
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A solution to separation for clustered binary data

Peer-reviewed author version

Abrahantes, Jose Cortinas & AERTS, Marc (2012) A solution to separation for

clustered binary data. In: STATISTICAL MODELLING, 12 (1), p. 3-27.

DOI: 10.1177/1471082X1001200102

Handle: http://hdl.handle.net/1942/13704



A Solution to Separation for Clustered Binary Data
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Summary. The presence of one or more covariates which perfectly or almost perfectly predict the outcome of
interest (which is referred to as complete or quasi-complete separation, the latter denoting the case when such
perfect prediction occurs only for a subset of observations in the data) has been extensively studied in the last four
decades. Since 1984, when Albert and Anderson (1984) differentiated between complete and quasi-complete
separation, several authors have studied this phenomenon and tried to provide answers or ways of identifying the
problem (Lesaffre and Albert, 1989; Firth, 1993; Christmann and Rousseeuw, 2001; Rousseeuw and Christmann,
2003; Allison, 2004; Zorn, 2005; Heinze, 2006). From an estimation perspective, separation leads to infinite
coefficients and standard errors, which makes the algorithm collapse or give inappropriate results. As a practical
matter, separation forces the analyst to choose from a number of problematic alternatives for dealing with the
problem, and in the past the elimination of such problematic variables were common practice to deal with such
situations. In the last decade solutions using penalized likelihood have been proposed, but always dealing with
independent binary data. Here we will propose a Bayesian solution to the problem when we deal with clustered
binary data using informative priors that are supported by the data and compare it with an alternative procedure
proposed by Gelman et al. (2008).

1. Introduction

In the setting of binary-response data, logistic regression is one of the most common tools used in real
life situations. In general, the standard estimation method is based on the maximum likelihood principle.
Maximum likelihood estimates, however, do not always produce finite estimates (Silvapulle, 1981). Whenever
the likelihood does not have a maximum, the numerical algorithms implementing the search for this maximum
are bound to encounter serious problems or to produce erroneous and non-sensible results. This non existence
of finite estimated values in logistic regression is commonly known as the separation problem.

The name separation is due to the fact that the likelihood will not have a maximum whenever one of the
independent variables used as a the linear predictor is able to perfectly separate or classify the observations
into the respective groups of the response variable. The issue is known at least since Day and Kerridge
(1967) and is not unique to modeling binary data. When modeling times-to-event, the problem is known
as “monotone likelihood” (Bryson and Johnson, 1981). Later Albert and Anderson (1984) introduced a
useful distinction between complete separation and quasi-separation. Although proposed for multinomial
logit models, the distinction applies equally well to the binomial situation.

When we deal with logistic regression problems the existence of maximum likelihood estimates depends on
the configuration of the sample points in the observation space, which we can subdivide in three mutually
exclusive and exhaustive categories: complete separation, quasi-complete separation, and overlap. Complete
separation refers to the case for which we can find a vector b that, if multiplied by the covariate value,
correctly allocates all observations in the data to their corresponding response group, given for example,
the sign of the product. In the particular case of a binary covariate X, complete separation corresponds to
“empty cells” in the off diagonal of the implied 2 × 2 table formed by the two variables (covariate versus
response). Basically we can say that the response Y can be perfectly predicted by the covariate X for all
the observations in the data. The consequence is that there is no variance left to be explained in Y by
the other covariates in the model and the likelihood will be flat, the diagonal elements of the inverse of the
information matrix will be infinite in size, thus yielding infinite standard error estimates. Quasi-complete
separation is found if the data are not completely separated and there exists a vector b such that we can
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subdivide the space (b · X) into separating spaces corresponding to the response groups, but there might
exist members of several groups of the response that falls into this separating hyperplane. In the particular
case of a binary covariate X, quasi-complete separation occurs when only one cell of the off-diagonal of the
implied 2×2 table is “empty”. Under quasi-complete separation, the parameter estimate for variable X and
its standard errors will also be infinite, but the effect of other covariates may remain relatively unaffected.
Whenever data do not exhibit either complete or quasi-complete separation, the data are said to overlap.
For overlapping data the maximum likelihood estimates are proven to exist and to be unique (Silvapulle,
1981).

The phenomenon of separation in a dataset was studied via simulation by Heinze and Schemper (2002). Ac-
cording to their investigations, separation depends on sample size, on the number of dichotomous covariates
involved in the analysis, the magnitude of the coefficients and how unbalanced the response is. They showed
as well that separation can happen even when the absolute value of the model parameters is low. In view of
these findings it is important to be able to detect such problems. Several authors have published on the issue
of such detection. The detection methods range from very simple ad-hoc methods to optimization solutions
that are proven to result in correct detection of the phenomenon in the dataset. A first simple way to deal
with the problem is to cross-classify the independent variables one by one with the dependent variable and
search for 0 values in the cells preliminary to the analysis. Alternatively, one can use very large coefficients
with huge standard errors as indices for numerical problems. A third approach is to simply inspect how the
coefficients evolve during the iterations of the fitting algorithm. If the estimates for a particular parameter
do not stabilize but ‘jump around’ in the solution space, separation might well be the culprit. All of these
checks, however, do not give certainty on the origin of the problem.

For this reason, Albert and Anderson (1984) propose a linear programming method that always leads to
detection. Santner and Duffy (1986) expand on Albert and Anderson (1984) and provide a mixed linear
programming algorithm that can be used to determine whether there is complete separation, quasi-complete
separation or overlap. Another interesting complement to these methods was offered by researchers in robust
statistics. Christmann and Rousseeuw (2001) developed a way not to find separation, but quantify the degree
of overlap in a dataset. A software implementation of this approach is offered by the R package noverlap.

