

AN EXACT ALGORITHM FOR THE FULL TRUCKLOAD PICK-UP AND

DELIVERY PROBLEM WITH TIME WINDOWS: CONCEPT AND

IMPLEMENTATION DETAILS

Gerrit K. Janssens

Kris Braekers

Transportation Research Institute (IMOB) – Hasselt University

Universiteit Hasselt – campus Diepenbeek

Wetenschapspark gebouw 5, 3590 Diepenbeek, Belgium

E-mail: {gerrit.janssens,kris.braekers}@uhasselt.be

KEYWORDS

Exact algorithm, full truckload, pick-up and delivery, set

partitioning

ABSTRACT

Intermodal goods transport is characterized by a main

transport by rail, barge or seaborne vessel, preceded and

followed by short in time but expensive road transport.
Many times trucks pick-up or deliver a single container

which leads to a full truckload vehicle routing problem in

terms of economically efficient transport services. Time

windows induced by the customer or due to external

situations increase the complexity of an efficient planning

by a logistics provider. An exact algorithm for this type of

pick-up and delivery problem is developed and the details

of its implementation are explained. A set partitioning

problem is automatically generated and solved by means of

the Lingo software.

1. INTRODUCTION AND LITERATURE REVIEW

Road transport is subject to several problems like

congestion, environmental concerns and traffic safety.

Intermodal transport is often put forward as a solution to

these problems. It can be defined as the combination of at

least two modes of transport in a single transport chain,

without a change of container for the goods, with most of

the route travelled by rail, barge or seaborne vessel and

with the shortest possible initial and final journeys by road

(Macharis and Bontekoning 2004). An important aspect of

intermodal transport is the efficient planning of the pre- and
end-haulage activities since these activities constitute a

large part of the total costs. Pre- and end-haulage activities

involve the transport of containers by road between a

container terminal and customer locations. Some containers

need to be picked up at a customer location and transported

to the terminal, while others are located at the terminal and

need to be delivered to a customer location. Time windows

may be imposed on these transports. The problem is to find

efficient vehicle routes performing all transportation tasks

within their time window at minimum cost. Since it is

generally assumed that trucks can only transport a single

container at a time, routing problems for pre- and end-
haulage can be classified as full truckload pick-up and

delivery problems (Erera and Smilowitz 2008). When time

windows are involved, the problem becomes a Full

Truckload Pick-up and Delivery Problem with Time

Windows (FT-PDPTW). In this paper, an exact algorithm

for solving a FT-PDPTW is presented, which is solved by

means of the Lingo software (Schrage, 2007).

A review of the general Pick-up and Delivery Problem

(PDP) can be found in Savelsbergh and Sol (1995). For an

overview of research on less-than-truckload pick-up and

delivery problems, the reader is referred to Parragh et al.
(2008a, 2008b). In this section, research on full truckload

pick-up and delivery problems is discussed.

Gronalt et al. (2003) present four savings-based heuristics

for a FT-PDPTW where full truckloads are transported

between distribution centers. A tabu search heuristic for a

FT-PDPTW with heterogeneous products and vehicles is

proposed by Currie and Salhi (2004). Wang and Regan

(2002) study a FT-PDPTW in the context of an intermodal

container terminal. A time window partitioning method is

used to solve the problem. Another full truckload pick-up

and delivery problem in the context of an intermodal

container terminal is introduced by Imai et al. (2007). A
heuristic based on Lagrangian relaxation is presented. In a

first phase, delivery customers are merged with pick-up

customers, which may lead to substantial cost and time

savings. In a second phase, trucks are assigned to these

merged trips. Caris and Janssens (2009) extend the problem

of Imai et al. (2007) to a FT-PDPTW by introducing time

window constraints at the customer locations. A two-phase

insertion heuristic and a local search procedure are

proposed. In a subsequent work, a deterministic annealing

algorithm is developed to solve the problem (Caris and

Janssens 2010).
In Section 2, related literature is reviewed. The problem

formulation is presented in Section 3. In Section 4 the

proposed exact algorithm is discussed. Finally, a small

numerical example is presented in Section 5 and

conclusions are drawn in Section 6.

