
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Expressiveness and complexity of XML Schema

Peer-reviewed author version

MARTENS, Wim; NEVEN, Frank; Schwentick, Thomas & BEX, Geert Jan (2006)

Expressiveness and complexity of XML Schema. In: ACM TRANSACTIONS ON

DATABASE SYSTEMS, 31(3). p. 770-813.

Handle: http://hdl.handle.net/1942/1424

Expressiveness and complexity of XML Schema

WIM MARTENS

and

FRANK NEVEN

Hasselt University and Transnational University of Limburg, School for Information

Technology, Belgium

and

THOMAS SCHWENTICK

University of Dortmund, Department of Computer Science

and

GEERT JAN BEX

Hasselt University and Transnational University of Limburg, School for Information

Technology, Belgium

The common abstraction of XML Schema by unranked regular tree languages is not entirely ac-
curate. To shed some light on the actual expressive power of XML Schema, intuitive semantical
characterizations of the Element Declarations Consistent (EDC) rule are provided. In particular,
it is obtained that schemas satisfying EDC can only reason about regular properties of ancestors

of nodes. Hence, w.r.t. expressive power, XML Schema is closer to DTDs than to tree automata.
These theoretical results are complemented with an investigation of the XML Schema Definitions
(XSDs) occurring in practice, revealing that the extra expressiveness of XSDs over DTDs is only

used to a very limited extent. As this might be due to the complexity of the XML Schema
specification and the difficulty to understand the effect of constraints on typing and validation of
schemas, a simpler formalism equivalent to XSDs is proposed. It is based on contextual patterns
rather than on recursive types and it might serve as a light-weight front end for XML Schema.

Next, the effect of EDC on the way XML documents can be typed is discussed. It is argued that
a cleaner, more robust, larger but equally feasible class is obtained by replacing EDC with the

notion of 1-pass preorder typing (1PPT): schemas that allow to determine the type of an element
of a streaming document when its opening tag is met. This notion can be defined in terms of

grammars with restrained competition regular expressions and there is again an equivalent syntac-
tical formalism based on contextual patterns. Finally, algorithms for recognition, simplification,

and inclusion of schemas for the various classes are given.

Categories and Subject Descriptors: H.2.1 [DATABASE MANAGEMENT]: Logical Design;
F.4.3 [MATHEMATICAL LOGIC AND FORMAL LANGUAGES]: Formal Languages

General Terms: Algorithms, Design, Languages, Standardization, Theory

Additional Key Words and Phrases: XML, XML Schema, validation

The present paper is the combined full version of [Martens et al. 2005] and [Bex et al. 2005].

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0000-0000/2006/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, February 2006, Pages 1–43.

2 · Expressiveness and complexity of XML Schema

1. INTRODUCTION

XML (eXtensible Markup Language) constitutes the basic format for data exchange
on the Web [Bray et al. 2004]. Although the success of XML is largely due to its
flexible nature, for many applications, it is important to constrain the structure
of allowable documents by providing a schema. To date, the most widespread
and commonly used schemas are DTDs. Their success is mostly of historic nature
(DTDs are inherited from XML’s predecessor SGML) and partly because of their
simplicity. Unfortunately, DTDs are also limited in various ways [DuCharme 2002;
Jelliffe 2001; Lee and Chu 2000]: they lack modularity, they have few basic types,
and the referencing mechanism is quite restricted. Also, specification of unordered
data is rather verbose and the expressiveness is severely limited. Many schema
languages have been defined to address these shortcomings, to name just a few:
XML Schema [Sperberg-McQueen and Thompson 2005], DSD [Klarlund et al. 2000],
Relax NG [Clark and Murata 2001], Schematron [Jelliffe 2005]. Among these, XML
Schema is the schema language supported by W3C and therefore receives the most
attention. Although XML Schema directly addresses most of the shortcomings of
DTDs, and in particular, is more expressive than DTDs, the exact expressiveness
of XML Schema, and more importantly, whether the latter is adequate, remains
unclear.

The main cause for the limited expressiveness of DTDs is that the content model
of an element can not depend on the context of that element but only on the name
of its tag. In formal language theoretic terms, DTDs define local tree languages.
On an abstract level, XML Schema, just like Relax NG, obtains a higher expressive
power by extending DTDs with a typing mechanism which allows to define types,
possibly recursively, in terms of other types. In particular, and in contrast with
DTDs, several types can be associated to the same element name. Whereas Relax
NG corresponds to the robust and well-understood formalism of unranked regular
tree languages [Brüggemann-Klein et al. 2001], XML Schema is less expressive as the
XML Schema specification enforces an extra constraint: the Element Declarations
Consistent (EDC) constraint. It essentially prohibits the occurrence of two different
types with the same associated element name in the same content model.

In this paper, we investigate the impact of the EDC constraint on the expressive-
ness of XML Schema both from a theoretical and a practical perspective. We also
suggest an alternative, theoretically and practically superior approach to achieve
the goals that motivate the introduction of this constraint. Our characterizations
show that, in terms of expressive power, XML Schema lies between DTDs and
general tree automata. In fact, it turns out that, in contrast to what is generally
assumed, in a sense, XML Schema is much closer to DTDs than to tree automata.
This has both an effect on schema design and schema usage, as argued further on.
We also investigate optimization problems for XML Schema, and show that they
are easier to solve than the respective problems for tree automata.

We give an overview of the results of the paper in the order of their appearance.
The presentation of the main results is separated from their proofs. This facilitates
readers to skip the more technical sections (during their first pass). We start in
Section 2 by introducing the necessary definitions concerning schemas and types,
and discuss properties of DTDs in Section 3.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 3

In Section 4, we investigate to what extent the features not present in DTDs
are actually used in XML Schema Definitions (XSDs) occurring in practice: name-
spaces, import facilities, built in basic types, keys, and also the ability to use
the same element name with different types. To this end, we harvested a corpus
of XSDs from the web, including many high-quality schemas representing various
XML standards. Concerning expressive power we were surprised that only 15%
of the XSDs in our corpus use typing in a way that goes beyond the power of
DTDs. Moreover, of this 15% the vast majority of the schemas use typing in its
most simplistic form: types only depend on the parent context. Although it might
indeed be the case that advanced expressiveness is not required in practice, another
plausible explanation is that the actual modeling power of XSDs remains unclear
to most users: the XML Schema specification is very hard to read and the effect
of constraints on typing and validation is not fully understood. Thus, the average
XML practitioner would benefit from a clear description of what kind of context
dependencies can actually be expressed within XML Schema, and the implication
of constraints such as EDC.

To address this issue, we propose two directions. We provide semantic and syntac-
tical characterizations of the expressive power of schemas with the EDC constraint.
This approach is pursued in Section 6 and 7. In particular, it is shown there that the
EDC constraint is intimately connected to the ability to type trees in a top-down
fashion. The characterizations provide different viewpoints on the expressiveness of
XML Schema. One of them provides a tool that can be used to show that certain
constructs are not definable by XSDs. The second direction is a simple pattern-
based framework discussed in Section 5, much in the spirit of Schematron [Jelliffe
2005] and DSD [Klarlund et al. 2000]. The main difference is that a simple instan-
tiation of this framework leads to a schema language with precisely the expressive
power of (the core of) XSDs. The advantage of the pattern-based approach is that
it makes explicit the way in which context-dependencies can be expressed rather
than hiding it through the general use of recursive types restricted by the EDC
constraint. The pattern-based approach can be migrated into a full fledged schema
language in two ways: (1) as an extension of DTDs with contextual patterns; or,
(2) as an extension of XML Schema itself (e.g., like SchemaPath [Coen et al. 2004],
with the crucial difference that our extension is conservative).

Next, in Section 8, we turn to the question whether the EDC constraint is ade-
quate for its purpose. For this, it is important to note that computing the semantics
of a schema w.r.t. a document conceptually involves two tasks: (1) checking con-
formance w.r.t. the underlying grammar; and (2) assignment of types (also referred
to as schema-validity assessment in [Thompson et al. 2004]). In the case of XML
Schema, the two tasks are a bit entwined as types do not occur in the input doc-
ument but have to be inferred by the schema validator. The EDC constraint is
imposed to facilitate both tasks. Indeed, for a schema admitting EDC, there is a
very simple one-pass top-down strategy to validate a document against that schema.
Moreover, that strategy assigns a unique type to every element name. So, ambigu-
ous typing (the possibility that there are several valid type assignments) is avoided.
From a scientific viewpoint, however, it is not clear whether EDC is the most liberal
constraint that allows for efficient validation and unique typing. One might argue

ACM Journal Name, Vol. V, No. N, February 2006.

4 · Expressiveness and complexity of XML Schema

that the most liberal notion is to require that, when processing the document in a
streaming fashion, the type of an element is assigned when its opening tag is met.
We refer to the latter requirement as 1-pass preorder typing (1PPT). Although EDC
ensures 1-pass preorder typing, it is not a necessary condition. More interestingly,
it turns out that 1-pass preorder typing is a very robust notion with various clean
semantical and syntactical characterizations. In particular, it can be defined in
terms of XSDs with restrained competition regular expressions (introduced by Mu-
rata et al. [Murata et al. 2005]) and by an equivalent syntactical formalism based
on contextual patterns.We therefore propose to replace the rather ad-hoc EDC and
unique particle attribution (UPA) constraints by (a syntactical definition of) the
1-pass preorder typing requirement thereby obtaining the maximal expressiveness
in terms of typing in a streaming fashion. In Section 8.7, we relate 1PPT and EDC
with UPA. In particular, we argue that UPA and EDC do not imply each other.
However, each of these constraints by itself already implies 1PPT (but they do
not capture it). Hence, they are both not necessary to allow for fast typing. In
Section 9, we give proofs for the equivalences stated in Section 8.

In Section 10, we turn to static analysis and optimization of schemas. In par-
ticular, we consider the complexity of and provide algorithms for the following
problems:

(1) Recognition: Given an unrestricted XSD, check whether it admits EDC or
1PPT.

(2) Simplification: Given an unrestricted XSD, check whether it has an equiva-
lent XSD of a restricted type and compute it, (restricted types being DTD or
XSD admitting EDC or 1PPT).

(3) Containment: Given two XSDs D1,D2, does D1 describe a sublanguage of
D2?

The above problems have direct practical applications to optimize schemas and to
implement schema validators. Especially, our algorithm for Simplification could
be used in schema translator software (like, for instance, Trang [Clark 2002]), to
check whether a given schema can in fact be translated into an equivalent schema
in another schema language. To date, Trang, for instance, translates any Relax NG
schema directly into an equivalent unrestricted XSD even when the resulting XSD
does not admit EDC. Sometimes, however, a more clever translation has to be used
to get an equivalent XSD that admits EDC.

In Section 11, we discuss one-pass post-order typing: the type of an element is
assigned when visiting its closing tag in a streaming fashion. We show that any
unrestricted XSD can be rewritten into an equivalent one that admits one-pass
post-order typing.

We conclude in Section 12. In particular, we present some detailed recommen-
dations to improve the XML Schema specification.

Related Work. The analysis in the present work is in the same spirit as the
one by Brüggemann-Klein and Wood who formalized the determinism constraint
of SGML DTDs and provided a workable definition [Brüggemann-Klein and Wood
1998]. It is also closely related to the investigations of Murata et al. [Murata et al.
2005] who defined the concepts of single-type and restrained competition grammars

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 5

and provided corresponding validation algorithms but did not discuss semantical
characterizations or optimization problems. The present paper is the combined full
version of [Martens et al. 2005] and [Bex et al. 2005]. It is an attempt to seamlessly
integrate the theoretical results of [Martens et al. 2005] with the discussion of their
impact on the XML specification in [Bex et al. 2005]. As opposed to [Martens et al.
2005] we present full proofs for the results. On the other hand, we tried to lighten
notation and reduce the number of theoretical concepts as much as possible to make
the article more accessible.

2. SCHEMAS AND TYPES

In the present section, we provide the formal definitions of our abstractions of XML
documents and schema languages.

2.1 Trees and tree languages

Since ordered trees serve as the logical data model for XML [Fernandez et al. 2005],
we employ a tree based abstraction of XML documents. We focus in this work on
the structure of XML documents and disregard data values, attributes, namespaces,
and linking information. Figure 1 gives an example of (a) an XML document, (b)
its tree representation with data values and (c) its tree representation without data
values.

We disregard data values because we focus in this paper on the structural ex-
pressiveness of schema languages, i.e., the way in which schemas can restrict the
shape or structure of XML documents. For the same reason we do not take special
care of attributes and tacitly assume that all attributes are converted to non-nested
elements. These restrictions are justified for our investigation as the Element Dec-
laration Consistent constraint does not refer to attributes or data values.

More formally, we define the associated tree t of an XML document recur-
sively as follows:

—The set of labels of t is the set of element names of the document.

—A document 〈a〉w〈/a〉, where w contains only text has an associated tree with
one node, labeled a.

—A document of the form 〈a〉x1 · · ·xk〈/a〉, where the documents x1, . . . , xk have
associated trees t1, . . . , tk, has an associated tree with root a at which the trees
t1, . . . , tk are attached, from left to right (see Figure 1 again).

We denote the label of a node v in a tree t by labt(v). For a finite alphabet
of element names Σ, we denote by TΣ the set of all Σ-trees (trees with element
names from Σ). Note that trees are unranked in the sense that every node can
have an arbitrary number of children. For instance, in Figure 1, a store can sell an
unlimited (but finite) number of DVDs. A tree language is a set of trees. For a
gentle introduction into trees, tree languages and tree automata we refer to [Neven
2002a].