However, detecting the problem, is just the first step, solution to such problems are of practical importance,
specially when dealing with data analysis presenting such issues. Several strategies have been developed
to deal with both complete or quasi-complete separation. The most widely-used “solution” is simply to
omit the problematic covariate or covariates from the analysis. Of course, this alternative is particularly
unattractive, since omitting a covariate that clearly bears a strong relationship to the phenomenon of interest
is nothing more than deliberately introducing specification bias. Another approach suggested by Clogg et
al. (1991) modifies the data in order to eliminate the separation, supplementing additional “artificial” data
across the various patterns of (categorical) covariates, and then conduct the analysis in the usual fashion on
the augmented data. Unfortunately, it has been demonstrated in a simulation study (Heinze and Schemper,
2002) that it does not perform as well as other alternative solutions. Another solution could be for the case in
which the problematic variable is of a nominal type with more than two categories, to group categories, which
can help for quasi-complete separation (but not for complete separation). Exact logistic regression, already
suggested by Cox (1970), could be an alternative approach, but the method can be computer-intensive thus
practically less feasible.

Firth explored a general method of bias reduction using penalized likelihood in a 1992 paper and finalized his
ideas in 1993 (Firth, 1993). The intuition of Firth’s approach is to introduce a bias term into the standard
likelihood function which itself goes to zero as sample size increases. Although the initial purpose of Firth was
to reduce the bias of the maximum likelihood estimates, the method has many advantageous characteristics
when data display separation (Heinze, 2006). Heinze and Schemper (2002) advocate using penalized profile
likelihood confidence intervals instead of the Wald intervals used by Firth. Gao and Chen (2007) develop the
concept further and introduce a second penalizing term to deal with ill-behaving due to multicollinearity. In
contexts where multicollinearity is likely to arise, it might indeed be important to clearly deal with the two
numerical problems separately.
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Another alternative is to work in a Bayesian paradigm and use MCMC methods to fit such models, but
according to Allison (2004) uninformative priors in general lead to convergence problems. And the use of
informative priors might lead to results depending rather heavily on the mean and variance of the prior
distribution. Thus, using Bayesian models when dealing with logistic regression models which suffers from
separation issues should be done with care. In a recent paper, however, Gelman et al. (2008) develop a
method that addresses this criticism. First, all nonbinary variables are scaled to have mean 0 and standard
deviation 0.5, and then independent Student-t prior distributions are put on the coefficients. It is stated
that the method always converges (even when complete separation is present), due to the use of what the
authors called weakly informative priors.

The robust statistics community also contributed to the issue of finding solutions to separation, when they
introduced the concept of hidden logistic regression (Rousseeuw and Christmann, 2003). These authors
assume unobservable true responses and propose a maximum estimated likelihood estimator. The estimator
is robust against separation and always exists. A weighted version is proposed as well to render the estimator
robust against outliers.

In general several alternatives have been proposed in the past to deal with separation issues in logistic
regression problems, but all, with exception of Gelman et al. (2008) have been extensively discussed in the
context of independent observations. Here in this article we will propose an alternative approach when dealing
with clustered binary data, in a Bayesian framework and using penalized likelihood to obtain plausible prior
distributions for the regression coefficients corresponding to the covariates having separation issues. We will
also compare this approach with the approach proposed by Gelman et al. (2008) in a simulation study, in
terms of bias, variance and mean squared error of the estimates.

First a motivating case study is presented in Section 2. In Section 3, the model setting used throughout the
paper is described. The proposed method, which combines results obtained from Firth’s penalized likelihood
approach with the use of appropriate priors in a Bayesian framework is described in Section 4. The simulation
setting to evaluate and compare the performance of this alternative with the existing method of Gelman et
al. (2008) is presented in Section 5. Section 6 present the results of case study. We close the paper with
some discussion and recommendations in Section 7.

2. Motivating Case Study: Analysis of Salmonella Data in Pigs

Since January 2005 blood samples of growing and fattening pigs are collected from all (fattening) pig herds
in Belgium within the Aujeszky disease monitoring program and it is combined with an indirect commercial
enzyme linked immunosorbent assay (ELISA, Idexx LaboratoriesR) for the detection of Salmonella-specific
antibodies. Within this monitoring program, blood samples of 12 or more animals (depending on the herd
size) have to be collected in each herd in Belgium every 4 months in order to determine the Aujeszky
status. The presence of antibodies against Salmonella in each sample was determined by relating the optical
density (OD) values to the mean positive kit control by calculating the sample to positive ratio corrected
with negative background values of the kit (SP-ratio = Optical Density (ODsample - ODNeg Kit control)
/ (ODPos Kit control - ODNeg-kit control)). SP-ratio’s are generally recorded between 0 and 4, and in
general a dichotomized version is used to classify Salmonella infected animals(SP-ratio > 0.35). Beside
SP-ratio’s the final dataset contains other covariates as well (herd id number, sampling date, cleaning (if
cleaning is performed after a batch is leaving the farm, before a new batch is coming), vermin (presence or
absence during the stay of a batch),. . . ). Other variables were also collected, but we will just focus on those
previously mentioned to illustrate the problem and the solutions proposed. Variables cleaning and vermin
were dichotomous and sampling time was considered as a continuous variable (number of days, calculated
as the sampling date minus the starting date of the national Salmonella program (=01/01/2005)).

