Made available by Hasselt University Library in https://documentserver.uhasselt.be

An extensible light-weight XML-based monitoring system for sequence databases

Peer-reviewed author version

VAN DE CRAEN, Dieter; NEVEN, Frank & KOCH, Kerstin (2006) An extensible
light-weight XML-based monitoring system for sequence databases. In: Data
Integration in the Life Sciences, Proceedings. p. 280-296.

DOI: 10.1007/11799511_25
Handle: http://hdl.handle.net/1942/1419

An extensible light-weight XML-based
monitoring system for sequence databases

Dieter Van de Craen*, Frank Neven, and Kerstin Koch

Hasselt University and Transnational University of Limburg
School for Information Technology
{firstname.lastname}@uhasselt.be

Abstract. Life science researchers want biological information in their
interest to become available to them as soon as possible. A monitoring
system is a solution that relieves biologists from periodic exploration of
databases. In particular, it allows them to express their interest in cer-
tain data by means of queries/constraints; they are then notified when
new data arrives satisfying these queries/constraints. We describe a se-
quence monitoring system XSeqM where users can combine metadata
queries on sequence records with constraints on an alignment against a
given source sequence. The system is an XML-based solution where con-
straints are specified through search fields in a user-friendly web interface
and which are then translated to corresponding XPath-expressions. The
system is easily extensible as addition of new databases to the system
then only amounts to the specification of new mappings from search fields
to XPath-expressions. To protect private source sequences obtained in
labs, it is imperative that researchers do not have to upload their se-
quences to a general untrusted system, but that they can run XSeqM
locally. To keep the system light-weight, we therefore introduce an op-
timization technique based on query containment to reduce the number
of XPath-evaluations which constitutes the bottleneck of the system. We
experimentally validate this technique and show that it can drastically
improve the running time.

1 Introduction

Motivation. Due to the increase in the speed of sequencing of genes and pro-
teins, sequence databases, such as Genbank, double in size every two years [26].
This rapid expansion of data motivates researchers to repeat search queries over
time. Indeed, a BLAST-search [I3] that does not produce any useful result to-
day might do so tomorrow. In this paper, we therefore propose a user-friendly
sequence monitoring system XSeqM (eXtensible Sequence Monitor) that relieves
researchers from repeating such searches over time.
We provide two motivating examples:

* Contact author

1. Researchers in a lab have obtained one or a few sequences of genes or pro-
teins for which a BLAST-search only gives similarities for small regions of
the sequence. No highly similar, annotated sequences are available in any
database which might give hints for the function of the gene or protein.
Therefore, the researchers regularly repeat BLAST-searches against several
databases to find genes or proteins with a higher similarity.

2. A researcher has obtained a gene g expressed in the central nervous system
(CNS) of the rainbow trout and is interested to learn about genes similar to
g which are expressed in the peripheral nervous system (PNS) in any fish
organism or mammal. She therefore repeats a BLAST-search with the gene
g on a weekly basis.

The two tasks described above are tedious and time consuming when executed
manually: not only the BLAST-searches themselves, but also the post-processing
of the BLAST-reports (if any) to sort out relevant matches from irrelevant ones.
Indeed, in situation (1), a match could be irrelevant as the matched part of the
sequence is too small or the likelihood of the match expressed by the F-value
is too large. In situation (2), all BLAST-hits from non-fish and non-mammal
species should be discarded together with those that are not mRNA and that
do not refer to the PNS.

A solution: the XSeqM-system. In the XSeqM-system users can register
BLAST-requests combined with constraints on the metadata of a sequence record.
All requests are checked locally by the system after retrieval of the daily updates
from the respective databases and users are informed, for instance through email,
when relevant results are found. Figure [2| shows part of the monitor request re-
lated to situation (2). In brief, every such request specifies the following infor-
mation:

— a database of interest (e.g., Genbank, SwissProt, ...),

a sequence of interest (e.g., the gene g),

— constraints on the metadata (e.g., classification should contain the string
‘fish” and molecular type should equal ‘mRNA’)

— an alignment program and its parameters (e.g., BLAST with word size 11
and matrix PAM30)

— relevance constraints (e.g., size of match should be greater than 20 and FE-
value should be smaller than e~19).