2.2 DTDs

It is customary to abstract DTDs by extended context-free grammars, i.e., essentially
by sets of rules of the form a→ r where a is an element and r is a regular expression
over the alphabet of elements. One element name is designated as the start symbol.

ACM Journal Name, Vol. V, No. N, February 2006.

6 · Expressiveness and complexity of XML Schema

<store>

<dvd>

<title> "Amelie" </title>

<price> 17 </price>

</dvd>

<dvd>

<title> "Good bye, Lenin!" </title>

<price> 20 </price>

</dvd>

<dvd>

<title> "Gothika" </title>

<price> 15 </price>

<discount> 4 </discount>

</dvd>

<dvd>

<title> "Pulp Fiction" </title>

<price> 11 </price>

<discount> 6 </discount>

</dvd>

</store>

(a) Example document

store

dvd

title

“Amelie”

price

17

dvd

title

“Good bye, Lenin!”

price

20

dvd

title

“Gothika”

price

15

discount

4

dvd

title

“Pulp Fiction”

price

11

discount

6

(b) Tree with data values

store

dvd

title price

dvd

title price

dvd

title price discount

dvd

title price discount

(c) Tree without data values

Fig. 1. An example of an XML document and its tree representations.

<!ELEMENT store (dvd+)>

<!ELEMENT dvd (title, price, discount?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT discount (#PCDATA)>

Fig. 2. A DTD for which the document in Figure 1 is valid.

Example 2.1. The DTD of Figure 2 is represented by the following rules, where
store is the start symbol:

store → dvd dvd∗

dvd → title price (discount + ε)

2

Clearly, a DTD defines a set of allowed trees, hence a tree language. The DTD in
Figure 2, for instance, defines the set of trees where the root is labeled with store;
the children of store are dvd elements; every dvd element has a title, price, and
an optional discount child.

The notion of a DTD is formalized as follows.

Definition 2.2. A DTD is a triple (Σ, d, sd) where Σ is a finite alphabet (the

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 7

element names), d is a function that maps Σ-symbols to regular expressions and
sd ∈ Σ is the start symbol. We usually abbreviate (Σ, d, sd) by d when Σ and sd are
clear from the context. A (finite) tree t is valid w.r.t. d (or satisfies d) if its root
is labeled by sd and, for every node with label a, the sequence a1 · · · an of labels of
its children is in the language defined by d(a). By L(d) we denote the set of trees
that satisfy d.

The regular expression associated to an element name is sometimes also called
its content model.

2.3 DTDs plus types

As discussed in the introduction, the expressive power of DTDs can be extended by
adding types, as, e.g., in XML Schema [Thompson et al. 2004] and Relax NG [Clark
and Murata 2001]. Types are always from a finite set and each type is associated
with a unique element name. The designated start symbol has only one possible
type. The notion of extended DTDs (EDTDs) was introduced1 by Papakonstanti-
nou and Vianu [Papakonstantinou and Vianu 2000].

Definition 2.3 [Papakonstantinou and Vianu 2000; 2003]. An extended DTD
(EDTD) is a tuple D = (Σ,∆, d, sd, µ), where ∆ is a finite set of types, (∆, d, sd) is
a DTD and µ is a mapping from ∆ to Σ. A tree t is valid w.r.t. D (or satisfies
D) if t = µ(t′) for some t′ ∈ L(d) (where µ is extended to trees). We call t′ a
witness for t.

Intuitively, a tree satisfies an EDTD if there exists an assignment of types to all
nodes such that the typed tree is a derivation tree of the underlying grammar. The
following example displays an EDTD for the tree in Figure 1(c).

Example 2.4. Consider the following EDTD:

store → (reg-dvd + dis-dvd)∗dis-dvd(reg-dvd + dis-dvd)∗

reg-dvd → title price

dis-dvd → title price discount

Here, reg-dvd and dis-dvd are types that are associated to dvd elements, while
all other types are associated with the element of the same name: e.g., the type
store corresponds to a store element.

Intuitively, reg-dvd defines ordinary DVDs while dis-dvd defines DVDs on sale.
The first rule specifies that there has to be at least one DVD on discount. The tree
in Figure 1(c) satisfies this EDTD as assigning reg-dvd and dis-dvd to the left
and right dvd-node, respectively, gives a derivation tree of the grammar. 2

When the validity of a tree t is witnessed by a tree t′ then we call the label of
a node v in t′ its type with respect to this validation. The set of trees defined
by D is denoted L(D). For notational simplicity, we assume in proofs and formal
statements always that types are of the form ai with a ∈ Σ, i ∈ N and µ(ai) = a.

1Papakonstantinou and Vianu used the term specialized DTD as types specialize tags. We prefer

the term extended DTD as it expresses more clearly that the power of the schemas is amplified.

ACM Journal Name, Vol. V, No. N, February 2006.

8 · Expressiveness and complexity of XML Schema

Note that EDTDs have a single root type; only labels below the root can have
multiple types. The EDTD of Example 2.4 has the types store, reg-dvd, dis-dvd,
title, price and discount. Further, µ(reg-dvd) = µ(dis-dvd) = dvd and µ is
the identity, otherwise.

<xs:element name="store">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="dvd" type="reg-dvd"/>

<xs:element name="dvd" type="dis-dvd"/>

</xs:choice>

<xs:element name="dvd" type="dis-dvd"/>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="dvd" type="reg-dvd"/>

<xs:element name="dvd" type="dis-dvd"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

Fig. 3. A fragment of an XSD (violating EDC) corresponding to the EDTD of Example 2.4.

In Figure 3, a fragment of an XSD corresponding to the rule for store is depicted.
We note that the XSD is not syntactically correct because it violates the Element
Declarations Consistent constraint. Roughly, the constraint forbids the occurrence
of different types associated to the same element name in the same content model.
So, the occurrence of both reg-dvd and dis-dvd associated to the same element
name dvd is a clear violation of this constraint. A formalization and a detailed
discussion of this constraint is provided in Section 6.

We call a tree language homogeneous if all its trees have the same root la-
bel. It should be clear that EDTDs can only express homogeneous tree languages.
From a structural perspective, EDTDs express exactly the homogeneous regular tree
languages, a similarly robust class as the regular string languages [Brüggemann-
Klein et al. 2001]. In particular, EDTDs are as expressive as unranked tree au-
tomata. For definitions of such automata we refer the reader to Section 10 and,
e.g., [Brüggemann-Klein et al. 2001; Neven 2002b]. It should be noted that the
formal underpinnings of the schema language Relax NG are also based upon regu-
lar tree languages. As we will only talk about homogeneous tree languages we will
mostly drop the term homogeneous. For the purpose of the paper, whenever we
say (homogeneous) regular tree language T in the sequel, it can be interpreted as
there is an EDTD D such that L(D) = T .

3. PROPERTIES OF DTDS

In this section, we reconsider some simple properties of DTDs. In particular, we
discuss validation and a closure property. The latter property provides a tool to
prove that certain tree languages are not definable by DTDs, and, hence, gives
insight into the expressiveness of the latter. In Section 6 and Section 8, we discuss
similar closure properties for more restrictions of EDTDs.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 9

3.1 Validation of DTDs

Validation of a document against a DTD d simply boils down to testing local
consistency: does the string formed by the labels of the children of every a-labeled
element satisfy the associated regular expression d(a)? No notion of typing is
available. To ensure efficient validation, regular expressions in right-hand sides of
rules are required to be deterministic [Bray et al. 2004], Appendix E (also referred
to as one-unambiguous [Brüggemann-Klein and Wood 1998]). Intuitively, a regular
expression is deterministic if, when processing the input from left to right, it is
always determined which symbol in the expression matches the next input symbol.
We discuss the latter notion a bit more formally as it returns in the specification
of XML Schema in the form of the Unique Particle Attribution (UPA) rule. For a
regular expression r over elements, we denote by r the regular expression obtained
from r by replacing, for each i, the ith a-element in r (counting from left to right)
by ai. For example, when r = (a + b)∗ac(b + c)∗, then r is (a1 + b1)

∗a2c1(b2 + c2)
∗.

Definition 3.1. A regular expression r is one-unambiguous iff there are no
strings waiv and wajv

′ in L(r) so that i 6= j.

Example 3.2. The regular expression ab + aa is not one-unambiguous. Indeed,
L(a1b1 +a2a3) contains the strings a1b1 and a2a3, and 1 6= 2. Here, w is the empty
string. The expression a(b + a) on the other hand, is one-unambiguous. Indeed,
L(a1(b1 + a2)) only contains the strings a1b1 and a1a2, and it is easy to verify that
the condition is not violated. Note that a(b + a) denotes the same language as
ab + aa. 2

In contrast to what the previous example might suggest, Brüggemann-Klein and
Wood showed that not every regular expression can be rewritten into an equivalent
one-unambiguous one [Brüggemann-Klein and Wood 1998]. So the allowed class of
regular expressions is a strict subset of the class of all regular languages.

3.2 Subtree exchange

Papakonstantinou and Vianu [Papakonstantinou and Vianu 2000] provided a char-
acterization of the structural expressive power of DTDs. They considered a more
relaxed notion of DTDs without the requirement of one-unambiguous regular ex-
pressions. They show that a regular tree language T of trees is definable by such a
DTD if and only if T has the following closure property: if two trees t1 and t2 are
in T , and there are two nodes v1 in t1 and v2 in t2 with the same label, then the
trees obtained by exchanging the subtrees rooted at v1 and v2 are also in the set T .
We refer to this property as label-guarded subtree exchange and we illustrate
it in Figure 4.

Because of this characterization, the classes of XML documents defined by DTDs
are also referred to as local classes (cf. [Murata et al. 2001]): the content of a node
only depends on the label of that node and hence, the dependency is local. The
characterization can be used to prove that certain languages can not be expressed
by a DTD as explained in the following example.

Example 3.3. Suppose that we want to put the extra constraint on the DTD of
Figure 2 requiring the presence of at least one DVD on discount. Then we get a

ACM Journal Name, Vol. V, No. N, February 2006.

10 · Expressiveness and complexity of XML Schema

∈ T

t
′
1

v1

t1

∈ T

t
′
2

v2

t2

∈ T

t
′
2

v1

t1

⇒

Fig. 4. Label-guarded subtree exchange. Nodes v1 and v2 are both labeled with the same label.

language that is not definable by a DTD anymore. We can prove this by applying
the above characterization. Indeed, the trees

t1 := store

dvd

title price

dvd

title price discount

and

t2 := store

dvd

title price discount

dvd

title price

are in the language, but the tree

store

dvd

title price

dvd

title price

which is obtained from t1 by replacing its second subtree by the second subtree of
t2, is not in the language. 2

4. A PRACTICAL STUDY OF XSDS

A variety of sources [DuCharme 2002; Jelliffe 2001; Lee and Chu 2000] discuss the
many drawbacks of DTDs: no modularity, no XML syntax, limited basic types,
restricted referencing mechanism, verbose specification of unordered data, and lim-
ited expressiveness (definition of an element cannot depend on its context). Most of
these concerns have been addressed by the XML Schema specification: namespaces
and import facilities have been added; an extensive number of built in basic types
as well as means to fine tune them by restriction are provided; XML Schema sup-
ports key and referential integrity; the all construct allows to specify unordered
content; and finally, different types can be allowed for the same element name. Of
course, this raises the question to what extent the added features are actually used
in practice. To this end, we studied a corpus of 819 XSDs harvested from the Web.
Among the XSDs gathered, 93 were retrieved via the Cover Pages [Cover 2005].2

Hence, a substantial number of high-quality XSDs representing various standards

2A previous study only focused on the Cover Pages and also investigated the structure of used

regular expressions [Bex et al. 2004].

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 11

such as the XML Schema Specification, XHTML, UDDI, RDF and others are rep-
resented in the corpus. Unfortunately this number is rather small, so the corpus
was enlarged to its present size of 819 XSDs using Google’s web services to retrieve
an additional 726 XSDs.3

The results concerning the use of syntactical features are summarized in Table I.
From this table one can conclude that XML Schema’s simpleType library and the
ability to place restrictions on those are heavily used. Derivation in the sense of the
object orientation paradigm is only used in about 1/5 of all XSDs. Modularity by
way of imports and (non-trivial) namespaces is fairly important as well. Uniqueness
and key references are quite uncommon.

feature % of XSDs

derivation

simpleType extension 18.9

simpleType restriction 45.5

complexType extension 20.7

complexType restriction 3.6
abstract attribute 9.8
final attribute 0.9
block attribute 0.0
fixed attribute 6.4

substitutionGroup 6.4

redefine 1.0

interleaving

xs:all 5.5

modularity

namespaces 12.1

import 27.7

linking

key/keyref 4.1
unique 2.9

Table I. XML Schema features use in the corpus

As explained above, XSDs employ types to increase expressiveness beyond DTDs.
The question remains whether XSDs occurring in practice actually use this feature.
That is, what percentage of found XSDs are not structurally equivalent to a DTD?
Unfortunately, out of the corpus of 819 harvested XSDs only 225 remain on which
IBM’s SQC [Fokoué and Schloss 2004] reports no errors.4 Although syntactical
correctness is less critical in testing for presence or absence of syntactical features,
it is mandatory for the expressiveness analysis which is more semantical in nature.
It is impossible to automatically guess for every syntactically incorrect XSD what
its designer intended.

3The study was performed in September 2004.
4Even worse, already 70% of the XSDs from the Cover pages do not pass the syntax checker

SQC. In this respect it is interesting to note that Sahuguet reported similar findings on the sheer

abundance of syntactically incorrect DTDs [Sahuguet 2000].

ACM Journal Name, Vol. V, No. N, February 2006.