The dataset contain information from 83 herds, with a total of 4179 observations. The average number of
pigs sampled per herd is around 50. We selected from the complete datasets (containing 314 herds) those
herds with more than 30 observations. The selection is based on the fact that the monitoring program aims
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Table 1. Contingency tables between dichotomous covariates
and binary response.
Salmonella Vermin Cleaning

Absence Presence Absence Presence

Absence 187 3386 296 3277

Presence 17 589 0 606

Table 2. Parameter estimates of logistic regression model (2.1)
without random effects.
Coefficients Estimate Std. Error Z value P-value

Intercept -18.2944 229.8633 -0.08 0.9366

SamplingTime -0.0661 0.0436 -1.52 0.1296

Vermin 0.7331 0.2574 2.85 0.0044

Cleaning 15.9028 229.8632 0.07 0.9448

at identifying possible problematic pig herds, with high infestation of Salmonella. The criteria applied by
the Belgian Federal Agency for the Safety of the Food Chain (FASFC) to assign a pig herd as “high risk”
are: a pig herd with mean S/P-ratio (mean value calculated from maximum 12 samples per sampling) equal
or higher than 0.6 during 3 consecutive samplings. It implies that only herds with at least 3 consecutive
samplings will be considered in the analysis. More details on the data can be found in Bollaerts et al. (2007)
and Cortiñas Abrahantes et al. (2009).

The model to be used is the following:

Pr(Yij = 1|X1ij , X2ij , X3ij) ≡ πij =
1

1 + exp(−(β0 + β1 ·X1ij + β2 ·X2ij + β3 ·X3ij + bi)
, (2.1)

where binary variables X1ij and X3ij represent presence or absence of ‘vermin’ and ‘cleaning’ respectively
and variable X2ij refers to the continuous variable ‘sampling time’. The term bi is a herd specific random
intercept accounting for possible correlation at the cluster (herd) level.

The exploratory analysis of the data reveals that variable ‘vermin’ and ‘sampling time’ do not seem to suffer
from separation issues. However, if we do include ‘cleaning’, quasi-complete separation is introduced as
shown in Table 1. Note that the cross-tabulation is not provided as a definitive proof of separation, but
as an exploratory tool to distinguish possible issues. Other methods such as those of Albert and Anderson
(1984); Santner and Duffy (1986); Christmann and Rousseeuw (2001) could be used for this purpose. In a
first stage we have fitted a logistic regression model considering the three covariates previously mentioned
and ignoring intra-cluster correlation. The results are shown in Table 2. It is important to note that variable
‘sampling time’ was standardized in order to avoid computational issues due to scale differences between
both covariates. Also here separation issues can be observed through the large values obtained for parameter
estimates and standard errors.

If we use the penalized likelihood approach (see Section 3.2), Table 3 now shows much smaller parameter
estimates and standard errors are very much reduced as well, providing a different interpretation of the
parameters in the model (which previously indicated no significant effect of ‘cleaning’, for instance).

If we consider the model with a herd specific random intercept to account for intra-herd correlation (see
Section 3.1; results shown in Table 4), then we also observe large standard errors for variable ‘cleaning’ and
for the intercept (parameter estimates are comparable to the one obtained in Table 2). If inference would
be based on this model, there is no significant effect of any of the covariates. It is clear that separation
is preventing us from getting valid inference, thus it should be accounted for when dealing with clustered
binary data. Another interesting point is the fact that standard error estimates almost doubled as compared
to the results of logistic regression (assuming independence), especially for the intercept and the parameter
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Table 3. Parameter estimates of penalized likelihood approach.

Coefficients Estimate Std. Error Z value P-value

Intercept -7.0876 0.8470 -8.37 7.9e-17

SamplingTime -0.0661 0.0436 -1.52 0.12962

Vermin 0.7073 0.2546 2.78 0.00546

Cleaning 4.7232 0.8341 5.66 1.6e-08

Table 4. Parameter estimates of logistic regression model (2.1)
with a random intercept.
Coefficients Estimate Std. Error Z value P-value

Intercept -18.5465 446.4685 -0.042 0.967

SamplingTime -0.0799 0.0480 -1.665 0.096

Vermin 0.6578 0.8075 0.815 0.415

Cleaning 15.6507 446.4678 0.035 0.972

σ2
bi

1.9949 1.4124

associated to ‘cleaning’. Standard errors are expected to become larger in case of a positive intra-cluster
correlation, as in this case. In general, the impact depends on the magnitude of the variance of the random
effect.

3. Separation and Clustered Binary Data

This section summarizes relevant basic concepts of GLMM’s (Generalized Linear Mixed Models) to model
clustered binary data, Firth’s penalized likelihood approach to deal with the separation issue, and it discusses
the difficulties with extending Firth’s methods to GLMM’s, to the combined setting where separation appears
while using clustered data.