The XSeqM-system has the following characteristics:

1. XSeqM is light-weight. It can be installed locally in a lab on a computer with
average system requirements. This is important, as, referring to situation (1)
above, research labs can be hesitant to upload their newly found sequences in
a public system as some of them might be candidates for a patent application.

2. XSeqM is user-friendly as it hides all use of XML: users interact with the
system through a Web-interface where search fields can be combined using
the logical operators, much like other query and monitoring systems such as
SRS and PubCrawler [22].

3. XSegM is a flexible XML-based solution to which any sequence database can
be added that makes updates available and whose format can be transformed
into XML. Almost all sources nowadays allow to export information in XML-
format or there are third party tools available to convert existing formats to
XML. The administrator determines for every sequence database a number of
search fields. For every search field f, an XPath-expression P is created that
selects the corresponding value in every XML-file in the update. Table] for
instance, lists the interesting search fields for a GenBank record and the cor-
responding XPath-expressions. Every user request is then translated under
the hood to a Boolean combination of XPath-expressions. Similarly, rele-
vance constraints on BLAST-reports are translated into XPath-expressions
over the XML-representation. Therefore, in principle, any XPath-expressible
constraints can be used.

Efficient evaluation. The main technical part of the paper deals with efficient
execution of all monitoring requests. In brief, the system executes the following
steps. Let mq, ..., m be all monitoring requests with corresponding constraints
p1,---,Pr on the metadata, i.e. Boolean combinations of XPath-expressions. For
every sequence record s in the update, we need to check which expressions p;
match s. When p; is successfully matched, we BLAST the sequence in s against
the sequence in m;. When all relevance constraints of m; on the BLAST-report
are satisfied, the owner of request m; is alerted. As an alignment of sequences
through BLAST is expensive, it is imperative to first check the metadata con-
straints and only start BLAST for those sequences which are selected.

As every local lab is considered to have its own system, we consider systems
of moderate size (say, a few thousands of monitoring requests). Daily updates to
Genbank vary in size from 50 to 200 Megabytes (zipped): these contain between
30000 and 150000 sequences. The bottleneck of the system is in the evaluation
of the constraints pi, ..., px for every sequence record s in the update. A direct
approach using a standard XPath-evaluator like Xalan[l] takes more than 24
hours and is therefore not an option. Powerful fast streaming XPath-engines have
been proposed over the past years [2112] which can handle millions of XPath-
expressions. Unfortunately, we cannot use these engines directly: to ensure high
throughput streaming engines do not consider full XPath. In particular, they
do not consider arbitrary Boolean combinations of XPath-expression or allow to
test whether a certain given string occurs as a substring of a text element. We
therefore make use of the state-of-the-art evaluator YFilter [I8/19] as a first pre-
processing step to extract string-values from sequence records. More precisely, by
evaluating for every search field the corresponding expression Py on the update,
we get for every sequence record a complex value representation on which the
metadata constraints can be checked. E.g., Table 2] contains such a representation
for the GenBank record of Figure [I] through the XPath expressions in Table [T}
In a second step, we then evaluate every pattern p; on this representation. An
additional advantage of this method is that more advanced pattern matching
on string values can be used than is available in XPath. For instance, one could
require that the string value matches a given regular expression.