12 · Expressiveness and complexity of XML Schema

It turns out that out of the remaining 225 XSDs, 192 (85%) are in fact structurally
equivalent to a DTD: at most one type is associated to every element name.5 So
only 33 XSDs (15%) use the typing mechanism to actually define non-local classes
of XML documents. Surprisingly, in 30 XSDs, types only depend on the parent
context.

Example 4.1. We give an example of an EDTD where types only depend on the
parent context:

store → regulars discounts

regulars → (reg-dvd)∗

discounts → dis-dvd (dis-dvd)∗

reg-dvd → title price

dis-dvd → title price discount

where µ(reg-dvd) = µ(dis-dvd) = dvd. Here, the content model of a dvd is title
price when it occurs as the child of a regulars element, and it is title price

discount when it occurs as the child of a discounts element. It should be noted
though that the tree language described by this EDTD is different from the one of
Example 2.4 as it uses additional tags, regulars and discounts. 2

In contrast, in Example 2.4 types depend on (the subtrees) at all siblings.
So, although non-trivial typing is moderately used in practice, it is almost ex-

clusively used in its most simplistic form: dependence on the label of the parent.
Recall that for DTDs, the type of an element is its name. Basically, there are two
possible explanations for the above observation. Either, advanced modeling power
as allowed by EDTDs is not necessary in practice. Or, users are simply not aware
of what kind of schemas can be expressed by XSDs. In Section 6, we address the
latter concern as we provide several characterizations which give insight into what
is theoretically possible when using XSDs. The former possibility is analyzed below
in more detail.

In the remaining 3 XSDs, types depend on the grand- or the great grand-parent
context. We discuss an abstraction of one of them as an EDTD:

Example 4.2.

a → b + c h1 → j1

b → e d1 f h2 → j2

c → e d2 f j1 → k `
d1 → g h1 i j2 → m n
d2 → g h2 i

The interpretation of the example above is simple: a j1 element can only occur as
the great grandchild of a b element while a j2 element can only occur as the great
grandchild of a c element. 2

Two extreme approaches can be used to code the abstract example above in an XSD.
On the one hand, one can use the “Russian doll” model, i.e. using anonymous type

5Actually, we encountered one XSD using types to define a local language. The corresponding

EDTD is of the form: a1 → b, a2 → b where the types differ semantically.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 13

definitions within type definitions. In an abstract syntax the latter reduces to the
rules

b→ ed[gh[j[k`]]i]f and c→ ed[gh[j[mn]]i]f,

where the type definition of the element b encapsulates that of d1 which in turn
defines that of h1 that finally contains j1’s definition. The alternative is to flatten
the XSD as has been done in Example 4.2, but this leads to “artificial types”
such as d1 and h1 that only exist to pass down the information that their parent
and grandparent was a b-element. It is obvious that in practice both approaches
are mixed to a certain extent. However, both lead to duplication of definitions,
making maintenance and further development of an XSD much harder. In the next
section, we present a pattern-based alternative to XSDs allowing to make context
dependencies explicit.

5. PATTERN-BASED SCHEMA LANGUAGES

We address the concerns mentioned in the previous section in two ways: (1) we
give in Section 6 several equivalent characterizations explaining the meaning of the
EDC constraint; and, (2) we propose in the present section a general framework
for XML schema languages, pattern-based schemas, that allows types to depend on
the labels of ancestors.

The proposed framework is related to the paradigm of contextual patterns upon
which languages like Schematron [Jelliffe 2005] and DSD [Klarlund et al. 2000] are
based. These pattern-based schemas no longer require to define types in terms of
types, which seems to be perceived as a challenge by the average XSD author, but
still allow to access the full power offered by XML Schema. Duplication of defini-
tions would be reduced as well since dependencies on ancestor labels can straight-
forwardly be declared rather than being passed down via types. Our framework can
be instantiated in various ways, resulting, e.g., in all tree languages definable by an
XSD or all tree languages which can be efficiently typed in a streaming fashion as
detailed in Sections 6 and 8, respectively.

5.1 Pattern-based schemas by example

To enlarge flexibility, in a first stage, we only use patterns in an abstract way.
Therefore, we assume a pattern language where each pattern associates with every
tree a set of selected nodes. We will consider linear XPath expressions, i.e., using the
axes / (child) and // (descendant) only, regular expressions, and full XPath. Before
we define pattern-based schemas more formally, we take a look at an example.

Example 5.1. The following pattern-based schema uses linear XPath as a pattern
language and describes the EDTD of Example 4.1. It describes a store, in which
regular and discount DVDs are present. A discount DVD has a tag discount,
whereas a regular DVD does not. This distinction is described by referring to the
path from the root to a DVD-element:

ACM Journal Name, Vol. V, No. N, February 2006.

14 · Expressiveness and complexity of XML Schema

//store → regulars discounts

//regulars → dvd∗

//discounts → dvd dvd∗

//regulars/dvd → title price

//discounts/dvd → title price discount

This schema declares four elements: store, regulars, discounts, and dvd. For
dvd there are two rules. The first one defines regular dvds while the second one
defines discount dvds. As an example, the expression of the last line holds at a
node v, if (1) v is labeled with dvd and its parent is labeled with discounts and
(2) its children are labeled by title, price, discount, from left to right.

2

5.2 A formal definition of pattern-based schemas

We next give a more formal definition of pattern-based schemas. To this end, let
P be a pattern language defining unary patterns. That is, each pattern ϕ ∈ P
associates with every tree t a set of selected nodes, which we denote by ϕ(t).

Definition 5.2. A P-schema is a pair S = (Σ, R) where R is a finite set of rules
of the form ϕ → s. Here, ϕ ∈ P is a pattern, and s is a regular expression over
Σ. A tree t is valid w.r.t. S if the label of every node belongs to Σ and for every
node v of t there is a rule ϕ → s such that v ∈ ϕ(t) and the children of v match
the regular expression s.

Remark 5.3. It should be noted here that there are some possible variants in
the definition of pattern-based schemas and their semantics. For instance, as just
defined, the semantics has an existential nature. Each node has to match at least
one rule. A universal semantics could require that for for each rule ϕ→ s, for each
node v in ϕ(t) the children of v match s. For pattern languages closed under the
Boolean operations, the two semantics are equally expressive.

Example 5.4. An XPath-schema equivalent to the EDTD of Example 4.2 is the
following:

a → b + c h → j
b → e d f //b//j ⇒ k `
c → e d f //c//j ⇒ mn
d → g h i

Note that for brevity, we write a→ b+ c rather than the more correct //a→ b+ c.
2

We note that with an expressive pattern language, such as full XPath, the ex-
pressive power of P -schemas may extend that of XML schema. For example, in
[Fiorello et al. 2004] an approach called DTD++ 2.0 is introduced that allows to
define schemas which are then translated into SchemaPath [Coen et al. 2004] which
is strictly more expressive than XML Schema and requires a transformation of the
XML documents prior to validation. In this paper, we present in Section 6 an in-
stantiation of P -schemas whose expressive power is at most that of XML schema.
Our approach therefore avoids the overhead of translating XML documents and
leverages the use of existing XML Schema implementations and tools.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 15

5.3 Pattern-based schemas in practice

The usefulness of an XML schema language requires more than an abstract frame-
work. Therefore, we discuss next how we can migrate pattern-based schemas into a
full fledged schema language. Rather than proposing yet another schema language
we stipulate how existing languages and proposals can be adapted.

Several approaches guided by our practical study are conceivable. We suggest a
two-pronged approach:

—on the one hand an extension to the DTD specification for those most comfortable
with this formalism which probably includes inexperienced or new users,

—on the other hand, an extension of XML Schema more suited for advanced users.

However, these seemingly different approaches converge behind the scenes since
schemas developed both according to the DTD extension and to the XML Schema
extension can be translated into an XSD which is valid with respect to the current
XML Schema specification. We next discuss both proposals in more detail.

5.3.1 Enhancing DTDs. The most direct approach is to enhance DTDs to the
formalism of pattern-based schemas as exemplified in Examples 5.5 and 5.6. To
increase readability we allow to specify names to patterns.

Pattern declarations could be of the form

<!PATTERN name pattern-expression (regular-expression)>.

Example 5.5. The schema of Example 5.1 could be represented as follows.

<!ELEMENT store (regulars, discounts)>

<!ELEMENT regulars (dvd*)>

<!ELEMENT discounts (dvd dvd*)>

<!PATTERN regular-dvd "//regulars/dvd" (title price)>

<!PATTERN discount-dvd "//discounts/dvd" (title price discount)>
2

Example 5.6. The real world XSD of Example 4.2 can be rewritten as the fol-
lowing enhanced DTD.

<!ELEMENT a (b | c)>

<!ELEMENT b (e, d, f)>

<!ELEMENT c (e, d, f)>

<!ELEMENT d (g, h, i)>

<!ELEMENT h (j)>

<!PATTERN j1 "//b//j" (k, l)>

<!PATTERN j2 "//c//j" (m, n)>

2

It is clear that the representation in the examples is much more compact than the
corresponding XSDs, and that duplicate definitions have been avoided altogether.
Note that the examples use “linear XPath” expressions, incorporating only the
axes child and descendant. The results mentioned in Section 4 suggest that this
expressiveness is sufficient to structurally capture the XSDs occurring in practice,
though the power of full regular expressions is needed to capture all of XML Schema

ACM Journal Name, Vol. V, No. N, February 2006.

16 · Expressiveness and complexity of XML Schema

(cf. Section 6.4). Thus, one can limit oneself to the abbreviated syntax (‘/’ and
‘//’) which substantially contributes to the transparency of the expressions.

To make enhanced DTDs practically useful, often used features like simple types
and namespaces should be added as well (cf. Table I). Proposals for such additions
already exist [Vitali et al. 2003; Buck et al. 2000] and can easily be incorporated.
Both focus heavily on the addition of data types to DTDs. The former (DTD++
1.0) also introduces namespaces and complex objects. To the best of our knowledge
we are the first to justify enhancements to DTDs both by a practical study (Sec-
tion 4) and a theoretical analysis (Section 7). Indeed, in strong contrast to DTD++
1.0, the restriction to pattern-based schemas can structurally define all XSDs (The-
orem 7.1) and can therefore act as a complete front-end for XML Schema.

5.3.2 A conservative extension of XML Schema. The second option is to ex-
tend the XML Schema specification in such a way that element type definitions
are context dependent. A syntactic approach using conditional alternatives similar
to SchemaPath [Coen et al. 2004] is suggested. However, rather than full XPath
expressions, conditions would be limited to linear XPath (or general regular ex-
pressions) so that the expressive power of XML Schema is not exceeded. Whereas
the enhanced DTDs are more expressive than traditional DTDs, extended XML
Schemas provide only syntactic sugar to ease the development and make XML
Schema more legible and easier to maintain since a lot of definition duplications
can be eliminated.

Example 5.7. The essential fragment of Example 5.1 can be rewritten as an
extended XSD as follows:

<xs:element name="j">

<xs:alt cond="//regulars/dvd" type="regular-dvd"/>

<xs:alt cond="//discounts/dvd" type="discount-dvd"/>

</xs:element>

2

Example 5.7 shows a conditional element definition: element dvd is of type regular-dvd
(discount-dvd) if it has a regulars (discounts) parent.

6. EDC AND ANCESTOR-BASED SCHEMAS

As already mentioned in the introduction, XML Schema does not capture all tree
languages that can be described by extended DTDs (i.e., the regular tree languages).
In particular, the EDC (Element Declarations Consistent) and the UPA (Unique
Particle Attribution) constraint must be fulfilled. In this section, we formalize EDC
in the form of a certain kind of EDTDs and give several equivalent characterizations
of the resulting class of tree languages. One of these characterizations is in terms of
pattern-based schemas. Together, these characterizations provide a clear view of the
effect of the EDC constraint on the expressiveness of XSDs and typing algorithms.

To enhance readability of this section, we postpone most of the equivalence proofs
to Section 7.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 17

6.1 A formalization of EDC: single-type EDTDs

Murata et al. [Murata et al. 2001] presented a formalization of the EDC rule, which
we state here in terms of EDTDs.6 Roughly, the constraint forbids the occurrence
in the same definition of elements with the same name but different types. For
instance, the XSD of Figure 3 is not allowed as the two types reg-dvd and dis-dvd

occur in the same rule.

Definition 6.1. An EDTD (Σ,∆, d, sd, µ) is single-type if in no regular expres-
sion two types τ 6= τ ′ with µ(τ) = µ(τ ′) occur.

In the remainder of the paper, we use the terms EDC and single-type interchange-
ably. The EDTD of Example 2.4 is not single-type as both reg-dvd and dis-dvd

occur in the rule for store. Example 4.1 shows a single-type EDTD. Although
there are two types reg-dvd and dis-dvd for dvd, they occur in different rules.

6.2 Ancestor-based types

As remarked by Murata et al. [Murata et al. 2001], the definition of single-type
EDTDs induces a very simple top-down typing algorithm which assigns a unique
type to every node: First, the unique type is assigned to the root. Next, for each
interior node u with type ai, the algorithm finds the corresponding rule ai → r and
checks whether the children of u match µ(r), i.e., the regular expression obtained
from r by replacing every type by its corresponding element name. If this fails the
tree is rejected. Otherwise, as the EDTD is single-type, to each child a unique type
can be assigned. The tree is then accepted if this process terminates at the leaves
without any rejection.

This algorithm immediately implies that the type of a node only depends on its
ancestors. We formalize this as follows. By anc-strt(u) we denote the sequence
of labels on the path from the root to u including both the root and u itself (cf.
Figure 6).

