penetration is 10% for non-
2) Scenario specific assumptions: workers and 5% for workers. Diagram 3 applies to the area
o Scenario 1: If the interval At is contained in the low with maximal power demand during low tariff period for
tariff period, the actor starts charging as soon as possibéeenario 1. Diagram 4 applies to the area with maximal power
otherwise, the actor starts charging as late as possidemand during regular tariff period for scenario 1. Diagram
thereby pushing energy demand to the morning hours5 applies to the area with maximal power demand during
« Scenario 2: The charge period start timg is chosen low tariff period for scenario 2. Diagram 6 applies to the
from At by random selection using a uniform distribu-area with maximal power demand during regular tariff period
tion. for scenario 2. Figure 7 projects the energy drawn from the



Car trip distance [km] distribution
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Fig. 2. Distribution function for average car trip distance

Power [W] for area=[2357] : Case Maximal power requirement in low tariff period :
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Fig. 3. Scenario 1 : Power demand for the zone having the biggawver

demand peak durintpw tariff period

Power [W] for area=[2361] : Case Maximal power requirement in regular tariff period :
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Fig. 4. Scenario 1 : Power demand for the zone having the biggawver

demand peak duringegular tariff period

Power [W] for area=[2357] : Case Maximal power requirement in low tariff period :
[hl
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Fig. 5. Scenario 2 : Power demand for the zone having the biggawver
demand peak durintpw tariff period

grid during the 24h period considered. Figure 8 shows the

peak power demand during low tariff hours for each zone for

VI. FUTURE RESEARCH

the same period. Darker shading on the maps corresponds to

higher values.

V. CONCLUSION

It produces daily activity schedules for a synthetic popata

Although activity based models have a firm statistical hasis
some aspects of reality do not yet have been translated to
AB-model parameters. Therefore, this study shall be the bas

Activity based transportation demand modelling uses cendor two research paths. On one hand, more accurate technical
and survey data to model human behavior by microsimulaticand market related data need to be determined from literatur
surveys and experimentation. Data about distance specific

It has been used to predict energy demand and power peakergy consumption in real situations are unreliable aredi ne

due to electric vehicle charging as a function of time an be refined (cabin clima). The amount of car users who are
location for several market penetration scenarios. Resudible to charge at home has not been considered a limiting
the powfactor for the current study but could be one of the main ficto

have been calculated for the Flanders region :

demand peak shaving effect of a simple charging strategy Ivalsen estimating EV market share.

been shown. Location specific predictions are available f@n the other hand, more charging scenarios (e.g. using non

smartgrid design. Daily overall trip distance distributionly

contiguous periods) are to be investigated : the softwdoeal

provides a rough indication of the fraction of ICE vehiclefor easy replacement of the charging strategy. A first softwa
that can be substituted by EV. On the other hand, AB-modektension will remove the constraint of using a single viehic

microsimulation provides the data required for electrifma
feasibility calculations and smartgrid strategies eviadua

for schedule trips executed by multi-car households.

Finally, AB-models and smartgrid models need to get inte-



Power [W] for area=[2360] : Case Maximal power requirement in regular tariff period :
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Fig. 6. Scenario 2 : Power demand for the zone having the biggawver

demand peak duringegular tariff period

Fig. 7. Total energy requirement (EV only) over 24 hours kdarshading
corresponds to higher value

Fig. 8.
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grated in a closed loop. Since typical activity based models
account for price elasticity and allow for learning, result

feedback allows for evaluation of smartgrid strategies fét4
charging timeslot allocation. Evaluation of the V2G cortcep;g;

requires integration of smartgrid controllers with AB-nedsl
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