2. SET PARTITIONING APPROACH

Exact algorithms, which guarantee that the best solution

found is optimal, are very limited in their applicability due

to the NP-complete nature of vehicle routing and

scheduling problems. Heuristic methods explore only a
small part of the solution space, require less solution time

but do not guarantee that the solution, if found, is a (near)

optimal one. A class in between can be referred to as

heuristics based on exact methods, as they are often

variants of exact methods. The set partitioning approach

falls in this class.

The set partitioning approach consists of two phases. The

first phase of the approach is a construction phase. Let C be

a set with |C| elements and let Sj be subset of C with cost

value cj. In the subset construction phase a number of

subsets Sj with cost cj are generated. The second phase is an

optimization problem which selects a subset CS of all
subsets Sj : (1) which are mutually disjunct, (2) with a union

that is equal to the set C, and (3) with a minimal sum of

cost values cj of the selected subsets in CS.

Algorithms for the first phase are specific for vehicle

routing and scheduling problems (full truckload, time

windows, …), while algorithms for the second phase are

general in nature. The set partitioning approach is a special

structured integer programming formulation onto which a

vehicle routing problem is mapped. The formulation was

first introduced in vehicle routing by Balinski and Quandt

(1964). Magnanti (1981) has shown that the vehicle flow
formulation of the classical one depot vehicle routing

problem may be rewritten into a formulation similar to the

set partitioning problem.

In the classical VRP a feasible solution should satisfy a

number of constraints like: (1) a vehicle is used at most

once; (2) if a vehicle arrives at a customer, it must also

depart from there; (3) the load of the vehicle should not

exceed its capacity; (4) subtour elimination constraints and

(5) integrality of the decision variables. Let FTv be the set

of all feasible solutions for a particular vehicle v with

respect to the those constraints and let r be an index to a

feasible solution in this set. Such a solution r for a vehicle v
is either a feasible route visiting at least one customer,

starting and ending at the depot and satisfying the capacity

constraint, or an empty route without customers and not

departing from the depot.

For each vehicle v, exactly one route of FTv must be

chosen. Let xr be a 0-1 variable indicating whether route r is

chosen or not. Then

 .
Since each customer c has to be visited exactly once, only

one of the routes that contains c in all sets FTv may be

chosen. Let ac,r be a 0-1 coefficient that indicates whether

customer c is visited in route r or not. Then
 .

To each route r a cost cr is assigned. Therefore the objective

is the minimization of the total cost of the chosen routes

and can be written as

The objective function with both types of contraints exactly

forms the set partitioning problem.

In this exact formulation it is assumed that FTv is the set of

all feasible routes for vehicle v. In many situations it is
impossible to construct the entire set of feasible routes and

only a subset of „attractive‟ routes are considered. The

construction of this subset is called the route generation

phase. It turns the exact algorithm into a heuristic.

In terms of performance, it is worth considering the type of

solution algorithm for the set partitioning problem. A

general purpose integer programming code can be used, but

as it does not exploit the special structure of set

partitioning, it can be applied only to rather small problem

instances. A number of special algorithms have been

developed for solving the set partitioning problem so that

larger instances can be solved. Sometimes information from

the specific application, viz the VRP, might be used in

ordering rows in the tableau to speed up the solution

process. An extensive description of the approaches can be
found in Balas and Padberg (1976). Later some other

algorithms have been developed by Albers (1980), Fisher

and Kedia (1986), and Christofides and Paixâo (1993).

The problem under study in this paper is a variant of the

classical VRP. Any variant or extension of the classical

VRP implies some changes in either the route generation

phase or the optimization phase. The variant under study

differs from the classical VRP in the following aspects: (1)

time windows are imposed; (2) loading is both of the pick-

up and the delivery types; and (3) a vehicle can be used

multiple times during the planning period.

3. EXACT ALGORITHM

3.1 Algorithm logic

The full truckload routing problem is defined on a network

G=(V,A) where the customers are located at the nodes (set

V). A special node {0} is added and should be interpreted

as the single depot. The set V consists of the union of two

mutual exclusive sets representing both the „delivery

customers‟ (set VD) and the „pick-up customers‟ (set VP),

i.e. and . The members of VD

are designated by di (i=1..nd) and those of VP by pj (j=1..np).
A route is defined as a finite sequence, starting and ending

at {0}, of customers. A route is called feasible if it satisfies

two types of constraints, i.e. logical constraints and

temporal constraints. The logical constraints refer to the

physical load as a truck is able to carry only one full load

(container). A route contains either a single customer or

multiple customers.