Definition 6.2. We say that an EDTD D = (Σ,∆, d, sd, µ) has ancestor-based
types if there is a function f : Σ∗ → ∆ such that, for each tree t ∈ L(D),

—t has exactly one witness t′, and

—t′ results from t by assigning to each node v the type f(anc-strt(v)).

It is now easy to prove the following result:

Proposition 6.3. When a tree language T is definable by a single-type EDTD,
then it has ancestor based types.

Proof. Let T be defined by the single-type EDTD D = (Σ,∆, d, sd, µ). Then
define f inductively as follows: f(µ(sd)) = sd. Further, for any string w · a · b with
w ∈ Σ∗ and a, b ∈ Σ, f(w · a · b) = bj where bj occurs in d(ai) and f(w · a) = ai.
As d(ai) is single-type, f is well-defined and induces a unique typing. Thus, the
requirements of Definition 6.2 are satisfied.

We note that there are EDTDs which are not single-type but have ancestor-based
types. But we will see in Section 7, that such EDTDs always have an equivalent
single-type EDTD.

6[Murata et al. 2001] used the equivalent model of tree grammars instead of EDTDs.

ACM Journal Name, Vol. V, No. N, February 2006.

18 · Expressiveness and complexity of XML Schema

6.3 A characterization of EDC by a subtree-exchange property

We introduce a tool to show that certain schemas are not definable by EDTDs
admitting EDC. We recall the notion of label-guarded subtree exchange from Sub-
section 3.2 which characterized the class of DTD-definable languages. A similar
characterization holds for single-type EDTDs.

To this end, we denote by t1[u← t2] the tree obtained from a tree t1 by replacing
the subtree rooted at node u of t1 by t2. By subtreet(u) we denote the subtree of
t rooted at u.

Definition 6.4. A tree language T is closed under ancestor-guarded subtree
exchange if the following holds. Whenever for two trees t1, t2 ∈ T with nodes u1

and u2, respectively, anc-strt1(u1) = anc-strt2(u2) then t1[u1 ← subtreet2(u2)] ∈ T .

This definition is illustrated in Figure 5.

∈ T

t
′
1

v1

t1

∈ T

t
′
2

v2

t2

∈ T

t
′
2

v1

t1

⇒

Fig. 5. Ancestor-guarded subtree exchange.

It is easy to see that ancestor-based types imply closure under ancestor-guarded
subtree exchange:

Proposition 6.5. When an EDTD D has ancestor-based types then L(D) is
closed under ancestor-guarded subtree exchange.

Proof. Let T be defined by an EDTD D = (Σ,∆, d, sd, µ) with ancestor-based
types. Let t1, t2 be in T and let u1 and u2 be nodes in t1 and t2, respectively, with
anc-strt1(u1) = anc-strt2(u2). Let t′1 and t′2 be the unique witnesses for t1 and t2,
respectively. As the label of u1 in t′1 and the label of u2 in t′2 are determined by
anc-strt1(u1) = anc-strt2(u2), they are the same. Hence, by replacing the subtree
rooted at u1 in t′1 with the subtree rooted at u2 in t′2 we get a tree t′ ∈ L(d).
Therefore, µ(t′) = t1[u1 ← subtreet2(u2)] is in T , as required.

Again, the converse does not hold literally, but if an EDTD defines a tree language
closed under ancestor-guarded subtree exchange, it always has an equivalent single-
type EDTD. The proof is non-trivial and appears in Section 7.

As an immediate consequence of Proposition 6.5, the language we considered in
Example 3.3 is not definable by a single-type EDTD. Note that the counterexample
can be constructed in exactly the same manner. On the other hand, the language
defined by the single-type EDTD in Example 4.1 is not definable by a DTD, so
single-type EDTDs are strictly more expressive than DTDs. As a matter of fact,
it can be decided whether a given EDTD is equivalent to a single-type EDTD. For
instance, the non single-type EDTD a→ b1b2, b1 → c, b2 → c is clearly equivalent

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 19

to the DTD (and, hence, single-type EDTD) consisting of the rules a → bb and
b→ c. The complexity of this problem is considered in Section 10.

The importance of the characterization of single-type EDTDs by a subtree-
exchange property stems from the fact that inexpressibility results can be formally
proved rather than vaguely stated. For instance, a shortcoming recently attributed
to XSDs is their inability to express certain co-constraints [Coen et al. 2004]. An
example of such a co-constraint is the following: a store-element can only have a
dvd-element with discount child if it also has a dvd-element without a discount

child. Using the ancestor-guarded subtree exchange property, it is very easy to
prove that this co-constraint cannot be expressed with XSDs. Indeed, the coun-
terexample is constructed from t1 in Example 3.3 by replacing its first subtree by
the first subtree of t2.

6.4 Ancestor-based schemas

We introduce an instantiation of pattern-based schemas with the expressive power
of single-type EDTDs. It is based on regular expressions. To this end, we associate
with a regular expression r the pattern which selects those nodes v of a tree t for
which anc-strt(v) satisfies r. The last two rules in the pattern-based schema of
Example 5.1 thus become

Σ∗ · regulars · dvd → title

Σ∗ · discounts · dvd → discount

Here, Σ∗ denotes the set of all Σ-strings. Next, we formally define such pattern-
based schemas. Let t be a tree and v be a node with children v1, . . . , vn, numbered
from left to right. By ch-strt(v) we denote the string formed by the labels of the
children of v, i.e., labt(v1) · · · labt(vn). Usually we omit the superscript t.

Definition 6.6. An ancestor-based schema S is a pattern-based schema (Σ, R),
where all rules are of the form r → s, where r and s are regular expressions over Σ.
A tree t satisfies S if for every node v there is some r → s in R such that anc-str(v)
matches r and ch-str(v) matches s.

We show in Theorem 7.1 below that the class of ancestor-based schemas cor-
responds precisely to the class of schemas represented by single-type EDTDs. In
other words, the instantiation of the general framework introduced in Section 5
with regular expressions over ancestor-strings can be used as an alternative syntax
for XML Schema. The underlying idea is the following: the type of any node when
validated against a single-type EDTD depends uniquely on the type of its parent
which in turn depends on the type of his parent and so on. These dependencies
can be captured by an automaton and, hence, also by a regular expression over
ancestor strings which leads to the formalism of ancestor-based schemas.

6.5 Ancestor-based patterns

The final characterization is based on the following notion:

Definition 6.7. Let T be a set of trees. We say that T can be characterized
by ancestor-based patterns if there is a regular string language L over Σ∪{#}
such that, for every tree t, we have that t ∈ T if and only if Panc(t) ⊆ L, where
Panc(t) = {anc-str(v)#ch-str(v) | v ∈ t}.

ACM Journal Name, Vol. V, No. N, February 2006.

20 · Expressiveness and complexity of XML Schema

We show that ancestor-based schemas have ancestor-based patterns. Intuitively,
each rule r → s in the ancestor-based schema corresponds to the regular expression
r ·# · s. The regular language L then is the union of all these expressions.

Proposition 6.8. When a regular tree language T is definable by an ancestor-
based schema then T can be characterized by ancestor-based patterns.

Proof. Let T be defined by the ancestor-based schema S = (Σ, R). Then T
can be characterized by the set L = {u#v | u ∈ L(r), v ∈ L(s), r → s ∈ R}. By
definition, for every tree t ∈ T it holds that Panc(t) ⊆ L. For the other direction, let
t be a tree which is not in T . Hence, there is a node w in t such that either there is
no rule r → s in R with anc-str(w) ∈ L(r) or for every such triple ch-str(w) 6∈ L(s).
This implies that anc-str(w)#ch-str(w) 6∈ L. Therefore, a tree t is in T if and only
if Panc(t) ⊆ L and we are done.

In the next section, we show that an EDTD D is single-type iff L(D) can be
characterized by ancestor-based patterns. This characterization has interesting
consequences for optimization. It shows that, just as for DTDs, equivalence and
inclusion testing reduces to the corresponding problems on regular string languages
as opposed to tree automata. We give more details in Section 10.3.

7. THE EQUIVALENCE THEOREM FOR ANCESTOR-BASED SCHEMAS

Before we state and prove our first technical result, we introduce some more nota-
tion.

We sometimes use a string notation for trees. That is, we denote by a the
associated tree of 〈a〉w〈/a〉, where w contains only text; and by a(x′

1 · · ·x
′
n), we

denote the associated tree of 〈a〉x1 · · ·xn〈/a〉, where each x′
i denotes the associated

tree of document xi. For each tree t, we define its set of nodes, Nodes(t), in
a canonical way as follows. Every element in Nodes(t) is a sequence of natural
numbers. The empty sequence ε represents the root of t. Furthermore, for any
node u in t, its n children are represented by u1, . . . , un in the order given by the
document (from left to right). By using this convention, a node u corresponds for
every tree to the same position in the tree.

Given an extended DTD D = (Σ,∆, d, sd, µ) and a type ai, we denote by (D, ai)
the extended DTD D, where we replace sd by ai. We call D trimmed if d contains
no unreachable rules, and for all ai ∈ ∆, L((d, ai)) 6= ∅. Intuitively, D is trimmed
if each of its types is assumed in at least one tree in L(D). As reachability and
testing emptiness of an EDTD is in ptime [Martens and Neven 2005], an EDTD
can be trimmed in ptime. Thus, we will usually assume that EDTDs that are given
as inputs are already trimmed.

As the structure of witness trees is the same as the structure of the trees they
are witnesses of, we assume in proofs that they have the same set of nodes.

Theorem 7.1. For a homogeneous regular tree language T the following condi-
tions are equivalent.

(a) T is definable by a single-type EDTD.

(b) T is definable by an EDTD with ancestor-based types.

(c) T is closed under ancestor-guarded subtree exchange.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 21

(d) T is definable by an ancestor-based schema.

(e) T can be characterized by ancestor-based patterns.

Proof. Note that (a)⇒(b)⇒(c) are already proved in Proposition 6.3 and Proposi-
tion 6.5. To close that group it suffices to show (c)⇒(a). Further (d)⇒(e) is proved
in Proposition 6.8. It then suffices to show (a)⇒(d) and (e)⇒(b).

Let c denote the unique root label of the trees in T .
(a) ⇒ (d): Let T be defined by a single type EDTD D = (Σ,∆, d, c0, µ) with

·,⊥ 6∈ ∆. Let A be a DFA over Σ with state set Q = ∆ ∪ {·,⊥}, initial state · and
transition function δ : Q × Σ → Q. Let δ(ai, b) equal the unique bj occurring in
d(ai) if such a symbol exists, otherwise ⊥. Furthermore, δ(·, c) = c0. Note that the
single-type property ensures that A is deterministic and well-defined.

Let S = (Σ, R) be the ancestor based schema with rules of the form ra,i →
µ(d(ai)), where ra,i is a regular expression describing the set {w | δ∗(·, w) = ai} of
strings which bring A into state ai. Of course, the languages L(ra,1), . . . , L(ra,ka

)
are all disjoint where {a1, . . . , aka} are the symbols mapped to a by µ. Note that
we also denote by µ the homomorphic extension of µ to regular expressions d(ai).

It remains to show that S defines the same set of trees as D. Let t be in L(D)
and t′ be a witness. It is easily shown by induction that, for each node v of t′,

labt′(v) = δ∗(·, anc-strt(v)). Hence, for each node v labeled with ai, the rule of S
responsible for v is ra,i → µ(d(ai)) and can therefore be applied. The proof of the
opposite inclusion is similar.

(e) ⇒ (b): Let T be characterized by ancestor-based patterns using the language
L. Let A = (Σ, Q, δ, s, F) be a DFA for L. Define D = (Σ,∆, d, sd, µ) as follows.
∆ is the set of all pairs (a, q), where a ∈ Σ and q ∈ Q and µ((a, q)) = a. We let
d((a, q)) be a regular expression describing all strings (b1, q1) · · · (bn, qn), for which
A accepts #b1 · · · bn when started from state q and δ(q, bi) = qi, for every i ≤ n.
The start symbol sd is (c, q′) where δ(s, c) = q′. By construction, D is single-type
and therefore also has ancestor-based types. It is easy to see that L(D) defines T .
Indeed, when t ∈ T , let t′ be obtained from t by relabeling every inner node v labeled
a by (a, q) where q = δ∗(s, anc-strt(v)) then t′ ∈ L(D) and t = µ(t′)). Conversely,
let t′ ∈ L(D). Then, for every node u of t = µ(t′), anc-strt(u)#ch-strt(u) ∈ Panc(t)
by construction.

(c) ⇒ (a): Let D = (Σ,∆, d, sd, µ) be an EDTD defining a tree language closed
under ancestor-guarded subtree exchange. Our aim is to construct a single-type
EDTD E such that L(E) = L(D).

As explained in the beginning of this section, we assume without loss of generality
that D only contains useful types, i.e., each type occurs in the witness of some tree
in L(D). For each type of D, choose a fixed tree, which is the subtree rooted at
some node of this type in a tree in L(D).

We will make use of the following general property of EDTDs:

(†) If t1, t2 are trees in L(D) with witnesses t′1, t
′
2, respectively, such that v1 in t1

and v2 in t2 have the same type in t′1 and t′2, respectively, then the tree obtained
from t1 by replacing the subtree of v1 with the subtree of v2 in t2 is in L(D).

This property should not be confused with the subtree-exchange properties defined
above which do not concern types at all.

ACM Journal Name, Vol. V, No. N, February 2006.

22 · Expressiveness and complexity of XML Schema

For a string w ∈ Σ∗ and a ∈ Σ let types(wa) be the set of all types ai, for
which there is a tree t with witness tree t′ ∈ L(d) and a node v in t such that
anc-strt(v) = wa and the type of v in t′ is ai. For each a ∈ Σ, let τ(D, a) be the
set of all nonempty sets types(wa), with w ∈ Σ∗. Clearly, each τ(D, a) is finite.

