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ABSTRACT 

 

Intermodal goods transport is characterized by a main 

transport by rail, barge or seaborne vessel, preceded and 

followed by short in time but expensive road transport. 
Many times trucks pick-up or deliver a single container 

which leads to a full truckload vehicle routing problem in 

terms of economically efficient transport services. Time 

windows induced by the customer or due to external 

situations increase the complexity of an efficient planning 

by a logistics provider. An exact algorithm for this type of 

pick-up and delivery problem is developed and the details 

of its implementation are explained. A set partitioning 

problem is automatically generated and solved by means of 

the Lingo software.    

 

1. INTRODUCTION AND LITERATURE REVIEW 
 

Road transport is subject to several problems like 

congestion, environmental concerns and traffic safety. 

Intermodal transport is often put forward as a solution to 

these problems. It can be defined as the combination of at 

least two modes of transport in a single transport chain, 

without a change of container for the goods, with most of 

the route travelled by rail, barge or seaborne vessel and 

with the shortest possible initial and final journeys by road 

(Macharis and Bontekoning 2004). An important aspect of 

intermodal transport is the efficient planning of the pre- and 
end-haulage activities since these activities constitute a 

large part of the total costs. Pre- and end-haulage activities 

involve the transport of containers by road between a 

container terminal and customer locations. Some containers 

need to be picked up at a customer location and transported 

to the terminal, while others are located at the terminal and 

need to be delivered to a customer location. Time windows 

may be imposed on these transports. The problem is to find 

efficient vehicle routes performing all transportation tasks 

within their time window at minimum cost. Since it is 

generally assumed that trucks can only transport a single 

container at a time, routing problems for pre- and end-
haulage can be classified as full truckload pick-up and 

delivery problems (Erera and Smilowitz 2008). When time 

windows are involved, the problem becomes a Full 

Truckload Pick-up and Delivery Problem with Time 

Windows (FT-PDPTW). In this paper, an exact algorithm 

for solving a FT-PDPTW is presented, which is solved by 

means of the Lingo software (Schrage, 2007). 

A review of the general Pick-up and Delivery Problem 

(PDP) can be found in Savelsbergh and Sol (1995). For an 

overview of research on less-than-truckload pick-up and 

delivery problems, the reader is referred to Parragh et al. 
(2008a, 2008b). In this section, research on full truckload 

pick-up and delivery problems is discussed. 

Gronalt et al. (2003) present four savings-based heuristics 

for a FT-PDPTW where full truckloads are transported 

between distribution centers. A tabu search heuristic for a 

FT-PDPTW with heterogeneous products and vehicles is 

proposed by Currie and Salhi (2004). Wang and Regan 

(2002) study a FT-PDPTW in the context of an intermodal 

container terminal. A time window partitioning method is 

used to solve the problem. Another full truckload pick-up 

and delivery problem in the context of an intermodal 

container terminal is introduced by Imai et al. (2007). A 
heuristic based on Lagrangian relaxation is presented. In a 

first phase, delivery customers are merged with pick-up 

customers, which may lead to substantial cost and time 

savings. In a second phase, trucks are assigned to these 

merged trips. Caris and Janssens (2009) extend the problem 

of Imai et al. (2007) to a FT-PDPTW by introducing time 

window constraints at the customer locations. A two-phase 

insertion heuristic and a local search procedure are 

proposed. In a subsequent work, a deterministic annealing 

algorithm is developed to solve the problem (Caris and 

Janssens 2010). 
In Section 2, related literature is reviewed. The problem 

formulation is presented in Section 3. In Section 4 the 

proposed exact algorithm is discussed. Finally, a small 

numerical example is presented in Section 5 and 

conclusions are drawn in Section 6. 

 

2. SET PARTITIONING APPROACH 

 

Exact algorithms, which guarantee that the best solution 

found is optimal, are very limited in their applicability due 

to the NP-complete nature of vehicle routing and 

scheduling problems. Heuristic methods explore only a 
small part of the solution space, require less solution time 



 

but do not guarantee that the solution, if found, is a (near) 

optimal one. A class in between can be referred to as 

heuristics based on exact methods, as they are often 

variants of exact methods. The set partitioning approach 

falls in this class. 