A feasible route can be grammatically described as:

<feasible route> ::= {0} <feasible sequence> {0}

<feasible sequence> ::= <single customer> | <multiple

customer sequence>
<single customer> ::= <delivery customer> | <pick-up

customer>

<multiple customer sequence> ::= <ordered customer pair>

| <single customer> {0} < feasible sequence> |

<ordered customer pair> {0} <feasible sequence>

<ordered customer pair> ::= <delivery customer> <pick-up

customer>

Let Ck be a set of customers {c1, c2, …, cl} of cardinality l.

The set Ck may be projected into a finite set of sequences

(routes). A procedure needs to be developed to generate the

set of feasible sequences related to set Ck. At least one

logically feasible sequence can be obtained from the set Ck
(i.e. the route consists only of single customer sequences).

The logically feasible sequences, which have been

generated, need to satisfy the temporal constraints too. The

temporal constraints represent time windows within which

the service at the customer‟s site should start, and a depot

time window (opening hours of the depot).

The output of the procedure is the required input for a set

partitioning problem, which is formulated as follows:

subject to

The components of the optimization model should be

interpreted as follows:

 i represents an index of a customer set, from which

at least one logically-and-feasible sequence can be

generated;

 ci represents the minimum cost among the
logically-and-feasible sequences generated from

set i;

 aij takes value 1 if customer j is visited in a

sequence generated from set i and 0 otherwise;

 xi is the decision variable which takes value 1 if

the minimum-cost sequence from set i is included

in the dispatching plan and 0 otherwise.

The algorithm solves the full-truckload vehicle routing

problem with time windows to the optimal value. The

procedure can also be used as a heuristic through reduction

of the computational effort. This reduction may be realized

in two ways as the procedure consists of two main phases:
(1) a preprocessing phase in which all logically-and-

temporal feasible routes are generated; and (2) the solution

of the set partitioning problem. The procedure in the

preprocessing phase works in an iterative way. An iteration

l includes all operations related to the cardinality of the

customer sets equal to l, starting from l = 1 and increasing

it in each iteration by 1. The procedure has a stopping

criterion which is described below. By specifying, as a user

parameter, a maximal cardinality, the number of generated

routes is limited and makes the optimal algorithm a

heuristic. Solving the set partitioning problem by means of
a heuristic instead of the 0-1 programming optimal

algorithm also makes the optimal algorithm a heuristic.

A customer set of size l is called live at size l if at least one

logically-and-temporal feasible sequence can be generated

from the set. The iterative procedure stops after step l’ if no

customer sets live at size l’ can be found. During step l of

the procedure, customer sets of size l are generated by the

union of a customer set, live at size l-1, and an element

(customer) not included in the set of size l-1. For this

operation only information on the customer sets, live at size

l-1, is required.
In order to generate logically feasible sequences from a set

Ck, the set needs to be partitioned into singletons (single

customers) and pairs (ordered customer pairs), and an

ordering amongst them. The length of a sequence (number

of trips in the route) is indicated by Lkh (h=1,…) , with

|Ck|/2 ≤ Lkh ≤ |Ck|. Let the set of logically feasible

sequences, generated from Ck be denoted by Seq(Ck). The

elements of the set, which satisfy the temporal constraints,

build up the set of logically-and-temporal feasible

sequences, denoted by TSeq(Ck), for which holds

 .
Let us call the newly generated customer set of size l

consisting of the base set (live at l-1) and the additional
customer. The logical-and-temporal feasible sequences of

size l-1 have been stored. The sequences to be tested for the

set, consisting of the union of the base set and the

additional customer, are generated by insertion of the

additional customer at the head of the sequence, at the tail

of the sequence, and al all places within the sequence. Two

actions have to be taken: (1) a logically feasible sequence at

size l needs to be generated; and (2) the temporal

constraints have to be tested.