We next define E = (Σ,∆E , e, sd, µE). Its set of types is ∆E :=
⋃

a∈Σ τ(D, a).
Note that sd ∈ ∆E . For every τ ∈ τ(D, a), set µE(τ) = a. In e, the right-hand
side of the rule for each types(wa) is the disjunction of all d(ai) for ai ∈ types(wa),
with each bj in d(ai) replaced by types(wab). It should be noted that by (†), the
definition of the rules of e does not depend on the actual choice of wa.

Clearly, E is single-type and L(D) ⊆ L(E). Thus it only remains to show
L(E) ⊆ L(D).

To this end, let g ∈ L(E) and let g′ be a witness. We call a set S of nodes of g
well-formed if (1) for each node v ∈ S all its ancestors are in S and (2) if a child
u of a node v is in S then all children of v are in S. The singleton set Sε containing
the root is well-formed.

We say that a tree t2 agrees with a tree t1 on an ancestor-closed set S1 of nodes
of t1, if S1 can be mapped to a well-formed S2 by a mapping m which respects the
child-relationship, the order of siblings and the labels of nodes.

As all trees in L(D) and L(E) have the same root label, there exists a tree
t1 ∈ L(D) which agrees with g on Sε. To complete the proof of “(c) ⇒ (a)” it is
sufficient to prove the following.
Claim. If there exists a tree t1 ∈ L(D) which agrees with g on a well-formed set
S (Nodes(t) then there exists t2 ∈ L(D) which agrees with g on a well-formed set
which is a strict superset of S.

For the proof of this claim, let wa = anc-strg(v), for some node v ∈ S whose
children are not in S. Let t1 be as stated and let t′1 be its witness. Let ai be the
type of the node m(v) corresponding to v in t′1.

By construction of E the right-hand side of the rule for types(wa) is a disjunction
over the (adapted) right-hand sides of rules of D. Let aj be such that the children
of v are typed in g′ according to a disjunct derived from the rule for aj . Thus, in
particular, aj ∈ types(wa). Thus, there is a tree t3 ∈ L(D) with a node u such that
anc-strt3(u) = wa and the type of u is aj in the witness t′3 for t3.

Let, for each child v1 of v in g, a type f(v1) be chosen such that ch-str(v) matches
d(aj) with these types. Let t4 be obtained from t3 by (1) removing everything below
u, (2) adding the children of v below u, and (3) adding for each child v1 the fixed
subtree chosen for f(v1). Clearly, by (†), t4 ∈ L(D). Furthermore, by the ancestor-
closed subtree exchange property, the tree t2 resulting from t1 by replacing the
subtree rooted at m(v) by the subtree of t4 rooted at u is in L(D), too. This
completes the proof of the claim and thus of “(c) ⇒ (a)”.

8. TOWARDS A ROBUST NOTION OF TYPING

The rationale behind the Element Declarations Consistent constraint is that it
allows for efficient and unique typing. Indeed, as discussed in Section 6.2, there
is a simple one-pass top-down algorithm to validate and type a document against
a schema. Although EDC is therefore clearly a sufficient condition for efficient

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 23

typing, the question arises to which extent the EDC constraint is also necessary.
We consider here the requirement of efficient typing in a streaming fashion. Clearly,
a document that can be typed in a top-down fashion can also be typed in a streaming
manner, but the converse is not always true.

In this section, we provide several semantical and syntactical characterizations
of this class of documents, as well as an instantiation of the pattern-based ap-
proach that also defines this class. These characterizations are all equivalent. As
in Section 6, we provide the easy implication proofs in this section while the full
equivalence proofs are delegated to Section 9. The section ends with a consideration
of the Unique Particle Attribution rule (UPA). It is shown that UPA and EDC are
incomparable, and that UPA like EDC, implies but is not equivalent to efficient
typing in a streaming fashion.

8.1 1-pass preorder typing of XSDs

As mentioned before, the expressive power of EDTDs (and Relax NG) corresponds
to the well-understood and very robust class of regular tree languages. However,
this expressive power comes at a price. Although it can be determined in linear
time whether a tree satisfies a given EDTD, the way to do that is sometimes at
odds with the way one would like to process XML documents. More concretely,
it requires to process documents in a bottom-up fashion where the type(s) of an
element is only determined after reading its content. In the context of streaming
XML data or for SAX-based processing, i.e., when processing an XML document
as a SAX-stream of opening and closing tags, it is more desirable to determine
the type of an element at the time its opening tag is met. If an EDTD fulfills
this requirement we say it is 1-pass preorder typeable (1PPT). Note that not every
EDTD admits 1PPT. Consider the example a → b1 + b2, b1 → c, b2 → d and
the document <a><d/>. The type of b depends on the label of its
child. It is hence impossible to assign a type to b when its opening tag is
met, i.e., without looking at its child. An alternative formulation of 1PPT is that
the type of an element cannot depend on anything occurring in document order
after the opening tag of that element. Hence, we require that a type is uniquely
determined by the preceding of an element (cf. Figure 6). On top of one-pass
preorder typeability, this notion therefore also enforces the attribution of a unique
type to every element. The latter is, for instance, not the case for Relax NG which
allows ambiguous typing as in the grammar a→ b1 + b2, b1 → c, and b2 → c, where
b can both be assigned type b1 and b2 in the tree a(b(c)).

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

v

t

v

t

v

t

v

t

v

t

Fig. 6. From left to right: a tree t, the ancestor-string of v, the ancestor-sibling-string of v, the

preceding of v and the preceding-subtree of v in t.

ACM Journal Name, Vol. V, No. N, February 2006.

24 · Expressiveness and complexity of XML Schema

In the XML Schema specification as well as in research papers, various kinds of
constraints have been defined that enable efficient validation and typing of XML
documents. Although it is hardly made precise what efficient typing should mean
exactly, one might argue that the intention roughly matches our notion of 1-pass
preorder typeability. It should be noted here that 1PPT is a semantical notion,
while the proposed notion of single-type EDTDs, for instance, is a syntactic one
as its definition refers to syntactic restrictions of the schema rather than to the
documents themselves. However, 1PPT is a robust notion precisely because it is
semantic: it defines the largest class of EDTDs that can be typed when processed
in a streaming fashion.

We formalize the notion of 1PPT in terms of preceding-based types in analogy
to the ancestor-based types of Definition 6.2. The preceding of a node v in t is
the tree resulting from t by removing everything below v, all right siblings of v’s
ancestors and of v, and their respective subtrees (cf. Figure 6). In other words, the
preceding of v in t is the subtree of t consisting of all nodes that are before v in
document order, and v itself. We denote the preceding of v by precedingt(v).

Definition 8.1. We say that an EDTD D = (Σ,∆, d, sd, µ) is 1-pass preorder
typeable (1PPT) or has preceding-based types if there is a function f : TΣ → ∆
such that, for each tree t ∈ L(D),

—there is exactly one witness t′, and

—t′ results from t by assigning to each node v the type f(precedingt(v)).

Theorem 7.1 characterizes single-type EDTDs precisely as the class of EDTDs
with ancestor-based types. Therefore, every single-type EDTD admits 1PPT. The
converse, however, is not true. Consider for example the following EDTD which
is not single-type: a → b1 b2, b1 → c, b2 → d. Nevertheless, the EDTD ad-
mits 1PPT. Indeed, it is easy to see that the EDTD only defines the singleton
<a><c/><d/>. The rule for a says that the first b-child needs
to be typed b1 and the second b-child needs to be typed b2. For each of the b’s in the
document, it can be easily determined whether it is the first or second child of a by
investigating its preceding (cf. Figure 6). Hence, the notion of single-type EDTDs
allows for efficient unique typing, but does not capture all of 1PPT EDTDs.

8.2 Ancestor-sibling-based types

One of the more surprising results of this paper is that although the definition
of 1PPT explicitly allows dependence on the complete preceding for the type of
an element, in the context of EDTDs, already dependence on the ancestor-sibling-
string (as defined next) suffices.

Let t be a tree, v a node in t and u1, . . . , uk its left siblings. By l-sib-strt(v), we
denote the string labt(u1) · · · labt(uk)labt(v). The ancestor-sibling-string of v,
denoted by anc-sib-strt(v), is the string

l-sib-strt(v1)#l-sib-strt(v2)# · · ·#l-sib-strt(vn)#l-sib-strt(v)

formed by concatenating the left-sibling strings of all ancestors v1, v2, . . . , vn of v
starting from the root v1 (c.f. Figure 6).

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 25

Definition 8.2. We say that an extended DTD D = (Σ,∆, d, sd, µ) has ancestor-
sibling-based types if there is a function f : (Σ∪ {#})∗ → ∆ such that, for each
tree t ∈ L(D),

—there is exactly one witness t′, and

—t′ results from t by assigning to each node v the type f(anc-sib-strt(v)).

The next proposition immediately follows by definition:

Proposition 8.3. When an EDTD has ancestor-sibling-based types, it also has
preceding-based types.

8.3 A characterization of 1PPT by a subtree-exchange property

Just as for single-type EDTDs, EDTDs admitting 1PPT satisfy a very simple clo-
sure property which provides a means to prove that certain tree languages are not
definable by 1PPT EDTD.

Recall that t1[u ← t2] denotes the tree obtained from a tree t1 by replacing the
subtree rooted at node u of t1 by t2, and that subtreet(u) denotes the subtree of t
rooted at u.

Definition 8.4. A tree language T is closed under ancestor-sibling-guarded
subtree exchange if the following holds. Whenever for two trees t1, t2 ∈ T with
nodes u1 and u2, respectively, anc-sib-strt1(u1) = anc-sib-strt2(u2) then t1[u1 ←
subtreet2(u2)] ∈ T .

The definition is illustrated by Figure 7.

∈ T

t
′
1

v1

t1
∈ T

t
′
2

v2

t2
∈ T

t
′
2

v1

t1⇒

Fig. 7. Ancestor-sibling-guarded subtree exchange.

Note that the above notions extend the notion of ancestor-based types of Defini-
tion 6.2. The proof of the following proposition is then also almost identical to the
one of Proposition 6.5, just replace ancestor by ancestor-sibling.

Proposition 8.5. When a regular tree language T has ancestor-sibling-based
types then T is closed under ancestor-sibling-guarded subtree exchange.

As an immediate consequence, the language we considered in Example 3.3 is
not definable by an EDTD admitting 1PPT. Note that the counterexample can be
constructed in exactly the same manner.

ACM Journal Name, Vol. V, No. N, February 2006.

26 · Expressiveness and complexity of XML Schema

8.4 Restrained competition EDTDs

We recall the definition of restrained competition EDTDs introduced by Murata,
Lee, and Mani [Murata et al. 2005]. They can be seen as a generalization of single-
type EDTDs.

Definition 8.6. Let D = (Σ,∆, d, sd, µ) be an EDTD. A regular expression r
(over the alphabet of types ∆) restrains competition if there are no strings wτv
and wτ ′v′ in L(r) with τ 6= τ ′ and µ(τ) = µ(τ ′). The EDTD D is restrained
competition iff all regular expressions occurring in rules restrain competition.

Intuitively, a restrained competition regular expression ensures that when visiting
the children of a node from left to right it is always clear which type is associated
to each node without seeing its right siblings. So, single-type implies restrained
competition.

Example 8.7. The following is an example of a restrained competition EDTD
that is not single-type nor has an equivalent single-type EDTD.

store → (reg-dvd)∗ discounts (dis-dvd)∗

discounts → ε
reg-dvd → title price

dis-dvd → title price discount

where µ(reg-dvd) = µ(dis-dvd) = dvd. The expression

(reg-dvd)∗ discounts (dis-dvd)∗

is restrained competition as types can be assigned from left to right: each time a
dvd-element is read, it has type reg-dvd when discounts has not been met yet,
and type dis-dvd, otherwise.

In contrast, the expression (reg-dvd+ dis-dvd)∗dis-dvd(reg-dvd+ dis-dvd)∗

of Example 2.4 is not restrained competition as the strings dis-dvd and reg-dvd

dis-dvd are both defined by the regular expression but reg-dvd and dis-dvd are
associated to the same element name. Here, w = ε, τ = dis-dvd, τ ′ = reg-dvd,
v = ε, and v′ = dis-dvd. 2

We show in Theorem 9.1, that any homogeneous regular tree language that ad-
mits 1PPT, can be defined by a restrained competition EDTD.

This restriction allows a strictly larger class of schemas than EDC while still
permitting a unique top-down left-to-right assignment of types as discussed in Sec-
tion 8.2. Note that both the single-type and the restrained competition constraint
are local: they restrain the structure of admissible regular expressions. Unfortu-
nately, EDC is syntactic while restrained competition is a semantical notion. Nev-
ertheless, whether an EDTD is restrained competition can be decided in polynomial
time (Section 10, Theorem 10.2).

8.5 Ancestor-sibling-based schemas

To raise the expressiveness of pattern-based schemas to the level of EDTDs admit-
ting 1PPT, we need an adequate pattern language. To this end, we use a set R
of regular expressions over symbols a[r] where r is a regular expression over ele-
ment names and a is an element name. We simply write a for a[Σ∗]. For instance,

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 27

(a[a + b∗] + b)∗a[b∗] is an expression of R with three symbols, a[a + b∗], b[Σ∗] and
a[b∗]. We say that a[r] matches node v when v is labeled with a and the string
formed by the labels of the left siblings of v match r.