The set partitioning approach consists of two phases. The 

first phase of the approach is a construction phase. Let C be 

a set with |C| elements and let Sj be subset of C with cost 

value cj. In the subset construction phase a number of 

subsets Sj with cost cj are generated. The second phase is an 

optimization problem which selects a subset CS of all 
subsets Sj : (1) which are mutually disjunct, (2) with a union 

that is equal to the set C, and (3) with a minimal sum of 

cost values cj of the selected subsets in CS. 

Algorithms for the first phase are specific for vehicle 

routing and scheduling problems (full truckload, time 

windows, …), while algorithms for the second phase are 

general in nature. The set partitioning approach is a special 

structured integer programming formulation onto which a 

vehicle routing problem is mapped. The formulation was 

first introduced in vehicle routing by Balinski and Quandt 

(1964). Magnanti (1981) has shown that the vehicle flow 
formulation of the classical one depot vehicle routing 

problem may be rewritten into a formulation similar to the 

set partitioning problem. 

In the classical VRP a feasible solution should satisfy a 

number of constraints like: (1) a vehicle is used at most 

once; (2) if a vehicle arrives at a customer, it must also 

depart from there; (3) the load of the vehicle should not 

exceed its capacity; (4) subtour elimination constraints and 

(5) integrality of the decision variables. Let FTv be the set 

of all feasible solutions for a particular vehicle v with 

respect to the those constraints and let r be an index to a 

feasible solution in this set. Such a solution r for a vehicle v 
is either a feasible route visiting at least one customer, 

starting and ending at the depot and satisfying the capacity 

constraint, or an empty route without customers and not 

departing from the depot. 

For each vehicle v, exactly one route of FTv must be 

chosen. Let xr be a 0-1 variable indicating whether route r is 

chosen or not. Then 
          

         . 
Since each customer c has to be visited exactly once, only 

one of the routes that contains c in all sets FTv may be 

chosen. Let ac,r be a 0-1 coefficient that indicates whether 

customer c is visited in route r or not. Then 
                        . 

To each route r a cost cr is assigned. Therefore the objective 

is the minimization of the total cost of the chosen routes 

and can be written as 

      

        

 

The objective function with both types of contraints exactly 

forms the set partitioning problem. 

In this exact formulation it is assumed that FTv is the set of 

all feasible routes for vehicle v. In many situations it is 
impossible to construct the entire set of feasible routes and 

only a subset of „attractive‟ routes are considered. The 

construction of this subset is called the route generation 

phase. It turns the exact algorithm into a heuristic. 

In terms of performance, it is worth considering the type of 

solution algorithm for the set partitioning problem. A 

general purpose integer programming code can be used, but 

as it does not exploit the special structure of set 

partitioning, it can be applied only to rather small problem 

instances. A number of special algorithms have been 

developed for solving the set partitioning problem so that 

larger instances can be solved. Sometimes information from 

the specific application, viz the VRP, might be used in 

ordering rows in the tableau to speed up the solution 

process. An extensive description of the approaches can be 
found in Balas and Padberg (1976). Later some other 

algorithms have been developed by Albers (1980), Fisher 

and Kedia (1986), and Christofides and Paixâo (1993). 

The problem under study in this paper is a variant of the 

classical VRP. Any variant or extension of the classical 

VRP implies some changes in either the route generation 

phase or the optimization phase. The variant under study 

differs from the classical VRP in the following aspects: (1) 

time windows are imposed; (2) loading is both of the pick-

up and the delivery types; and (3) a vehicle can be used 

multiple times during the planning period. 
 

 

3. EXACT ALGORITHM 

 

3.1 Algorithm logic 

 

The full truckload routing problem is defined on a network 

G=(V,A) where the customers are located at the nodes (set 

V).  A special node {0} is added and should be interpreted 

as the single depot. The set V consists of the union of two 

mutual exclusive sets representing both the „delivery 

customers‟ (set VD) and the „pick-up customers‟ (set VP), 

i.e.         and        . The members of VD 

are designated by di (i=1..nd) and those of VP by pj (j=1..np). 
A route is defined as a finite sequence, starting and ending 

at {0}, of customers. A route is called feasible if it satisfies 

two types of constraints, i.e. logical constraints and 

temporal constraints. The logical constraints refer to the 

physical load as a truck is able to carry only one full load 

(container). A route contains either a single customer or 

multiple customers.  