The logically feasible sequences to be generated depend on

(1) the type of additional customer and (2) on its

neighbour(s) in the existing sequences (or non-existing in
case the route is initialized by a first customer). The type of

additional customer is either a delivery customer (dnew) or

a pick-up customer (pnew). The customer(s) served

immediately before (resp. after) the additional customer is

(are) indicated by pi or di (resp. pj or dj) in case of single

customer and by (di,pi) (resp. (dj,pj) in case of ordered

pairs. Other customers, either before or after the immediate

neighbours of the additional customer are not explicitly

mentioned in the following rules:

 If the additional customer is the first customer to

initialize a route

Case 1: delivery customer

{0} dnew {0}

Case 2: pick-up customer

{0} pnew {0}

 If the additional customer is at the head of the

sequence (string left of additional customer is

empty)

Case 1: delivery customer, followed by a singleton

(remaining customers to the right are not explicitly

indicated, only by …)

{0} dnew {0} dj {0} …

{0} dnew {0} pj {0} …
{0} (dnew,pj) {0} …

Case 2: delivery customer, followed by an ordered pair

{0} dnew {0} (dj,pj) {0} …

Case 3: pick-up customer, followed by a singleton

{0} pnew{0} dj {0} …

{0} pnew {0} pj {0} …

Case 4: pick-up customer, followed by an ordered pair

{0} pnew{0} (dj,pj) {0} …

 If the additional customer is at the tail of the

sequence (string right of additional customer is

empty)

Case 1: delivery customer, preceded by a singleton

… {0} di {0} dnew {0}

… {0} pi {0} dnew {0}

Case 2: delivery customer, preceded by an ordered pair

… {0} (di,pi) {0} dnew {0}

Case 3: pick-up customer, preceded by a singleton

… {0} di {0} pnew {0}

… {0} (di,pnew) {0}

… {0} pi {0} pnew {0}

Case 4: pick-up customer, preceded by an ordered pair
… {0} (di,pi) {0} pnew {0}

 If the additional customer is within the sequence

(strings right and left of the additional customer

are non-empty)

Case 1: delivery customer, left and right are singletons

… {0} pi {0} dnew {0} pj {0} …

… {0} pi {0} (dnew,pj) {0} …

… {0} pi {0} dnew {0} dj {0} …

… {0} di {0} dnew {0} pj {0} …

… {0} di {0} (dnew,pj) {0} …

… {0} di {0} dnew {0} dj {0} …

Case 2: delivery customer, left is ordered pair, right is

singleton
… {0} (di,pi) {0} dnew {0} pj {0} …

… {0} (di,pi) {0} (dnew,pj) {0} …

… {0} (di,pi) {0} dnew {0} dj {0} …

Case 3: delivery customer, left is singleton, right is ordered

pair

… {0} pi {0} dnew {0} (dj,pj) {0} …

… {0} di {0} dnew {0} (dj,pj) {0} …

Case 4: delivery customer, left and right is ordered pair

… {0} (di,pi) {0} dnew {0} (dj,pj) {0} …

Case 5: pick-up customer, left and right are singletons

… {0} pi {0} pnew {0} pj {0} …

… {0} pi {0} pnew {0} dj {0} …
… {0} di {0} pnew {0} dj {0} …

… {0} (di,pnew) {0} dj {0} …

… {0} di {0} pnew {0} pj {0} …

… {0} (di,pnew) {0} pj {0} …

Case 6: pick-up customer, left is ordered pair, right is

singleton

… {0} (di, pi) {0} pnew {0} pj {0} …

… {0} (di,pi) {0} pnew {0} dj {0} …

Case 7: pick-up customer, left is singleton, right is ordered

pair

… {0} di {0} pnew {0} (dj,pj) {0} …
… {0} (di,pnew) {0} (dj,pj) {0} …

… {0} pi {0} pnew {0} (dj,pj) {0} …

Case 8: pick-up customer, left and right is ordered pair

… {0} (di,pi) {0} pnew {0} (dj,pj) {0} …

3.2 File management

Input data

The input data related to the customers are read from two

text files. A first file contains a matrix of distances

(expressed as integers) from every delivery point to every

pick-up point. A second file contains the distances to the

depot both from delivery customers as from pick-up

customers, as well as the earliest and latest start-of-service

times (time windows).

Input data also come as parameters. These parameters are
hard coded, so they are not read from an input file. They

include:

the name of the first input file

the name of the second input file

the number of pick-up customers

the number of delivery customers

the service time at the customer‟s site

the depot closing time.