3.1. Generalized Linear Mixed Models

The GLMM (Breslow and Clayton, 1993; Engel and Keen, 1994; Wolfinger and O‘Connell, 1993) is the most
frequently used random-effects model in the context of non-Gaussian clustered or repeated data. It is a
relatively straightforward extension of the generalized linear model for independent data to the context of
hierarchical data on the one hand and the linear mixed model (Verbeke and Molenberghs, 2000) on the other
hand. Let us first introduce some notation. Let Y = (Y1, . . . ,YN) be the vector of binary responses, where
the vectorYi is grouping the ni measurements Yij , β is a vector of fixed-effects parameters, Xij represents the
covariates, and b is a vector of random effects associated with a vector of covariates Zij, where i = 1, 2, . . . , N
refers to the different clusters, and j = 1, 2, . . . , ni the observations collected within each cluster. The random
effects are assumed to be randomly distributed with mean 0 and variance-covariance matrixD = D(θ), which
depends on a d + 1 dimensional vector of parameters θ = (θ0, θ1, . . . , θd). Note also that a general random
effects structure could be used, and as such bi could be representing a vector. The density function of bi

will be denoted by f(bi). Note that we do not need to specify the nature of the distribution, meaning that
no explicit assumption about the distribution of the random effects is needed. Then the logistic model can
be written as follow:

Pr(Yij = 1|Xij) ≡ πij =
1

1 + exp(−Xij · β − Zij · bi)
. (3.1)

For this particular scenario several likelihood functions exist: conditional, augmented or marginal likelihood.
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The conditional log likelihood (lC(β,b))is given by the expression:

lC(β,b) =

N∑
i=1

ni∑
j=1

lCij (β,b) (3.2)

=
N∑
i=1

ni∑
j=1

{(Yij − 1) · (Xij · β + Zij · bi)− ln [1 + exp(−Xij · β − Zij · bi)]} .

The augmented log likelihood (lA(β,b)) then would be:

lA(β,b) =
N∑
i=1

ni∑
j=1

lC(β,b)ij + lnf(bi) (3.3)

=
N∑
i=1

ni∑
j=1

{(Yij − 1) · (Xij · β + Zij · bi)− ln [1 + exp(−Xij · β − Zij · bi)] + lnf(bi)} .

In general, the marginal log likelihood is then used to estimate the parameters of the model β and b, and is
then calculated as:

lM(β,b) =

N∑
i=1

ln

∫ ∞

−∞
exp

 ni∑
j=1

lC(β,b)ij + lnf(bi)

 dbi. (3.4)

This likelihood does not always have a closed form, as it depends on the distribution assumed for the
random effects. To obtain the maximum likelihood estimates for β and θ in those cases, it is necessary to use
numerical integration or approximation procedures for the integral. Another drawback is that distributional
assumptions of the random effects b are difficult to verify. Given the complexity of the problem, obtaining
the score equations and information matrix is not a straightforward procedure, since integrations are taking
part of the likelihood function. Fitting such models is not always a straightforward task, depending on the
specific assumptions on the random effects. It is relatively straightforward to fit GLMM’ with normally
distributed random effects (e.g. using PROC NLMIXED in SAS).

For the analysis of the Salmonella data as well as for the simulations, we will take a random intercept GLMM
with normally distributed random effect.

3.2. Firth’s Penalized Likelihood Approach

The penalized likelihood approach was proposed by Firth (1993), whose central idea was to develop a method
to eliminate the small–sample bias in maximum likelihood estimation. The intuition behind his approach
is to introduce a bias term into the standard likelihood function which on the one hand can be considered
negligible when the sample size increases, but on the other hand eliminates the bias for small sample sizes.
The result of his method is the so-called “penalized” likelihood:

LP(β) = L(β) · |I(β)| 12 . (3.5)

The loglikelihood then would be:
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lnLP(β) = lnL(β) +
1

2
· ln|I(β)|, (3.6)

where I(β) is the information matrix written as:

[I(β)]
−1

=

{
E

[
∂2lnL(β)

∂β∂β′

]}−1

= X′ ·W ·X = X′ · diag [πi · (1− πi)] ·X. (3.7)

Firth (1993) demonstrates that this modified likelihood is asymptotically consistent, while eliminating the
usual small–sample bias. Its estimates exist in situations where standard likelihood estimates do not, in
particular when we face complete or quasi complete separation in binary response models. Using this
penalized log-likelihood, we obtain the penalized score equations:

UP(βt) =
∂
{
lnL(β) + 1

2 · ln|I(β)|
}

∂βp
(3.8)

= U(βp) +
1

2
· trace

{
[I(β)]

−1 · ∂I(β)|
∂βp

}
.

Using the score equations and the information matrix (3.7), the penalized score equations for logistic regres-
sion are:

UP(βp) =

N∑
i=1

[
Yi −

1− hi

1 + exp(−Xi · β)
+

hi

2

]
·Xi = 0, (3.9)

where hi is the i-th diagonal element of the penalized likelihood version of the “hat” matrix H:

H = W
1
2 ·X ·X′ ·W ·X ·X′ ·W 1

2 ,

and W is defined as in equation (3.7).

Estimation of β in (3.9) can be done using standard Newton-Raphson or quasi-Newton methods to the
modified score function, and standard mechanisms can be used to obtain standard error estimates, such as

the square roots of the diagonal elements of
[
IP(β)

]−1

=
{
E
[
∂2lnLP(β)

∂β∂β′

]}−1

.

In case of a binary logit model with a single dichotomous covariate, the penalized likelihood correction has
an especially simple interpretation. It basically means that we need to add 0.5 to each cell of the 2×2 table.
In general, it can be seen as an approach that “splits each original observation i into two new observations
having response values Yi and 1 − Yi with iteratively updated weights 1 + hi/2 and hi/2, respectively”
(Heinze and Schemper, 2002). However, profile likelihood confidence intervals based on penalized likelihood
estimates are in general asymmetric, this is due to the fact that the estimates are close to boundary of the
eligible parameter space. This means that inferences based on Wald–type statistics can be misleading. We
can say that the penalized likelihood approach offers a way out to the problem of separation in logit, probit,
and other binary response generalized linear models. In fact this method provides a nice alternative to either
omiting important covariates from the models or applying post-hoc data manipulation for those covariates.