A feasible route can be grammatically described as: 

<feasible route> ::= {0} <feasible sequence> {0} 

<feasible sequence> ::= <single customer> | <multiple 

customer sequence> 
<single customer> ::= <delivery customer> | <pick-up 

customer> 

<multiple customer sequence> ::=  <ordered customer pair> 

| <single customer> {0} < feasible sequence> |        

<ordered customer pair> {0} <feasible sequence> 

<ordered customer pair> ::= <delivery customer> <pick-up 

customer> 

Let  Ck be a set of customers {c1, c2, …, cl} of cardinality l. 

The set Ck may be projected into a finite set of sequences 

(routes). A procedure needs to be developed to generate the 

set of feasible sequences related to set Ck. At least one 

logically feasible sequence can be obtained from the set Ck 
(i.e. the route consists only of single customer sequences). 



 

The logically feasible sequences, which have been 

generated, need to satisfy the temporal constraints too. The 

temporal constraints represent time windows within which 

the service at the customer‟s site should start, and a depot 

time window (opening hours of the depot). 

The output of the procedure is the required input for a set 

partitioning problem, which is formulated as follows: 

        

 

   

 

 

subject to 

                 

 

   

 

         
 

The components of the optimization model should be 

interpreted as follows: 

 i represents an index of a customer set, from which 

at least one logically-and-feasible sequence can be 

generated; 

 ci represents the minimum cost among the 
logically-and-feasible sequences generated from 

set i; 

 aij takes value 1 if customer j is visited in a 

sequence generated from set i and 0 otherwise; 

 xi is the decision variable which takes value 1 if 

the minimum-cost sequence from set i is included 

in the dispatching plan and 0 otherwise. 

The algorithm solves the full-truckload vehicle routing 

problem with time windows to the optimal value. The 

procedure can also be used as a heuristic through reduction 

of the computational effort. This reduction may be realized 

in two ways as the procedure consists of two main phases: 
(1) a preprocessing phase in which all logically-and-

temporal feasible routes are generated; and (2) the solution 

of the set partitioning problem. The procedure in the 

preprocessing phase works in an iterative way. An iteration 

l includes all operations related to the cardinality of the 

customer sets equal to l, starting  from l = 1 and increasing 

it in each iteration by 1. The procedure has a stopping 

criterion which is described below. By specifying, as a user 

parameter, a maximal cardinality, the number of generated 

routes is limited and makes the optimal algorithm a 

heuristic. Solving the set partitioning problem by means of 
a heuristic instead of the 0-1 programming optimal 

algorithm also makes the optimal algorithm a heuristic. 

A customer set of size l is called live at size l if at least one 

logically-and-temporal feasible sequence can be generated 

from the set. The iterative procedure stops after step l’ if no 

customer sets live at size l’ can be found. During step l of 

the procedure, customer sets of size l are generated by the 

union of a customer set, live at size l-1, and an element 

(customer) not included in the set of size l-1. For this 

operation only information on the customer sets, live at size 

l-1, is required. 
In order to generate logically feasible sequences from a set 

Ck, the set needs to be partitioned into singletons (single 

customers) and pairs (ordered customer pairs), and an 

ordering amongst them. The length of a sequence (number 

of trips in the route) is indicated by Lkh (h=1,…) , with 

|Ck|/2 ≤ Lkh ≤ |Ck|. Let the set of logically feasible 

sequences, generated from Ck be denoted by Seq(Ck). The 

elements of the set, which satisfy the temporal constraints, 

build up the set of logically-and-temporal feasible 

sequences, denoted by TSeq(Ck), for which holds 

                   . 
Let us call the newly generated customer set of size l 

consisting of the base set (live at l-1) and the additional 
customer. The logical-and-temporal feasible sequences of 

size l-1 have been stored. The sequences to be tested for the 

set, consisting of the union of the base set and the 

additional customer, are generated by insertion of the 

additional customer at the head of the sequence, at the tail 

of the sequence, and al all places within the sequence. Two 

actions have to be taken: (1) a logically feasible sequence at 

size l needs to be generated; and (2) the temporal 

constraints have to be tested. 