The first and the second parameters are the names of the

text files (including .txt). The third and fourth parameters

are required because of the use of static data structures
(vectors and matrices). A vector of length equal to the

number of delivery (resp. pick-up) customers is used for (1)

distances from the customer to the depot, and (2) earliest

and latest start-of-service times at the customer‟s site. A

two-dimensional matrix is defined of size „number of

delivery customers‟ by „number of pick-up customers‟ used

for the distances between delivery and pick-up customers.

The fifth parameter assumes that the service time is equal at

all customer‟s sites. The sixth parameter refers to the time

epoch at which any truck should return at the latest

(assuming earliest time of departure from the depot is equal

to 0).

Work file data

A customer set may have multiple sequences but a

sequence belongs to only one customer set. This 1:N

relationship might be used in a database programming

environment but not in an environment using only

sequential (text) files. Therefore the link between, customer

sets and sequences must be explicitly coupled in a single

data file. The program uses a data file type in which

customer sets are defined and in which, after each customer

set definition, the logically-and-temporal feasible sequences
are defined. A customer set without logically-and-temporal

feasible sequences is not included in the file.

As the procedure works in an iterative way, increasing the

size of the customer set by 1 in each iteration, two work

files of the same type are in use. A first file (called the old

work file) contains all customers sets and their related

sequences at level l-1 while a second file (called the new

work file) contains all customers sets and their related

sequences at level l.

Archive file

A customer set which contains at least one logically-and-
temporal feasible sequence is a candidate for inclusion into

the set partitioning problem solution. During the iterative

process these customer sets are stored. While creating the

work file called the new work file it can be checked which

of the feasible sequences lead to the lowest cost sequence.

The value of this lowest cost is required for the formulation

of the set partitioning problem. Also the sequence, related

to this minimal cost value, is stored. This is not a

requirement for solving the set partitioning problem, but the

information is needed to publish the list of customers in a

specific route which has been selected in the optimal

solution of the problem.

Set_partitioning_problem file
Once the archive file has been completed and the procedure

has satisfied its stopping criterion, a program translates the

information from the archive file into Lingo-code for the

formulation of the 0-1 integer linear programming problem

which, as a text file, is ready to be solved by the Lingo

software.

The algorithms has a bad worst-case complexity. In case

the time windows are hardly restrictive a huge amount of

subsets could be eligible as routes, making the set

partitioning problem hard to solve. With relatively narrow
time windows the complexity is much lower and the

problem much easier to handle.

4. NUMERICAL EXAMPLE

In this section, a small numerical example with tree pick-up

customers (and three delivery customers

(is presented. The time windows of the
depot (0) and customers are shown in Table 1. Distances

between the customers and the depot and between delivery

and pick-up customers are shown in Table 2. Customer

service time is assumed to be 10.

Table 1: Time windows

Customer Time window

0 [0, 360]

 [35, 84]

 [253, 278]

 [133, 177]

 [69, 82]

 [242, 252]

 [174, 180]

Table 2: Distances

 0

0 0 63 48 49

 9 57 40 41

 47 42 5 11

 36 45 13 16

Using the procedure presented in the previous section,

eighteen feasible routes or sequences can be found. Six of

these contain only a single customer, while there are nine

sequences of two customers and three sequences of three

customers. Solving the set partitioning problem results in

the optimal solution which is shown in Table 3. Three

vehicles are used and the total distance travelled is 416.

Table 3: Results

Vehicle Distance Sequence

1 99

2 220

3 97

5. CONCLUSIONS

The full-truckload pick-up and delivery problem is a
relevant problem in an intermodal transport context to make

the complete transport chain economically efficient. As

most of the pre- and end- haulage in intermodal transport is

realized by road transport and is relatively expensive,

efficient vehicle routing is an economical benefit. The pick-

up and delivery problem is NP-complete making optimal

solution very difficult, especially when on top time window

constraints are added. In this case researchers turn mostly

into heuristics, but it might be also reasonable to investigate

how exact algorithms behave computationally. The

introduction of time windows probably limits the high
computational complexity nature of the problem. In the

case that the time windows are relatively hard constraining,

an exact algorithm might be solved until optimality in a

reasonable computing time. This paper shows how such an

implementation can be realized in a computationally

efficient way.