3.3. Extensing Firth’s Penalized Likelihood Approach to Clustered Binary Response Data

In fact this method could be extended to the case of clustered binary data, since it just involves correcting the
likelihood by multiplying it by the squared root of the determinant of the information matrix. The issue in
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the case of random effects logistic regression is that the likelihood and information matrix involve integration
of the random effects, and no analytic solutions are available in this scenario. As we already discussed in
Section 3.1, obtaining “ML–estimates” in this context, even when no separation problems are presented is
not straightforward, thus adding this extra complication to the likelihood is going to make the maximization
problem even more complicated. A possibility would be to use an approximation to the integral such as the
Laplace approximation. It has been shown however that this approach could suffer from severe bias. An
alternative would be to use numerical methods to maximize the penalized likelihood, but since it involves
partial differentiation and integration it is neither an appealing option. Here we look for solutions using the
Bayesian paradigm.

4. Bayesian Solutions to Separation with Clustered Binary Data

As it was already mentioned in the introduction, the Bayesian framework offers an alternative to deal
with separation issues, but informative priors or weakly informative priors are needed in order to reach
convergence. In the next subsections, we briefly describe the two-step approach proposed by Gelman et al.
(2008) and an alternative procedure, also consisting of two stages. The two methods only differ in the first
step with the selection of the priors.

4.1. Gelman’s Approach

There is a vast literature covering noninformative, default, and reference prior distributions (Jeffreys, 1961;
Hartigan, 1964; Bernardo, 1979; Spiegelhalter and Smith, 1982; Berger and Bernardo, 1989; Tibshirani, 1989;
Ye and Berger, 1991; Berger and Bernardo, 1992a,b,c; Yang and Berger, 1994; Kass and Wasserman, 1996).
Gelman et al. (2008) proposed a new prior distribution. Their approach differs from other work on the topic
in the sense that they actually aim to include some prior information, with the objective to regularize the
extreme inferences that are obtained using maximum likelihood or completely noninformative priors. Prior to
their approach other authors have provided either fully informative prior distributions for which they used
application-specific information, or noninformative priors, in general motivated by invariance principles.
Their purpose was to propose what they called a weakly informative prior distribution that could be used
in a wide range of applications. In previous work Gelman (2008) discussed a standardization procedure for
input variables in order to directly compare and interpret parameter estimates. In their paper they proposed
a two step procedure, the first step proposed by Gelman et al. (2008) consists of the standardization of
the input variables, a procedure which has been previously applied to Bayesian generalized linear models by
Raftery (1996). They propose that the standardization should be done as follow: in the case of binary inputs,
the coding is such that they are shifted to have mean 0 and to differ by 1 in their lower and upper conditions.
In other cases, inputs are shifted to have mean 0 and scaled to have a standard deviation of 0.5, assuring
that continuous variables are on the same scale as symmetric binary inputs. The authors made a distinction
between regression inputs and predictors (see Gelman (2008) for more details). Then prior distributions for
the coefficients of the predictors are defined, assuming independence of the coefficients. Then they propose
to use a Student-t prior distribution with mean 0, degrees-of-freedom ν and scale s, where ν and s are chosen
in such a way that prior information constrains the coefficients to lie in a reasonable range. They argue in
their paper that this prior distribution allows easy and stable computation for logistic regression. Gelman et
al. (2008) discussed the use of a Cauchy prior distribution, given that it outperforms the normal, on average,
due to the fact that it allows for large coefficients and at the same time performs a reasonable amount of
shrinkage for coefficients near zero. They based the choice of the parameters to be used on the fact that if we
consider the case of one-half of a success and one-half of a failure for a single binomial trial with probability p,
which is just a logistic regression with only a constant term, then the likelihood is close to a t density function
with 7 degrees of freedom (t7) and scale 2.5 (Liu, 2004). In order to be more conservative and leaving the
possibility to obtain very large values, they propose to use the Cauchy, or t1, distribution, again with a scale
of 2.5. The idea is then to assign independent Cauchy prior distributions with center 0 and scale 2.5 to each
of the coefficients in the logistic regression except the constant term, for which they propose to use a Cauchy
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with center 0 and scale 10 (implying that the success probability for an average case should be between 10−9

and 1 − 10−9). About the computation of such an approach the authors state that, in principle, logistic
regression with these prior distributions can be computed using the Gibbs and Metropolis algorithms. In
this article we will follow this path, and apply their method in a simulation exercise using Gibbs sampling
methodology. This method can easily be extended to the case of clustered binary data. It merely introduces
another term in the model (usually called random effect) and t1 prior distributions with scales as mentioned
before for the so called “fixed coefficients” in the model. We left the prior distribution for the variance
associated to the random effect to be non-informative (we have used inverse-gamma(ϵ = 0.001, ϵ = 0.001)).
It is worth noting that in this particular setting when the recommended uniform distribution (Gelman, 2006)
on a wide range, U(0, 100) is used as prior, results obtained are comparable. Gelman (2006) states that if
variance of the random effect is estimated to be near zero, the resulting inferences will be sensitive to ϵ. But
clearly in this case the variance of the random effect is not near zero, thus resulting inference are comparable
for both prior distributions.