The logically feasible sequences to be generated depend on 

(1) the type of additional customer and (2) on its 

neighbour(s) in the existing sequences (or non-existing in 
case the route is initialized by a first customer). The type of 

additional customer is either a delivery customer (dnew) or 

a pick-up customer (pnew). The customer(s) served 

immediately before (resp. after) the additional customer is 

(are) indicated by pi or di (resp. pj or dj) in case of single 

customer and by (di,pi) (resp. (dj,pj) in case of ordered 

pairs. Other customers, either before or after the immediate 

neighbours of the additional customer are not explicitly 

mentioned in the following rules: 

 

 If the additional customer is the first customer to 

initialize a route 

Case 1: delivery customer 

{0} dnew {0} 

Case 2: pick-up customer 

{0} pnew {0} 

 

 If the additional customer is at the head of the 

sequence (string left of additional customer is 

empty) 

Case 1: delivery customer, followed by a singleton 

(remaining customers to the right are not explicitly 

indicated, only by …) 

{0} dnew {0} dj {0} … 

{0} dnew {0} pj {0} … 
{0} (dnew,pj) {0} … 

Case 2: delivery customer, followed by an ordered pair 

{0} dnew {0} (dj,pj) {0} … 

Case 3: pick-up customer, followed by a singleton 

{0} pnew{0} dj {0} … 

{0} pnew {0} pj {0} … 

Case 4: pick-up customer, followed by an ordered pair 

{0} pnew{0} (dj,pj) {0} … 

 



 

 If the additional customer is at the tail of the 

sequence (string right of additional customer is 

empty) 

Case 1: delivery customer, preceded by a singleton 

… {0} di {0} dnew {0} 

… {0} pi {0} dnew {0} 

Case 2: delivery customer, preceded by an ordered pair 

… {0} (di,pi) {0} dnew {0}  

Case 3: pick-up customer, preceded by a singleton 

… {0} di {0} pnew {0}  

… {0} (di,pnew) {0}  

… {0} pi {0} pnew {0}  

Case 4: pick-up customer, preceded by an ordered pair 
… {0} (di,pi) {0} pnew {0} 

  

 If the additional customer is within the sequence 

(strings right and left of the additional customer 

are non-empty) 

Case 1: delivery customer, left and right are singletons 

… {0} pi {0} dnew {0} pj {0} … 

… {0} pi {0} (dnew,pj) {0} … 

… {0} pi {0} dnew {0} dj {0} … 

… {0} di {0} dnew {0} pj {0} … 

… {0} di {0} (dnew,pj) {0} … 

… {0} di {0} dnew {0} dj {0} … 

Case 2: delivery customer, left is ordered pair, right is 

singleton 
… {0} (di,pi) {0} dnew {0} pj {0} … 

… {0} (di,pi) {0} (dnew,pj) {0} … 

… {0} (di,pi) {0} dnew {0} dj {0} … 

Case 3: delivery customer, left is singleton, right is ordered 

pair 

… {0} pi {0} dnew {0} (dj,pj) {0} … 

… {0} di {0} dnew {0} (dj,pj) {0} … 

Case 4: delivery customer, left and right is ordered pair 

… {0} (di,pi) {0} dnew {0} (dj,pj) {0} … 

Case 5: pick-up customer, left and right are singletons 

… {0} pi {0} pnew {0} pj {0} … 

… {0} pi {0} pnew {0} dj {0} … 
… {0} di {0} pnew {0} dj {0} … 

… {0} (di,pnew) {0} dj {0} … 

… {0} di {0} pnew {0} pj {0} … 

… {0} (di,pnew) {0} pj {0} … 

Case 6: pick-up customer, left is ordered pair, right is 

singleton 

… {0} (di, pi) {0} pnew {0} pj {0} … 

… {0} (di,pi) {0} pnew {0} dj {0} … 

Case 7: pick-up customer, left is singleton, right is ordered 

pair 

… {0} di {0} pnew {0} (dj,pj) {0} … 
… {0} (di,pnew) {0} (dj,pj) {0} … 

… {0} pi {0} pnew {0} (dj,pj) {0} … 

Case 8: pick-up customer,  left and right is ordered pair 

… {0} (di,pi) {0} pnew {0} (dj,pj) {0} … 

 

 

 

 

3.2 File management 

 

Input data 

The input data related to the customers are read from two 

text files. A first file contains a matrix of distances 

(expressed as integers) from every delivery point to every 

pick-up point. A second file contains the distances to the 

depot both from delivery customers as from pick-up 

customers, as well as the earliest and latest start-of-service 

times (time windows). 

Input data also come as parameters. These parameters are 
hard coded, so they are not read from an input file. They 

include: 

the name of the first input file 

the name of the second input file 

the number of pick-up customers 

the number of delivery customers 

the service time at the customer‟s site 

the depot closing time.  