We explain how an expression ϕ can be used as a unary pattern. Let v be a node
of a tree t. Let v1, . . . , vn be the path from the root v1 to v = vn. For each i, let
ai denote the label of vi and let wi be the string of labels of the left siblings of vi,
without the label of vi itself. Node v is selected by pattern ϕ iff there exists a
string a1a2[r2] · · · an[rn] ∈ L(ϕ) such that for every i = 2, . . . , n, wi ∈ L(ri). In
other words, for each symbol ai[ri], ri constrains the left siblings of the node vi.

Example 8.8. Using R as pattern language, we can define the EDTD of Exam-
ple 8.7 in our framework in the following way:

store→ dvd∗ discounts dvd∗

discounts→ ε
store dvd[dvd∗]→ title price

store dvd[dvd∗ discounts dvd∗]→ title price discount
2

For a formal definition, we recall that ch-strt(v) denotes the string formed by the
labels of the children of a node v.

Definition 8.9. An ancestor-sibling-based schema S is a pattern-based schema
(Σ, R), where all rules are of the form ϕ → s, where s is a regular expression over
Σ and ϕ is a pattern from R. A tree t satisfies S if for every node v there is some
ϕ→ s in R such that v is selected by pattern ϕ and ch-str(v) matches s.

By Theorem 9.1 below, ancestor-sibling-based schemas correspond precisely to
the class of schemas represented by restrained competition EDTDs and therefore
to those EDTDs admitting 1PPT. In other words, the instantiation of the general
framework with regular expressions over ancestor-sibling-strings is an alternative
syntax for all EDTDs admitting 1PPT.

As in Subsection 5.3, we can adopt two approaches to employ schemas for prac-
tical settings: enhance DTDs or extend XML Schema. To capture 1PPT EDTDs
it suffices to add R-patterns. A more practical way is to add full XPath, but
semantically restrict its evaluation to the preceding of each node (cf. Figure 6).
For instance, the expression //*[.//b]//c selects only those c-elements having a
b-element in their preceding as illustrated in Figure 8.

a

d

c b

c

d

Fig. 8. Only the circled c-element in the document has a b-element in its preceding.

8.6 Ancestor-sibling-based patterns

The following definition characterizes EDTDs admitting 1PPT in terms of allowable
patterns.

ACM Journal Name, Vol. V, No. N, February 2006.

28 · Expressiveness and complexity of XML Schema

Definition 8.10. Let T be a set of trees. We say that T can be characterized
by ancestor-sibling-based patterns, if there is a regular string language L such
that, for every tree t, we have that t ∈ T if and only if Panc-sib(t) ⊆ L, where
Panc-sib(t) = {anc-sib-str(v)#ch-str(v) | v ∈ t}.

The proof of the next Proposition is similar to the one of Proposition 6.8 and is
therefore omitted.

Proposition 8.11. When a regular tree language T is definable by an ancestor-
sibling-based schema, then T can be characterized by ancestor-sibling-based patterns.

In the next section, we show that an EDTD D is 1PPT iff L(D) can be charac-
terized by ancestor-sibling-based patterns. This characterization is mostly relevant
for optimization problems. It shows that, just as for DTDs and single-type EDTDs,
equivalence and inclusion testing reduces to the corresponding problems on regular
string languages. We provide more details in Section 10.3.

8.7 Unique Particle Attribution Rule

The most well-known XML Schema constraint is perhaps the Unique Particle At-
tribution (UPA) rule. In [van der Vlist 2002], it is mentioned that EDC and UPA
are interrelated, in the sense that when a schema satisfies one constraint it almost
always also satisfies the other. Although this might be true on most practical ex-
amples, in general it is definitely not the case. As we now show, the constraints
are incomparable: they are related only in the weak sense that each of them alone
implies 1PPT.

An EDTD satisfies the UPA constraint when, for every regular expression r over
the type alphabet ∆, the expression µ(r), obtained from r by replacing every type τ
by the element µ(τ), is one-unambiguous (cf. Definition 3.1). The expression a1(a2+
b1), for instance, is not EDC but satisfies UPA. For the other counter example,
consider the expression r = (a1 + b1)∗a1(a1 + b1) which is clearly EDC. When
matching a string against this expression, we always know that we need to type a
and b by a1 and b1, respectively. However, the expression µ(r) = (a+ b)∗a(a+ b) is
not one-unambiguous. Indeed, a1a2a3 and a2a3 are both in L((a1+b1)

∗a2(a3+b2)).
In [Brüggemann-Klein and Wood 1998] it is even shown that µ(r) can not be
defined by any one-unambiguous regular expression. So, none of the EDC or UPA
constraints implies the other.

The definition of UPA and restrained competition regular expressions are related
in the following way. When matching a string against a restrained competition
regular expression the type of the next element only depends on the part of the
string already seen. For a one-unambiguous regular expression over the type alpha-
bet as defined in the previous paragraph, the symbol in the regular expression that
matches the next input element only depends on the part of the string already seen.
As the matched symbol in the regular expression is actually the type of that symbol,
it is immediate that every such one-unambiguous regular expression is restrained
competition and, therefore, UPA implies 1PPT.

Example 8.12. Suppose that r = a1?b1(b1+c1)∗a2c1. Then, µ(r) = a?b(b+c)∗ac
and µ(r) = a1?b1(b2+c1)

∗a2c2. Clearly, µ(r) is one-unambiguous, which means that
when we match e.g. bbcbac against µ(r), the symbol against which the a must be

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 29

matched (a2 in µ(r)), is uniquely determined without looking ahead. But then, the
symbol in r that corresponds to a2 is also uniquely determined, and this symbol has
only one type. So, we also know what type must be assigned to a without looking
ahead to c. It is easy to generalize this example to show that any EDTD satisfying
UPA is also restrained competition and therefore implies 1PPT.

Although the XML Schema specification allows typing in multiple passes (Section
5.2 in [Thompson et al. 2004], note on multiple assessment episodes), the previous
discussion shows that already the EDC or UPA alone allow for one-pass typing (as
they imply 1PPT). Nevertheless, neither EDC nor UPA captures the class of all
1PPT schemas.

There has been quite some debate in the XML community about the restriction to
1-unambiguous regular expressions (cf., e.g., pg 98 of [van der Vlist 2002] and [Mani
2001; Sperberg-McQueen 2003]) as it does not serve its purpose: even for general
regular expressions simple validation algorithms exist that are as efficient as those
for one-unambiguous regular expressions. One reason to maintain this restriction is
to ensure compatibility with SGML parsers, the predecessor of XML. The results of
this paper show that, on the other hand, by using restrained competition EDTDs
instead, a larger expressive power can be achieved without (essential) loss in effi-
ciency. For both classes, validation and typing is possible in linear time, allowed
schemas can still be recognized in quadratic time and an allowed schema can be
constructed in exponential time, if one exists [Brüggemann-Klein and Wood 1998]
(cf. Section 10).

On the negative side, both 1-unambiguous expressions and restrained competi-
tion expressions lack a comprehensive syntactical counterpart. Whether such an
equivalent syntactical restriction exists remains open. It would also be interesting
to find syntactic restrictions which imply an efficient construction of an equivalent
restrained competition EDTD.

9. THE EQUIVALENCE THEOREM FOR 1-PASS PREORDER TYPEABLE SCHEMAS

In this section, we prove the following theorem.

Theorem 9.1. For a homogeneous regular tree language T the following condi-
tions are equivalent.

(a) T is definable by a 1-pass preorder typeable EDTD.

(b) T is definable by a restrained competition EDTD.

(c) T is definable by an EDTD with ancestor-sibling-based types.

(d) T is closed under ancestor-sibling-guarded subtree exchange.

(e) T can be characterized by ancestor-sibling-based patterns.

(f) T is definable by an ancestor-sibling-based schema.

Proof. We show (a) ⇔ (c) and (c) ⇒ (d) ⇒ (b) ⇒ (f) ⇒ (e) ⇒ (c). Of these (c)
⇒ (a), (c) ⇒ (d), and (f)⇒ (e) are stated in Proposition 8.3, Proposition 8.5, and
Proposition 8.11, respectively. Further, (e)⇒ (c) is a straightforward generalization
of the proof of (e) ⇒ (b) in Theorem 7.1.

(b) ⇒ (f):

ACM Journal Name, Vol. V, No. N, February 2006.

30 · Expressiveness and complexity of XML Schema

Let T be defined by a restrained competition EDTD D = (Σ,∆, d, sd, µ). We are
going to construct a DFA A which determines the type of a node v, after reading
its ancestor-sibling-string. From this DFA, we will then obtain an ancestor-sibling-
based schema.

For each symbol ai in ∆, let Aa,i = (Qa,i,∆, δa,i, sa,i, Fa,i) be a minimal DFA for
L(d(ai)). We require that the sets Qa,i are pairwise disjoint. Because it is minimal,
each Aa,i has at most one state q⊥ from which no accepting state is reachable
and it has no unreachable states. From the restrained competition property it
immediately follows that, for each state q of Aa,i, if δ(q, bj) = q1, δ(q, bk) = q2,
q1 6= q2 and j 6= k then q1 or q2 must be q⊥.

The desired DFA A = (QA,Σ, sA, δA, FA) is constructed as follows. The set
QA consists of all pairs (q, b), where q ∈ Qa,i, for some ai, and b ∈ ∆ ∪ {#}.
Intuitively, q is the current state of an automaton Aa,i and b is the last type that
has been identified. If sd = a`, the initial state sA of A is (sa,`,#). The transition
function δA is defined as follows. For each q ∈ Qa,i, c ∈ ∆ ∪ {#} and b ∈ Σ we let
δA((q, c), b) = (δa,i(q, b

j), bj), for the unique j with δa,i(q, b
j) 6= q⊥, if such a j exists.

Otherwise, δA((q, c), b) = (q⊥,#). Furthermore, we let δA((q, bj),#) = (sb,j ,#).
The set FA can be chosen arbitrarily, as we do not make use of final states.

From the definition, it is obvious that, for each node v of a tree in T ,

δ∗A(sA, anc-sib-str(v)) = (q, ai),

for some q, where ai is the unique type of v.
Now we are ready to define the ancestor-sibling-based schema S. For each state

(q, ai) of A, let Lq,ai denote {w | δ∗A(sA, w) = (q, ai), for some q}. It is possible to
construct a regular language Rq,ai (and therefore, also a regular expression rq,ai)
over expressions of the form a[r] such that a string a1#w2a2# · · ·#wkak is in Lq,ai if
and only if there is a string a1a2[r2] · · · ak[rk] in L(rq,ai) and, for each j, wj ∈ L(rj).
Indeed, let rq,q′ be a regular expression defining all strings w without a separator
that take A from state q to state q′. Then the alphabet of Rq,ai, consists of all
symbols b[rq,q′]. As Lq,ai can be mapped onto Rq,ai by a generalized sequential
machine, the latter is a regular set (cf., e.g., [Hopcroft and Ullman 1979]). Then, S
consists of all rules rq,aj → µ(d(aj)). Note, that the languages L(rq,ai) are pairwise
disjoint by construction.

It remains to show that S and D describe the same tree language.
To this end, let first t ∈ L(D) and let v be a node of t. Let (q, ai) be the state of

A after reading anc-sib-str(v). Thus, in the unique labeling of t with respect to D,
v has type ai. Hence, ch-str(v) is in µ(d(ai)) and r → s is fulfilled at v.

For the converse direction, let t ∈ L(S) and let v be a node of t. Let r → s be the
unique rule for which anc-sib-str(v) matches r. By construction, r → s corresponds
to a type ai for which δ∗A(sA, anc-sib-str(v)) = (q, ai). In this way, a unique labeling
of t by types is induced and it is straightforward that this labeling is valid with
respect to D.

(a) ⇒ (c):
We show even a bit more than required: each EDTD with preceding-based types

already has ancestor-sibling based types.
Let D = (Σ,∆, d, sd, µ) be an EDTD which has preceding-based types. Towards

a contradiction, we assume that D has types which are not ancestor-sibling based.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 31

Clearly, because D has preceding-based types, the types of each t ∈ L(D) are
uniquely determined, thus, only the second requirement of Definition 8.2 can fail.
Hence, there are trees t1, t2 ∈ L(D) with nodes v1 in t1 and v2 in t2 such that
anc-sib-strt1(v1) = anc-sib-strt2(v2) but v1 has a different label in t′1 than v2 in
t′2, where t′1 and t′2 are the unique witnesses for t1 and t2, respectively. We call
t1, t2, v1, v2 a counterexample. Let t1, t2, v1, v2 be a counterexample for which the
length of anc-sib-strt1(v1) is minimal.

Let U1 be the set of nodes which are left siblings of ancestors of v1 let U2 be the
corresponding set for v2. As anc-sib-strt1(v1) = anc-sib-strt2(v2), there is a natural
bijection f from U1 to U2. Clearly, for each v ∈ U1, v and f(v) have the same label.

Let s be the tree resulting from t1 by replacing each node v ∈ U1 and its subtree
by f(v) and its subtree. As the counterexample was chosen minimally, for each
v ∈ U1, the label of v in t′1 is the same as the label of f(v) in t′2. Let s′ be the tree
resulting from s by labelling each subtree of a node v ∈ f(U1) as in t′2 and all other
nodes as in t′1.

It is easy to see that s′ ∈ L(d). As precedings(v1) = precedingt2(v2), and as we
assume preceding-based types, v1 must have the same label in s′ as v2 in t′2. As it
also has the same label in t′1 as in s′ it follows that the labels in t′1 and t′2 are the
same which leads to the desired contradiction.

(d)⇒ (b): The proof is similar to but a bit more involved than the corresponding
proof “(c) ⇒ (a)” in Theorem 7.1.