4.2. A New Approach Combining Penalized Likelihood with Bayesian Methodology

First of all, it is necessary to identify the regression inputs that could present separation issues. As it
was discussed earlier in the introduction, several methods have been proposed for this purpose (Albert and
Anderson, 1984; Santner and Duffy, 1986; Christmann and Rousseeuw, 2001). Next, we propose to use
an alternative two stage approach: in the first stage we use Firth’s penalized likelihood approach without
considering the clustered nature of the data in our model, for the purpose of extracting information about
the prior distributions that we should use in the second stage. In the first stage, we fit the following model:

Pr(Yij = 1|Xij) ≡ πi =
1

1 + exp(−Xij · β)
. (4.1)

In order to simplify notation, we will assume that only one covariate or regression input Xwij is presenting
separation problems. Then in the second stage, in line with the method proposed by Gelman et al. (2008),

we propose to use a t1 prior distribution, centered around the estimated value (β̂p
w) obtained from the

penalized likelihood approach for the variable in question (Xwij) and scale equal to 2 times the estimated
variance (2 · σ̂2

β̂p
w

), in order to be conservative and at the same time allowing the possibility to obtain extreme

values around the center. Note that in case that more covariates present separation issues we just extract
from the penalized model the estimated value of the coefficient associated to the covariates, as well as the
estimated variances and follow the procedure mentioned above for each coefficient associated to the covariate
in question. For the other regression inputs which do not present separation problems, we will just confine
ourself to use non-informative priors (flat priors, normally distributed centered around 0 with variance equal
to 105) . This method borrows strengths from the penalized likelihood approach to deal with the fact that
informative priors are needed (which allows extreme values) for the variable suffering from separation issues.
Another feature of this approach, different from Gelman’s approach, is that prior distributions for all other
regression inputs which do not present separation problems can remain non-informative.

4.3. Data Splitting

One might raise a concern on using the data twice: to define the prior distribution as well as for fitting the
model. This concern holds for Gelman’s approach as well as for the new proposed approach. Gelman et al.
(2008) (p. 1363) states that “a prior distribution on standardized variables depends on the data, but this is
not necessarily a bad idea”. A way to deal with this issue is to split the data in two parts, similar to the
splitting in a training and a test set as used in for instance random forests and other so-called data mining or
machine-learing techniques. We applied this data splitting as follows: prior to the two steps, a training-test
setting is adopted, using in the first step the training subset of the full data, to obtain the prior distribution
while in the second step the test subset is used to fit the final model. We applied a 70%-30% splitting of the
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sample for both stages (as commonly applied for random forests). Of course, other splitting ratios could be
chosen. The use of all data for both stages as well as a 70%-30% splitting for both stages is illustrated in
the analysis of Salmonella data in pigs (Section 6). For computational reasons, it was not feasable to fully
apply the splitting procedure in the simulations (Section 5).

5. Simulation Study

Gelman’s and the new approach will be applied in a simulation study and the performance of both methods
will be evaluated by examining the bias, the variance and the mean squared error of all estimators. For
both approaches estimates are calculated using 20000 iterations after an initial burn-in sample of 50000.
The posterior inference about the model parameters is obtained from the marginal posterior distribution of
each parameter. Convergence of the chains was assessed using the Gelman-Rubin convergence statistic, as
modified by Brooks and Gelman (1998) as well as Geweke’s test (Geweke, 1992), which compares the first
part of each chain (after burn-in) to the last part of the chain.

5.1. Simulation Setting

In our simulation study we generate a binary response yij , where i is representing the cluster (N in total)
and j the observation within the cluster (ni). The probability of success for yij depends on 3 covariates
(X1ij ,X2ij and X3ij) and on a cluster specific effect (bi) as follow:

Pr(Yij = 1|X1ij , X2ij , X3ij) ≡ πij =
1

1 + exp(−(β0 + β1 ·X1ij + β2 ·X2ij + β3 ·X3ij + bi)
. (5.1)

We have considered two binary covariates (X1ij and X3ij) and a continuous covariate X2ij , normally dis-
tributed with mean equal to 1 and variance 2.

One of the binary covariates equally divide our data at hand (X1ij), while the other covariate (X3ij) is
separating the data into 70% in one of the categories and 30 % into the other one. The values of the
parameters used in our simulations are β0 = −1, β1 = 15, β2 = −1 and β3 = −1, inducing a separation
problem for regression input X1ij . The cluster specific effects were considered normally distributed with
mean 0 and variance σ2

b . Several scenarios were considered, with varying values for the variance of the
cluster specific effect (σ2

b = 0.1, 0.5 and 1); and varying values for the number of clusters (N = 5, 20 and
100). The number of observations within a cluster (ni) was considered constant and equal to 100. We then
generate 100 samples of size 500, 2000 or 10000 depending on the scenario. In the simulation exercise we did
not split the data, but rather used the average of the estimated values and the estimated standard errors
obtained from the penalized models for each simulated data without considering clustering in order to obtain
a plausible prior distribution for the regression input presenting separation issues. This prior distribution is
then used throughout all simulation runs. As the new two-stage procedure requires iterative fitting at both
stages (Firth’s logistic regression at stage 1 and GLMM at stage 2), it was not considered feasible to split
the data in each run throughout all simulation scenarios.

5.2. Simulation Results

The results obtained for each scenario are displayed in Table 5 and 6. It can be seen that for the smaller
number of clusters, a smaller bias (defined as the difference between true and estimated value) is obtained
by Gelman’s approach for the parameter associated to the variable presenting the separation issue, while for
the variance of the random effects, rather the opposite is observed. It can also be noted that in the case that
the number of clusters is large (N = 100), the two stage approach generally shows a smaller bias. In general,
the variability of the estimates is smaller for the two stage approach, even for parameters β0, β2 and β3 for
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which we specify a totally non-informative prior, while Gelman’s approach uses a weakly informative prior.
This can be clearly seen in Figure 1 in which we have plotted the average over the 100 runs for each setting,
together with the median and the credible intervals for each approach, for the setting in which the variance
of the random effect is largest. For other settings results are similar and therefore not shown. It can also be
highlighted that if N increases, then both approaches tend to provide very similar results, in terms of bias
as well as variance.