f l Py

organism /p/el@Qclass="source”]/Qualifier[@value-type="organism”|/@value
accession /p/@ic-acckey
gi /p/Attribute[@name="primary_id”]/@content
author name /p/q[@title="Sequence References”|/Reference/RefAuthors/text()
title /p/al@title="Sequence References”]/Reference/RefTitle/text()
keyword /p/Attribute[@name="keyword”]/@content
comment /p/Attribute[@name="comment”]/@content

classification /p/Attribute[@name="classification”]/@content

Feature key /p/e/Qclass

Gene name /p/e[@class="gene”]/Qualifier[@value-type="gene”]/Q@value

Protein name |/p/e[@class="cds”]/Qualifier[@value-type="product”]/@value
chromosome /p/e[@class="source”]|/Qualifier[@value-type="chromosome”]/@value
molecular type |/p/e[@class="source”]/Qualifier[@value-type="mol_type”]/Qvalue

tissue type /p/e[@class="source”]/Qualifier[@value-type="tissue_type”]/@Qvalue
tissue library /p/e[@class="source”]/Qualifier[@value-type="tissue_lib”] /@value

cell line /p/e[@Qclass="source”]
development stage|/p/e[@class="source”]/Qualifier[@value-type="dev_stage”]/@value
[

EC Number /p/e[@class="cds”]/Qualifier[@value-type="EC_number”]/Qvalue

/Qualifier[@value-type="cell_line”] /@value

p /Bsml/Definitions/Sequences/Sequence
e Feature-tables/Feature-table[@title="Features”]/Feature
q Feature-tables/Feature-table

Table 1. Search fields for a GenBank record and corresponding XPath-
expressions.

We consider an optimization based on containment of constraints. As the sys-
tem runs at a local lab, chances are high that many constraints on the metadata
are related. For instance, a constraint could require that the organism should
contain the string ‘Oncorhynchus’ while another query could require that the or-
ganism should equal ‘Oncorhynchus mykiss’ and the tissue type equals ‘brain’.
Clearly, the second constraint implies the first. So, we know that the first con-
straint is true when the second is, and the second is false when the first is. Our
optimization technique exploits these ideas to reduce the number of evaluations.
More precisely, we define a graph structure that captures the relationships be-
tween the constraints and consider two forms of propagation: false propagation
and true propagation. We experimentally show that false propagation outper-
forms true propagation and the pure streaming approach.

Finally, we discuss how to incrementally maintain the containment graph.
It never has to be computed from scratch. The insertion operation is time con-
suming as in the worst case it involves a linear number of containment checks
(a coNP-hard problem [20]). Luckily only a limited number of insertions are
expected on a daily basis, say at most hundred, which for a system already
containing 5000 requests can be done in less than 100 minutes. In case a larger
number of insertions is required, we discuss a technique that accelerates the
containment check at the expense of introducing more requests: constraints are
transformed into disjunctive normal form, testing containment of conjuncts can
then be done in linear time. For instance, adding 100 request to a containment
graph with 5000 nodes then only takes 12 seconds.

f | values

organism {“Oncorhynchus mykiss” }
accession { “AM181351” }
gi { “84993308” }
author name |{ “Zarkadis,I. K. and Marioli,D.”, “Zarkadis,1.K.” }
title { “Cloning of the vitronectin gene in rainbow trout”, “Direct
Submission” }
keyword { “vitronectin protein 17, “vtnl gene” }
comment {}

classification |{ “mykiss Oncorhynchus Salmonidae Salmoniformes Protacan-
thopterygii Euteleostei Teleostei Neopterygii Actinopterygii Eu-
teleostomi Vertebrata Craniata Chordata Metazoa Eukaryota” }
Feature key “source”, “gene”, “cds” }
Gene name { “vtnl” }
Protein name |{ “vitronectin protein 1”7 }
chromosome [{ }
molecular type |[{“mRNA”}
tissue type { “liver” }
tissue library |{ }
cell line {}
development stage|{ }
EC Number [{ }
Table 2. Complex value representation of the GenBank record in Figure

Outline. This paper is organized as follows. In Section [2] we survey other mon-
itoring approaches. Section [3] introduces XML and XPath. Section [gives an
overview of XSeqM. In Section [5) we outline several evaluation strategies. Sec-
tion [6] reports on our experiments. In Section [7} we discuss the incremental
maintenance of the containment graph. We conclude in Section