Let D = (Σ,∆, d, sd, µ) be an EDTD defining a tree language closed under
ancestor-sibling-guarded subtree exchange. We will construct a restrained com-
petition EDTD E = (Σ,∆E , e, sd, µE) such that L(E) = L(D). Again, we assume
without loss of generality that D only contains useful types.

For a string w ∈ (Σ ∪ {#})∗ and a ∈ Σ let types(wa) be the set of all types ai,
for which there is a tree t with witness tree t′ ∈ L(d) and a node v in t such that
anc-sib-strt(v) = wa and the type of v in t′ is ai. For each a ∈ Σ, let τ(D, a) be
the set of all nonempty sets types(wa), with w ∈ (Σ ∪ {#})∗. Again, each τ(D, a)
is finite. The set of types of E is ∆E :=

⋃
a∈Σ τ(D, a) and, for each τ ∈ τ(D, a),

µE(τ) = a.
To define e, let C ∈ ∆E and let C = {a1, . . . , a`} = types(wa) for a string wa.

Then define LC as the following regular language over ∆E . It consists of all ∆E-
strings x = x1 . . . xn for which there is an i ≤ ` and a string x′ ∈ L(d(ai)), such
that µ(x′) = µE(x) and the j-th position of x is types(wa#µE(x1 . . . xj)). Note
that LC does not depend on the choice of wa.

Intuitively, LC is the union of all d(ai) where every jth Σ-symbol in a string
y1 · · · yn is assigned the set of types types(wa#y1 . . . yj). It should be clear that
LC is indeed restrained competition.

We next show that LC is regular. We define an NFA MC accepting LC of
size exponential in the size of D. To this end, let for each type ai, Aa,i =
(∆, Qa,i, δa,i, sa,i, Fa,i) be an NFA for L(d(ai)). W.l.o.g., we assume that the sets
Qa,i are pairwise disjoint and that from every state in Qa,i, a final state is reachable.

Define MC = (∆E , QC , δC , sC , FC) as follows:

—QC = 2Q
a,1 × · · · × 2Q

a,`;

—sC = ({sa,1}, . . . , {sa,`});

ACM Journal Name, Vol. V, No. N, February 2006.

32 · Expressiveness and complexity of XML Schema

—FC = {(P1, . . . , P`) ∈ QC | ∃i, Pi ∩ Fa,i 6= ∅};

—In order to define δa,M , let P = (P1, . . . , P`) be a state of MC . Then, each Pi

contains precisely the states in which each Aa,i is after reading the input so far.

For a state q of Aa,i and a Σ-symbol b, let typesa,i(q, b) consist of those types bj

for which δa,i(q, b
j) 6= ∅. For a set P of states of Aa,i, define

typesa,i(P, b) =
⋃

q∈P

typesa,i(q, b).

Finally, for P as above, define typesa,i(P , b) =
⋃`

j=1 typesa,i(Pj , b). Notice that,

when starting from the state P , for each b ∈ Σ, MC can only make a transition
when reading the ∆E-symbol typesa,i(P , b). Therefore, δC(P , typesa,i(P , b)) =

(P ′
1, . . . , P

′
`) where P ′

i =
⋃

j δa,i(q, b
j). For all other C ′ ∈ ∆E with C ′ 6=

typesa,i(P , b), set δC(P ,C ′) = ∅.

Note that LC = L(MC). Indeed, MC simulates every Aa,i in parallel while com-
puting types(wa#y1 . . . yj) for every jth symbol in the Σ-string y1 . . . yn from left
to right.

Let t be a tree in L(D) witnessed by t′. It is not hard to show by proceeding
from the root to the leaves that t′ can be transformed to a tree t′′ witnessing that
t ∈ L(E). The crucial point is, that the type of each node v in t′ is an element of
its type in t′′.

Thus, it only remains to show L(E) ⊆ L(D). This proof is completely analo-
gous to the corresponding proof in Theorem 7.1. Only the notions depending on
ancestors now depend on the corresponding notions for ancestors and their siblings.

Theorem 9.1 shows that in the context of EDTDs having preceding-based types
implies ancestor-based types. From the proof it further follows that for each such
language a very simple and efficient typing algorithm exists. It is basically a deter-
ministic pushdown automaton with a stack the height of which is bounded by the
depth of the document. For each opening tag it pushes one symbol, for each closing
tag it pops one. Hence, it only needs a constant number of steps per input symbol.
In particular, it works in linear time in the size of the document. It should be noted
that such automata have been studied in [Segoufin and Vianu 2002] and [Koch and
Scherzinger 2003] in the context of streaming XML documents. The subclass of
the context-free languages accepted by such automata has recently been studied
in [Alur and Madhusudan 2004]. Thus, just like for single-type EDTDs, there is an
efficient one-pass validation and typing algorithm.

10. STATIC ANALYSIS AND OPTIMIZATION

In this section, we consider various decision problems that are important for any
automated treatment of schemas. In particular, we consider the following problems:

Recognition: Given an EDTD, check whether it is of a restricted type, i.e., a
DTD, a single-type EDTD or a restrained competition EDTD.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 33

Simplification: Given an EDTD, check whether it has an equivalent EDTD of a
restricted type, i.e., an equivalent DTD, single-type EDTD or restrained compe-
tition EDTD.

Containment: Given two EDTDs D1,D2, does D1 describe a sublanguage of D2?

Note the difference between Recognition and Simplification. The former
checks whether a given EDTD is of a specific form, while the latter checks whether
the tree language defined by the given, possibly unrestricted, EDTD can be defined
by a constrained EDTD. For instance, the non single-type EDTD a→ b1b2, b1 → c,
b2 → c is clearly equivalent to the DTD consisting of the rules a→ bb and b→ c.

The proofs in this section make use of tree automata for unranked trees. We
recall the necessary definitions next. The robust notions of regular languages of
strings and ranked trees can easily be generalized to unranked trees. The latter
class is usually defined in terms of non-deterministic tree automata and possesses
similar closure properties [Brüggemann-Klein et al. 2001]. We refer the unfamiliar
reader to [Neven 2002b].

Definition 10.1. A nondeterministic tree automaton (NTA) is a tuple B =
(Q,Σ, δ, F), where Q is a finite set of states, F ⊆ Q is the set of final states, and δ
is a function δ : Q× Σ→ 2Q∗

such that δ(q, a) is a regular string language over Q
for every a ∈ Σ and q ∈ Q.

A run of B on a tree t is a labeling λ : Nodes(t) → Q such that for ev-
ery v ∈ Nodes(t) with n children v1, . . . , vn from left to right, λ(v1) · · ·λ(vn) ∈
δ(λ(v), labt(v)). Note that when v has no children, then the criterion reduces to
ε ∈ δ(λ(v), labt(v)). A run is accepting iff the root is labeled with an accepting
state. Note that a run can be seen as a bottom-up labeling of the input tree which
accepts if a final state is assigned to the root. A tree is accepted if there is an
accepting run. The set of all accepted trees is denoted by L(B). The class of tree
languages accepted by NTAs is called the unranked regular tree languages.

An NTA is bottom-up deterministic iff δ(q, a) ∩ δ(q′, a) = ∅ for all q 6= q′.

10.1 Recognition of EDTDs

We first consider the Recognition problem. As the definition of a DTD and
single-type EDTD is syntactical in nature, it can be immediately verified by an
inspection of the rules whether an EDTD is in fact a DTD or a single-type EDTD.
The case of restrained competition EDTDs is considered in the following Theorem.

Theorem 10.2. Given an EDTD D, there is an algorithm that tests whether D
is restrained competition in time quadratic in the size of D.

Proof. It suffices to show that testing whether a single regular expression is re-
strained competition can be done in quadratic time. Therefore, let r be a regular
expression, and let Nr = (∆, Q, δ, q0, F) be an NFA equivalent to r. The latter can
be constructed in time O(n log2(n)) resulting in O(n) states where n is the size of
r [Hromkovic et al. 2001].

The algorithm makes use of two sets:

—the set of reachable states R := {q ∈ Q | ∃w ∈ ∆∗, δ∗(q, w) ∈ F}; and,

ACM Journal Name, Vol. V, No. N, February 2006.

34 · Expressiveness and complexity of XML Schema

—the set of pairs of states that can be reached by the same string, S := {(q1, q2) ∈
Q×Q | ∃w ∈ ∆∗, {q1, q2} ⊆ δ∗(q0, w)}.

Note that R and S can be computed in linear and quadratic time, respectively, by
the usual reachability algorithm. Then, r is restrained competition iff there are no
(q1, q2) ∈ S and a, i, j with i 6= j, δ(q1, a

i)∩R 6= ∅ and δ(q2, a
j)∩R 6= ∅. Altogether,

a careful implementation leads to a quadratic time algorithm.

We note that the above construction can be carried out in nlogspace as well.

10.2 Simplification of EDTDs

Next, we study the complexity of the Simplification problem for the target
schema types DTD, single-type EDTD and restrained competition EDTD, respec-
tively. Unfortunately, this test is complete for exponential time. Our algorithm
also constructs a corresponding equivalent simpler schema when it exists.

Theorem 10.3. Each of deciding whether an EDTD has an equivalent DTD,
single-type EDTD or restrained competition EDTD is exptime-complete.

Proof. We start with the lower bounds. In all three cases, the lower bound is
obtained by a reduction from the universality problem for non-deterministic tree
automata [Seidl 1990]. Let NTA(REG) denote the class of NTAs where the regular
languages encoding the transition function are represented by regular expressions.
The hardness result even holds for NTA(REG) where automata only have one final
state and where all accepted trees have the same root symbol (say a).

Therefore, let A = (Q,Σ, δ, F) be an NTA(REG) over alphabet Σ = {a, b} with
one final state F = {qF }. We can assume w.l.o.g. that A accepts trees of depth at
least two. We can construct in logspace an equivalent EDTD D = (Σ,∆, d, aqF , µ)
as follows: ∆ = {bq | b ∈ Σ, q ∈ Q}, µ(bq) = b for every b ∈ Σ, and d consists of
the rules d(bq) = rb,q where rb,q is the regular expression obtained from δ(b, q) by
replacing every occurrence of a state p by (ap + bp). As every t ∈ L(d) induces an
accepting run of A on µ(t), it is immediate that A and D are equivalent.

From D, we now construct an EDTD D′ such that

(i) if L(A) = TΣ then L(D′) is defined by a DTD; and,

(ii) if L(A) 6= TΣ then L(D′) is not defined by a restrained competition EDTD.

Of course (i) and (ii) together imply the statement of the theorem.
In fact D′ is the union of the EDTDs D1 and D2 over the alphabet Γ =

{a, b, α, β, root} defined next: D1 accepts all trees of the form

root(σ(t1 · · · tn))

where σ is α or β, t1, . . . , tn ∈ TΣ, and the tree obtained from tn by deleting its
right-most leaf is accepted by A. Further, D2 accepts all trees of the same form as
for D1, provided that, the right-most leaf of tn is a (respectively, b) when σ is α
(respectively, β). Note that D1 can easily be constructed from D: D1 just simulates
D on the subtree rooted at the right most child of σ. The EDTD D2 just needs
to pass the symbol σ down to the right most leaf. Finally, define D′ as the EDTD
accepting L(D1) ∪ L(D2). Let T = L(D′).

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 35

We show (i) and (ii):
(i) First note that when L(A) = TΣ, then L(D2) ⊆ L(D1) and T equals

{root(σ(t1 · · · tn)) | σ ∈ {α, β}, t1, . . . , tn ∈ TΣ}.

The latter can clearly be defined by a DTD.
(ii) Let L(A) 6= TΣ and let t be a tree not in L(A). Towards a contradiction,

assume that T is definable by a restrained competition EDTD. Let ta and tb be
the trees obtained from t by adding an a and b respectively, to the right of the
right-most leaf. Then t′a := root(α(ta)) ∈ T while t′b := root(α(tb)) 6∈ T . Let t′′b be
the tree obtained from t′b by adding an a-leaf as right-most child of α, i.e.

root

t′′b := α

tb a

By definition of D′, t′′b ∈ T . Let u be the right-most leaf of t′a and let v be its

parent. Then note that anc-sib-strt′a(v) = anc-sib-strt′′b (v). So, by Theorem 9.1,

t′a[v ← subtreet′′b (v)] is in T when T is defined by a restrained competition EDTD.

As the rightmost leaf of subtreet′′b (v) is a b, this implies that t ∈ L(A), which is a
contradiction. Hence, (ii) follows.

The exponential time upper bounds for the single-type and restrained competi-
tion cases can be obtained by performing the constructions in the proofs (c) ⇒ (a)
and (d) ⇒ (b) in Theorems 7.1 and 9.1, respectively. Both the construction of the
EDTD and checking equivalence with the original one can be done in exponential
time. For DTDs a similar construction is in polynomial time but the equivalence
check still needs exponential time.

—In the case of single-type EDTDs we proceed as follows. Let D = (Σ,∆D, d, sd, µD)
be a given EDTD. We assume D is trimmed. We first construct the EDTD
E = (Σ,∆E , e, sd, µE) as described in the proof of Theorem 7.1 (c) ⇒ (a). We
argue that this can be done in exptime. First, we need to compute ∆E ⊆ 2∆D .
To this end, we enumerate all sets types(w). Let sd = c0. Initially, set W := {c},
Types(c) := {c0} and R := {{c0}}.
Repeat the following until W becomes empty:
(1) Remove a string wa from W .
(2) For every b ∈ Σ, let Types(wab) contain all bi for which there exists an aj in

Types(wa) and a string in d(aj) containing bi. If Types(wab) is not empty
and not already in R, then add it to R and add wab to W .