It is also worth mentioning that posterior distributions for parameter with separation are skewed (figure not
shown), thus Wald type of statistics might provide misleading inference. This can also be observed from the
lower and upper percentiles displayed in Table 5 and 6.

If we compare the two approaches in term of mean squared error (bias squared plus variance) (Table 7), the
two stage approach is performing better than the approach proposed by Gelman when we focus on β0, β1

and σ2. For the other parameters Gelman’s approach produces somewhat smaller but still very comparable
mean squared errors.

We also compared coverage probabilities for 95% credible intervals for both approaches (see Table 7), and it
can be seen that for the scenario in which N = 5 the two approaches show undercoverage for parameter β2,
with Gelman’s approach being more affected, while the rest of the parameters present comparable results.
For the scenario with N = 20, coverages are around 95% for the new stage approach except for σ2 (around
90%) when the variance of the cluster specific effect equals 0.5. For Gelman’s approach, the coverage is
around 90% not only for σ2, but also for β0 when σ2 = 0.1. For the scenario with N = 100, we see that the
β1 and β3 coverage values are affected for both approaches, being 83% for the scenario in which σ2 = 1.

Another way of evaluating the methods is by examining the length of the credible intervals for all 100
simulated data. Figure 2 displays the average length from the 100 simulated datasets for the scenario in
which we consider the largest variability for the random effects, together with 2.5 and 97.5 percentiles from
the 100 credible interval lengths within this scenario. For other scenarios similar conclusions could be drawn
(figures not shown). It is clear that in general Gelman’s approach produced wider intervals than the new
two stage approach, specially for parameter β1 (coefficient associated to the regression input presenting
separation issues), and this is probably due to heavier tails for the weakly informative prior proposed by
Gelman, thus allowing for more extreme values. It is also consistent with the higher standard deviations
and higher MSE values for Gelman’s approach. However, for the other parameters in general if N increases,
they tend to be of the same magnitude.

In order to illustrate how convergence was evaluated, we will present some of the plots for one of the scenarios
considered (referred to as Scenario A), in particular the scenario in which N = 5, ni = 100 and with variance
of the cluster specific random intercept (σ2

b ) is equal to 1. In Figure 3, plots proposed by Brooks and Gelman
(1998) are shown for each of the parameters in model 5.1. It can be seen that convergence is reached, since
the 97.5 quantile is very close to the value 1, which indicates no convergence problem. We have also used the
plots proposed by Geweke (1992) (results not shown) to evaluate convergence for all five parameter in the
model. Also here, the Z-scores are within allowable ranges, and the diagnostics do not detect any problems
with lack of convergence of the posterior samples. Also autocorrelations were visually inspected and the
graph for all parameters (figures not shown) shows that the lag autocorrelation values decreases to values
close to zero very quickly. In order to get an overall evaluation of the 100 simulated data for Scenario A, we
depicted a histogram based on the 97.5 quantile values for each parameter obtained for the 100 simulated
data (figure not shown). From this also we can see that most of the upper quantile values are around 1, in
particular for β2 and β3, and a somewhat wider range for the other 3 parameters, but even for them, upper
quantiles are below 1.3, with around 90 % of the values below 1.1. This illustrates that convergence was
reached and good mixing was observed.
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6. Analysis of Salmonella Data in Pigs

In this section we deal with the separation issue previously demonstrated in combination with the possibility
of introducing random effects to deal with non-independent observations for the Salmonella data introduced
in Section 2. We present the results of the two methods previously discussed (Gelman’s methods and the
proposed two stage approaches). The results are summarized in Table 8. This table shows results when
using all data for both steps (upper part), and when using a 70%-30% data splitting as discussed in Section
4.3 (lower part). For both situations the conclusions are very similar and in line with the simulations. It can
be observed that both methods produce comparable posterior means and medians. The estimates for the
intercept and the effect of ‘cleaning’ (β̂3) for the new two stage approach are somewhat smaller, compared the
estimates of Gelman’s approach. But in general the proposed approach produces smaller posterior standard
deviation. Table

In order to get some more insights, we plotted the prior densities for both approaches (Figure 4). We have
centered both densities at 0 in order to compare both density functions more easily. It is clear that the tails
of the density for Gelman’s approach are much heavier, thus giving more chance to extreme values, which is
then in turn reflected in wider credible intervals. The prior distributions proposed by Gelman et al. (2008)
might be too conservative as also reflected by the larger posterior standard deviation.

7. Concluding Remarks

Several approaches have been proposed to deal with separation in the case of independent binary responses.
But in practice in many situations, the assumption of independence between observations is not satisfied, as
for example, when we deal with clustered data, regional data or meta-analysis, just to mention a few. In such
situations, separation problems can appear, and solutions in this setting are also needed. Extensions of the
penalized likelihood method in this particular scenarios are not straightforward, since likelihood functions
involved integrating out the random effects. The Bayesian framework offers an attractive alternative, but
concessions need to be made, in term of information in our prior distributions. Here we evaluate two different
strategies, the first one proposed by Gelman et al. (2008) that first standardizes the regression inputs and then
uses weakly informative priors for the parameters in the model, and another new strategy which also consists
of two stages: a penalized likelihood approach assuming independence to construct weakly informative priors
for the variables presenting separation issues (and non-informative priors for the other regression inputs),
followed by a GLLM in the second stage.