2 Related Work

Existing alerting systems like BioMail, JADE or Science Direct are used for
literature alerts [3l49]. They search the PubMed database in given intervals and
alert users via email if new publications matching special keywords are available
[25]. The only system integrating query possibilities for Genbank in addition
to literature alerts is PubCrawler [22J23]. PubCrawler provides a user with the
possiblity to define two types of queries. The first type is a keyword search and
the second is a neighborhood query. With a neighborhood query a user can
express his interest in articles or sequences that are similar to given articles
or sequences already present in the database. A limitation of this approach is
that the user can not enter an unpublished sequence which has no identifier
assigned yet. Also, advanced options in the comparison with other sequences are
not provided, e.g., the minimal length of a match or the E-value. XSeqM does
provide these possibities and allows for the combination of a keyword search and
an alignment with any given sequence.

XML filtering systems evaluate a set of queries against a stream of documents.
The XMLTK system [2I] combines all path expressions into a single deterministic
finite automaton. YFilter [I8I9], the successor of XFilter [I2], combines all

expressions in one nondeterministic finite automaton. These systems thus employ
a finite state automaton for all the XPath-expressions. The XML stream is parsed
by a SAX parser and the SAX events are streamed through the finite state
automaton. A query matches a document if during parsing an accepting state
for that query is reached. The main limitation of these systems compared to
XSegM is that they do not support full XPath. As the translation of user queries
in XSeqM can result in complex XPath-expressions, these systems can not be
applied directly in our situation.

In [T4JT5] and [24] optimization of navigational queries on life science sources
is investigated. In this setting alternate paths are possible to evaluate a query.
The focus in [I4IT5] is on finding a set of paths that maximizes the number of
results while satisfying a constraint on the evaluation cost. Minimizing the total
number of accesses to sources when evaluating multiple queries in batch mode
is discussed in [24]. The goal of XSeqM differs from these as we want to monitor
multiple sources seperately rather then answering queries over multiple sources.

3 XML and XPath

The eXtensible Markup Language (XML) is a standard for data exchange on
the Web [10]. Most bioinformatics data formats can be converted into an XML
representation. Numerous XML formats for a wide range of biological data are
available. Some examples are BSML, SPTr-XML, GO-XML,. .. [16].

XPath is an XML pattern language for locating information in XML docu-
ments [17]. In particular, XPath can retrieve the value of elements or attributes
and can test whether that value satisfies a certain condition. We give an example
of both. The expression //Attribute[@name="classification"]/@content,
for instance retrieves the classification of an entry as the actual classification
is the value of the content attribute of an Attribute element that has a name
attribute with value ‘classification’. The expression

boolean(//Attribute[@name="classification" and contains(@content,"Mammalia"])

checks whether the classification contains the string ‘Mammalia’. XPath can also
be used to query the XML-representation of a BLAST-report. For instance, the
expression //Hit [Hit_num/text ()="1"]/Hit_hsps/Hsp/Hsp_evalue/text () se-
lects the E-value of the first hit.

4 Monitoring System

We detail the three different components of XSeqM which are graphically illus-
trated in Figure 3.

1. The Input Module consists of the WWW Interface and the Query Translation
Module. As illustrated in Figure 2(top), a query is created in the WWW In-
terface by uploading a sequence and specifying search terms in search fields.
These search fields are then linked together by selecting the appropriate
logical connectors: AND, OR and NOT, and parentheses. This method of
operation is similar to the one used in other query and monitoring systems

http://xalan.apache.org
http://www.bsml.org
http://biomail.sourceforge.net/biomail
http://www.biodigital.org/jade
http://fmv.jku.at/limboole/
http://fmv.jku.at/limmat/
http://www.pubcrawler.ie
http://www.pubmed.gov
http://www.sciencedirect.com
http://www.w3.org/XML
http://alpha.uhasselt.be/dieter.vandecraen/XSeqM/
http://www.w3.org/TR/xpath