The first and the second parameters are the names of the 

text files (including .txt). The third and fourth parameters 

are required because of the use of static data structures 
(vectors and matrices).  A vector of length equal to the 

number of delivery (resp. pick-up) customers is used for (1) 

distances from the customer to the depot, and (2) earliest 

and latest start-of-service times at the customer‟s site. A 

two-dimensional matrix is defined of size „number of 

delivery customers‟ by „number of pick-up customers‟ used 

for the distances between delivery and pick-up customers. 

The fifth parameter assumes that the service time is equal at 

all customer‟s sites. The sixth parameter refers to the time 

epoch at which any truck should return at the latest 

(assuming earliest time of departure from the depot is equal 

to 0). 
 

Work file data 

A customer set may have multiple sequences but a 

sequence belongs to only one customer set. This 1:N 

relationship might be used in a database programming 

environment but not in an environment using only 

sequential (text) files. Therefore the link between, customer 

sets and sequences must be explicitly coupled in a single 

data file. The program uses a data file type in which 

customer sets are defined and in which, after each customer 

set definition, the logically-and-temporal feasible sequences 
are defined. A customer set without logically-and-temporal 

feasible sequences is not included in the file. 

As the procedure works in an iterative way, increasing the 

size of the customer set by 1 in each iteration, two work 

files of the same type are in use. A first file (called the old 

work file) contains all customers sets and their related 

sequences at level l-1 while a second file (called the new 

work file)  contains all customers sets and their related 

sequences at level l. 

 

Archive file 

A customer set which contains at least one logically-and-
temporal feasible sequence is a candidate for inclusion into 

the set partitioning problem solution. During the iterative 

process these customer sets are stored. While creating the 



 

work file called the new work file it can be checked which 

of the feasible sequences lead to the lowest cost sequence. 

The value of this lowest cost is required for the formulation 

of the set partitioning problem. Also the sequence, related 

to this minimal cost value, is stored. This is not a 

requirement for solving the set partitioning problem, but the 

information is needed to publish the list of customers in a 

specific route which has been selected in the optimal 

solution of the problem. 

 

Set_partitioning_problem file    
Once the archive file has been completed and the procedure 

has satisfied its stopping criterion, a program translates the 

information from the archive file into Lingo-code for the 

formulation of the 0-1 integer linear programming problem 

which, as a text file, is ready to be solved by the Lingo 

software. 

 

The algorithms has a bad worst-case complexity. In case 

the time windows are hardly restrictive a huge amount of 

subsets could be eligible as routes, making the set 

partitioning problem hard to solve. With relatively narrow 
time windows the complexity is much lower and the 

problem much easier to handle.  

 

4. NUMERICAL EXAMPLE 

 

In this section, a small numerical example with tree pick-up 

customers (               and three delivery customers 

(               is presented. The time windows of the  
depot (0) and customers are shown in Table 1. Distances 

between the customers and the depot and between delivery 

and pick-up customers are shown in Table 2. Customer 

service time is assumed to be 10. 

 

Table 1: Time windows 

 

Customer Time window 

0 [0, 360] 

   [35, 84] 

   [253, 278] 

   [133, 177] 

   [69, 82] 

   [242, 252] 

   [174, 180] 

 

Table 2: Distances 

 

 0          

0 0 63 48 49 

   9 57 40 41 

   47 42 5 11 

   36 45 13 16 

 

Using the procedure presented in the previous section, 

eighteen feasible routes or sequences can be found. Six of 

these contain only a single customer, while there are nine 

sequences of two customers and three sequences of three 

customers. Solving the set partitioning problem results in 

the optimal solution which is shown in Table 3. Three 

vehicles are used and the total distance travelled is 416.  

 

Table 3: Results 

 

Vehicle Distance Sequence 

1 99           

2 220           

3 97           

 

5. CONCLUSIONS 

  

The full-truckload pick-up and delivery problem is a 
relevant problem in an intermodal transport context to make 

the complete transport chain economically efficient. As 

most of the pre- and end- haulage in intermodal transport is 

realized by road transport and is relatively expensive, 

efficient vehicle routing is an economical benefit. The pick-

up and delivery problem is NP-complete making optimal 

solution very difficult, especially when on top time window 

constraints are added. In this case researchers turn mostly 

into heuristics, but it might be also reasonable to investigate 

how exact algorithms behave computationally. The 

introduction  of time windows probably limits the high 
computational complexity nature of the problem. In the 

case that the time windows are relatively hard constraining, 

an exact algorithm might be solved until optimality in a 

reasonable computing time. This paper shows how such an 

implementation can be realized in a computationally 

efficient way. 
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