REFERENCES

Albers, S. 1980. “Implicit enumeration algorithms for the set

partitioning problem.” OR Spektrum 2, No.1, 23-32.
Balas, E. and M.W. Padberg. 1976. “Set partitioning: a survey.”

SIAM Review 18, No.4, 710-760.
Balinski, M. and R. Quandt. 1964. “On an integer program for a

delivery problem.” Operations Research 12, No.2, 300-304.

Caris, A. and G.K. Janssens. 2009. “A local search heuristic for
the pre- and end-haulage of intermodal container terminals.”
Computers & Operations Research 36, No.10, 2763-2772.

Caris, A. and G.K. Janssens. 2010. “A deterministic annealing
algorithm for the pre- and end-haulage of intermodal container
terminals.” International Journal of Computer Aided
Engineering and Technology 2, No.4, 340-355.

Christofides, N. and J. Paixâo. 1993. “Algorithms for large scale

set covering problems.” Annals of Operations Research 43,
No.5, 261-277.

Currie, R.H. and S. Salhi. 2004. “A tabu search heuristic for a full-
load, multi-terminal, vehicle scheduling problem with
backhauling and time windows.” Journal of Mathematical
Modelling and Algorithms 3, No.3, 225-243.

Erera, A.L. and K. Smilowitz. 2008. “Intermodal drayage routing
and scheduling”. In Intelligen Freight Transportation, P.

Ioannou (Ed.). Automation and Control Engineering Series,
CRC Press, Boca Raton, FL, 171-188.

Fisher, M.L. and P. Kedia. 1986. “A dual algorithm for large scale
set paritioning”. Working paper No. 894, Krannert Graduate
School of Management, Purdue University, West Lafayette,
Ind.

Gronalt, M.; R.F. Hartl; and M. Reimann. 2003. “New savings

based algorithms for time constrained pickup and delivery of
full truckloads.” European Journal of Operational Research
151, No.3, 520-535.

Imai, A.; E. Nishimura; and J. Current. 2007. “A Lagrangian
relaxation-based heuristic for the vehicle routing with full
container load.” European Journal of Operational Research
176, No.1, 87-105.

Macharis, C. and Y.M. Bontekoning. 2004. “Opportunities for OR

in intermodal freight transport research: A review.” European
Journal of Operational Research 153, No.2, 400-416.

Magnanti, T.L. 1981. “Combinatorial optimization and vehicle
fleet planning: perspectives and prospects.” Networks 11,
No.2, 179-213.

Parragh, S.N.; K.F. Doerner; and R.F. Hartl. 2008a. “A survey on
pickup and delivery problems. Part I: Transportation between
customers and depot.” Journal für Betriebswirtschaft 58,
No.1, 21-51.

Parragh, S.N.; K.F. Doerner; and R.F. Hartl. 2008a. “A survey on
pickup and delivery problems. Part II: Transportation between
pickup and delivery locations.” Journal für Betriebswirtschaft
58, No.2, 81-117.

Savelsbergh, M.W.P. and M. Sol. 1995. “The general pickup and
delivery problem.” Transportation Science 29, No.1, 17-29.

Schrage, L. 2007. Optimization Modeling with Lingo (6th ed.),
Lindo Systems Inc., Chicago, IL (www.lindo.com).

Wang, X. and A.C. Regan. 2002. “Local truckload pickup and
delivery with hard time windows constraints.” Transportation
Research Part B:Methodological 36, No.2, 97-112.

BIOGRAPHY

Gerrit K. Janssens holds a Ph.D. in Computer Science

from the Free University of Brussels (VUB). Currently

he is Professor of Operations Management and

Logistics at the Hasselt University, Belgium within the

Faculty of Business Administration. He also holds the

CPIM certificate of the American Production and

Inventory Control Society (APICS). During the last

eighteen years he has been several times visiting faculty

in universities in South-East Asia and in Southern
Africa. His main research interests include the

development and application of operations research

models in production and distribution logistics.

Kris Braekers graduated as Master in Business Economics

with a major in Operations Management and Logistics

at Hasselt University in 2008. Currently he is preparing

a PhD in Applied Economic Sciences at Hasselt

University. He is a member of the research group

Logistics at the Transportation Research Institute

(IMOB) of Hasselt University. His main research
interests include modeling empty container management

and vehicle routing issues in intermodal freight

transport using Operations Research techniques."