The results of the simulations show that if the number of clusters is large, both approaches produce com-
parable results in terms of point estimates and credible intervals. In case the number of clusters is small,
the new two stage approach provides credible intervals which are narrower than the approach proposed by
Gelman et al. (2008). This was also observed in the Salmonella case study. It was also confirmed that the
posterior distribution of parameter associated to regression inputs presenting separation problems are not
symmetric, implying that Wald–type inference should not be used.
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Table 7. Average of Mean Squared Error (coverage) over 100 simulated datasets for both ap-
proach for the scenarios considered.

Two Stage Approach

β̂0(β0) β̂1(β1) β̂2(β2) β̂3(β3) σ̂2
b (σ

2
b )

N = 5

σ2 = 0.1 0.224(0.99) 17.846(0.97) 0.047(0.90) 0.235(0.94) 1.585(0.98)

σ2 = 0.5 0.351(0.97) 17.108(0.95) 0.044(0.90) 0.225(0.94) 8.859(0.98)

σ2 = 1.0 0.506(0.94) 17.281(0.95) 0.042(0.93) 0.224(0.96) 22.942(0.98)

N = 20

σ2 = 0.1 0.037(0.93) 11.036(0.97) 0.010(0.97) 0.053(0.93) 0.016(0.98)

σ2 = 0.5 0.059(0.92) 11.608(0.95) 0.010(0.98) 0.052(0.94) 0.111(0.89)

σ2 = 1.0 0.089(0.94) 11.810(0.93) 0.010(0.96) 0.052(0.96) 0.350(0.94)

N = 100

σ2 = 0.1 0.007(0.97) 7.330(0.87) 0.002(0.94) 0.010(0.91) 0.002(0.92)

σ2 = 0.5 0.011(0.97) 7.511(0.87) 0.002(0.95) 0.010(0.91) 0.013(0.95)

σ2 = 1.0 0.017(0.96) 7.476(0.83) 0.002(0.96) 0.010(0.92) 0.042(0.96)

Gelman’s Approach

N = 5

σ2 = 0.1 0.259(0.94) 23.826(0.97) 0.043(0.86) 0.212(0.94) 2.943(0.98)

σ2 = 0.5 0.420(0.93) 19.854(0.95) 0.042(0.90) 0.212(0.97) 11.705(0.98)

σ2 = 1.0 0.619(0.93) 22.902(0.95) 0.041(0.91) 0.209(0.98) 29.514(0.98)

N = 20

σ2 = 0.1 0.037(0.89) 16.640(0.97) 0.010(0.96) 0.051(0.95) 0.016(0.98)

σ2 = 0.5 0.059(0.93) 14.595(0.95) 0.010(0.97) 0.051(0.95) 0.112(0.90)

σ2 = 1.0 0.091(0.93) 15.540(0.93) 0.010(0.96) 0.051(0.96) 0.362(0.93)

N = 100

σ2 = 0.1 0.007(0.95) 6.877(0.91) 0.002(0.93) 0.010(0.92) 0.002(0.93)

σ2 = 0.5 0.011(0.96) 6.159(0.93) 0.002(0.96) 0.010(0.91) 0.013(0.96)

σ2 = 1.0 0.017(0.97) 7.724(0.83) 0.002(0.96) 0.010(0.91) 0.042(0.95)

Table 8. Salmonella in Pigs. Estimates obtained using Gelman’s and two stage approach, considering a herd
specific random intercept.

Full Dataset Results

Gelman’s Approach Two Stage Approach

β̂0 β̂1 β̂2 β̂3 σ̂2
b β̂0 β̂1 β̂2 β̂3 σ̂2

b

Mean -8.720 0.545 -0.081 5.849 2.172 -8.150 0.640 -0.080 5.240 2.180

StDev 3.234 0.741 0.048 3.104 0.493 1.236 0.870 0.048 0.909 0.483

Percentile 2.5 -16.990 -0.910 -0.180 2.330 1.400 -10.770 -1.010 -0.170 3.740 1.410

Median -8.050 0.530 -0.081 5.159 2.113 -8.120 0.620 -0.080 5.170 2.120

Percentile 97.5 -4.780 2.000 0.013 13.850 3.343 -5.872 2.406 0.017 7.587 3.314

Test Dataset Results

Gelman’s Approach Two Stage Approach

β̂0 β̂1 β̂2 β̂3 σ̂2
b β̂0 β̂1 β̂2 β̂3 σ̂2

b

Mean -7.196 0.462 0.346 4.586 2.159 -7.060 0.706 0.348 4.252 2.138

StDev 3.482 0.928 0.096 3.356 1.047 1.293 1.174 0.093 0.652 0.997

Percentile 2.5 -14.52 -1.386 0.160 1.021 0.869 -9.667 -1.665 0.163 3.034 0.876

Median -6.653 0.470 0.345 3.965 1.921 -7.060 0.739 0.348 4.214 1.915

Percentile 97.5 -3.113 2.294 0.533 11.830 4.758 -4.507 3.016 0.532 5.649 4.691
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Fig. 1. Average of mean, median, 2.5 and 97.5 percentiles of the posterior distribution over the 100 simulated datasets
for all parameters when σ2 = 1.
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Fig. 2. Average of length, 2.5 and 97.5 percentiles of the posterior distribution over the 100 simulated datasets for all
estimated parameters when σ2 = 1.
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Fig. 3. Gelman plot for all 5 parameters of the model for one specific dataset in Scenario A.
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