Since we add every set only once to R, the algorithm runs in time exponential
in the size of D. Moreover, we have that Types(w) = types(w) for every w, and
that R = ∆E . Now we know ∆E , the rules of e can be directly computed.
It follows from the proof of Theorem 7.1 (c)⇒ (a) that D is equivalent to a single-
type EDTD iff D is in fact equivalent to E. Further, E then is the corresponding
single-type EDTD. The construction of E can be done in exponential time and
E might be of exponential size in D. Then it has to be checked whether D and
E are equivalent. Fortunately, as always L(D) ⊆ L(E), we only have to check

ACM Journal Name, Vol. V, No. N, February 2006.

36 · Expressiveness and complexity of XML Schema

whether L(E) − L(D) is empty. This involves the complementation of the tree
automaton for D, resulting in a tree automaton of possibly exponential size, and
in the test whether the automata for L(E) and the complement of L(D) have
a non-empty intersection. The latter is polynomial in the size of the automata.
Hence, we altogether get an exponential time algorithm.

—Testing whether an EDTD has an equivalent restrained competition EDTD can
be done along the same lines, this time based on the proof of Theorem 9.1 (d)⇒
(b). To compute types(w) for ancestor-sibling-strings w, we just need to let b in
step (2) above range over Σ∪ ({#} ·Σ). A type b` is then added to Types(wb) if
w is of the form w′a#x1 · · ·xkb where x1 · · ·xk does not contain a separator #
and

(1) there is an ai in Types(w′a) and
(2) there are xij ∈ Types(w′a#x1 · · ·xj),
(3) such that, xi1

1 · · ·x
ik

k b` is a prefix of a string in d(ai).

—Finally, we describe how it can be tested whether a given EDTD D = (Σ,∆, d, sd, µ)
has an equivalent DTD. As usual, we can assume that D is trimmed. Let, for
each ai ∈ ∆, ra,i be the regular expression obtained from d(ai) by replacing
every symbol bj by b. We define a DTD (Σ, d1, sd) simply by taking the rules

a→
⋃

i

ra,i, for every a ∈ Σ. It remains to show that D has an equivalent DTD

if and only if L(D) = L(d1).
Analogously as in Theorem 7.1((c)⇒(a)), we have that L(D) ⊆ L(d1). Towards a
contradiction, suppose that D has an equivalent DTD and that t ∈ L(d1)−L(D).
According to Lemma 2.10 in [Papakonstantinou and Vianu 2000] (cf. Section 3.2),
L(D) is closed under label-guarded subtree exchange. As t 6∈ L(D) there exists a
node u in t such that subtreet(u) 6∈ L((D, ai)) for any ai ∈ ∆, but for every child

u1, . . . , un of u, we have that subtreet(uj) ∈ L((D, b
ij

j)) for some b
ij

j ∈ ∆. Note
that u and uj are labeled with a and b, respectively. First, we note that u can
never be a leaf node. Indeed, if there is no ai ∈ ∆ such that ε ∈ L(ra,i), then ε

is also not in
⋃

i

L(ra,i), which is the content model of a in d1.

If u is not a leaf node, we can do the following. By definition of d1, for every b
ij

j ,

there exists an ak such that b
ij

j occurs in d(ak). Thus, as D is trimmed, for every

uj there exists a tree tj ∈ L(D) with a v ∈ Nodes(t) such that labtj (v) = bj , the
parent of v is labeled a, and subtreetj (v) = subtreet(u). But this means that t
can be constructed from t1, . . . , tn by label-guarded subtree exchange, which is a
contradiction as t 6∈ L(D).

10.3 Inclusion and Equivalence of Schemas

Decision problems like testing for inclusion or equivalence of schema languages
often occur in schema optimization or as basic building blocks of algorithms for
typechecking or type inference [Hosoya and Pierce 2003; Martens and Neven 2005;
2004; Papakonstantinou and Vianu 2000; Suciu 2001]. In general, these problems

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 37

are pspace and exptime-complete for DTDs and EDTDs, respectively [Stockmeyer
and Meyer 1973; Seidl 1990]. The XML specification, however, restricts regular
expressions in DTDs to be deterministic [Bray et al. 2004] (sometimes also called
1-unambiguous [Brüggemann-Klein and Wood 1998], cf. Section 3.1).

Theorem 10.4. Given two restrained competition EDTDs D1 and D2, deciding
whether

(a) L(D1) ⊆ L(D2), and whether

(b) L(D1) = L(D2)

is pspace-complete in general, and ptime-complete if D1 and D2 use deterministic
regular expressions.

Proof. Brüggemann-Klein and Wood formalized the notion of deterministic regular
expressions and showed that a regular expression is deterministic iff its correspond-
ing Glushkov automaton is a DFA [Brüggemann-Klein and Wood 1998]. We refrain
from defining the Glushkov automaton corresponding to a regular expression but
instead refer the interested reader to [Brüggemann-Klein and Wood 1998]. It suf-
fices to know that for a given regular expression its Glushkov automaton can be
computed in ptime.

In the general case, the lower bounds are easy reductions from the inclusion
and equivalence problems of regular expressions. Actually, it already holds for
EDTDs which have only one non-trivial (not of the form r → ε) and in which
each element has only one type. Thus, the lower bounds also hold for single-type
EDTDs (and even DTDs, if the requirement of being one-unambiguous is dropped).
For deterministic expressions, the lower bound holds already for the non-emptiness
problem and also even applies for DTDs without the requirement of being one-
unambiguous (cf., e.g. [Stockmeyer and Meyer 1973; Martens et al. 2004; Martens
and Neven 2005]).

For the upper bounds, it follows from Theorem 9.1 that for a tree language T
defined by a restrained competition EDTD it holds that a tree t is in T if and only
if Panc-sib(t) is in Panc-sib(T) := {Panc-sib(s) | s ∈ T}. Hence, L(D1) ⊆ L(D2) if and
only if Panc-sib(L(D1)) ⊆ Panc-sib(L(D2)).

For the upper bounds, (b) follows from (a), hence we only show (a). Given a
restrained competition EDTD D = (Σ,∆, d, sd, µ), we construct in polynomial time
an NFA A for Panc-sib(L(D)). For deterministic regular expressions A is a DFA.
Testing inclusion of NFAs (DFAs) is well-known to be in pspace (ptime).

Let for each ai ∈ ∆, Aa,i = (Qa,i,∆, δa,i, sa,i, Fai
) be an NFA (DFA) that defines

d(ai) and has a unique state q⊥ from which no final state is reachable. We can
assume that each Aa,i is trimmed in the sense that a final state is reachable from
every state apart from q⊥.

From the restrained competition property it immediately follows that in Aa,i, for
each state q, if δ(q, bj) = q1, δ(q, bk) = q2, q1 6= q2 and j 6= k then q1 or q2 must be
q⊥. We require that the sets Qa,i are pairwise disjoint.

From these automata over the type set ∆ we construct an automaton A =
(QA,Σ, sA, δA, FA) as follows. The set QA consists of all pairs (q, b), where q ∈ Qa,i,
for some ai, and b ∈ ∆ ∪ {#}. Intuitively, q is the current state of an au-
tomaton Aa,i and b is the last extended symbol or type that has been identi-

ACM Journal Name, Vol. V, No. N, February 2006.

38 · Expressiveness and complexity of XML Schema

fied. The initial state sA of A is (sb,j ,#) for the initial symbol bj of d. The
transition function δA is defined as follows. For each q ∈ Qa,i, c ∈ ∆ ∪ {#}
and b ∈ Σ we let δA((q, c), b) = {(p, bj) | p ∈ δa,i(q, b

j)}, for the unique j with
δa,i(q, b

j) 6= q⊥, if such a j exists. Otherwise, δA((q, c), b) = (q⊥,#). Furthermore,
we let δA((q, bj),#) = {(sb,j ,#)}. We set FA = {(q, c) | q ∈ Fa,i for some a, i and
c ∈ ∆}. Note that A is a DFA if every Aa,i is a DFA.

By construction, A accepts Panc-sib(L(D)). It is easy to see that the size of A is
no larger than the sum of the sizes of all A′

a,i. This concludes the proof.

This result strongly contrasts with our results in [Martens et al. 2004], where we
show that even for very simple non-deterministic regular expressions these decision
problems are intractable, and with the case of arbitrary EDTDs with deterministic
regular expressions, for which inclusion and equivalence test are exptime-complete.

We end this section by a brief discussion on minimization of EDTDs. In general,
their minimization is at pspace-hard and there is no unique minimal grammar.
However, it is shown in [Martens and Niehren 2005] that for restrained competition
and single-type EDTDs where regular languages are defined by DFAs, minimization
is in ptime. It then follows from a more general result on top-down tree automata
that the resulting grammar is in fact unique up to isomorphism. Minimization of
top-down deterministic unranked tree automata is also addressed in [Cristau et al.
2005].

11. SUBTREE-BASED SCHEMAS

From what was presented so far an obvious question arises. What happens if we
soften the requirement that the type of an element has to be determined when its
opening tag is visited? What if instead it has to be computed when the closing tag
is seen? It turns out that every regular tree language has an EDTD which allows
such 1-pass postorder typing. Furthermore, the EDTDs used for this purpose can
be defined as straightforward extensions of restrained competition EDTDs.

Definition 11.1. An EDTD D = (Σ,∆, d, sd, µ) is extended restrained com-
petition iff for every regular expression r occurring in a rule the following holds:
whenever there are two strings wτv and wτ ′v′ in L(r) with τ 6= τ ′ and µ(τ) = µ(τ ′),
then L((D, τ)) ∩ L((D, τ ′)) is empty.

For a tree t and a node v, the preceding-subtree of v in t is the tree re-
sulting from t by removing all right siblings of v and its ancestors together with
the respective subtrees (cf. Figure 6). We denote the preceding-subtree of v by
preceding-subtreet(v).

Definition 11.2. We say that an EDTD D = (Σ,Σ′, d, µ) has preceding-subtree-
based types if there is a function f which maps tree-node pairs to Σ′ such that,
for each tree t ∈ L(D),

—t has exactly one witness t′, and

—t′ results from t by assigning to each node v the type f(preceding-subtreet(v), v).

Stated in terms of XML documents, the type of an element depends on the prefix
of the document which ends with the closing tag of the element.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 39

The following result shows that all regular tree languages admit 1-pass postorder
typing.

Theorem 11.3. For a homogeneous tree language T the following are equivalent:

(a) T is definable by an extended restrained competition EDTD;

(b) T is definable by an EDTD with preceding-subtree-based types; and,

(c) T is regular.

Proof. The directions (a)⇒ (c) and (b)⇒ (c) are trivial. The proof of the opposite
directions uses the fact that regular languages can be validated by deterministic
bottom-up automata.

(c) ⇒ (a) and (c) ⇒ (b): Let T be the tree language defined by a bottom-up
deterministic tree automaton B = (Q,Σ, δ, F). We can assume that transition
functions are represented by regular expressions. We construct an EDTD D =
(Σ,∆, d, sd, µ) such that L(D) = L(B) exactly as in the proof of Theorem 10.3. In
particular, ∆ = {aq | a ∈ Σ, q ∈ Q}. It is immediate that a tree t ∈ L(D, aq) iff
δ∗(t) = q, where labt(v) = a for the root v of t. Here, δ∗ is the canonical extension
of δ to trees. As B is deterministic, L((D, aq)) ∩ L((D, aq′

)) = ∅ for all a ∈ Σ and
q 6= q′ ∈ Q. Hence, D is extended restrained competition. By observing that there
is only one accepting run for every tree and defining f(preceding-subtreet(u), u) =
δ∗(subtreet(u)), it follows that D has preceding-subtree-based types.

In the EDTD used in the proof the type of each element actually only depends
on its subtree. This should be compared with the previous characterizations where
the type depended on the upper context.

Remark 11.4. Although there is an extended restrained competition for every
regular tree language, not every EDTD itself is extended restrained competition.
The EDTD D defined by the rules

r → (a1 + a2) a1 → b + c + ε a2 → c + d + ε,

is not extended restrained competition, as {ε, c} ⊆ L((D, a1)) ∩ L((D, a2)).

We conclude by noting that extended restrained competition is a tractable notion.

Theorem 11.5. It is decidable in ptime for an EDTD D whether it is extended
restrained competition.

Proof. Let D = (Σ,Σ′, d, sd, µ) be an EDTD. Let E be the set {(ai, aj) | L((D, ai))∩
L((D, aj)) 6= ∅}. This set can be computed in polynomial time by checking whether
the non-deterministic tree automata for L((D, ai)) and L((D, aj)) have a non-empty
intersection [Martens and Neven 2005].

It suffices to show that the following is in ptime: testing whether for a single
regular expression r there are two strings wτv and wτ ′v′ in L(r) with τ 6= τ ′,
µ(τ) = µ(τ ′) and L((D, τ)) ∩ L((D, τ ′)) is empty. Let Nr = (∆, Q, δ, q0, F) be an
NFA equivalent to r.

The algorithm makes use of two sets:

—the set of reachable states R := {q ∈ Q | ∃w ∈ ∆∗, δ∗(q, w) ∈ F}; and,

ACM Journal Name, Vol. V, No. N, February 2006.

40 · Expressiveness and complexity of XML Schema

—the set of pairs of states that can be reached by the same string, S := {(q1, q2) ∈
Q×Q | ∃w ∈ ∆∗, {q1, q2} ⊆ δ∗(q0, w)}.

Note that R and S can be computed in linear and quadratic time, respectively,
by the usual reachability algorithm. Then, r is extended restrained competition iff
there are no q1, q2 ∈ S and a, i, j with i 6= j, δ(q1, a

i) ∩ R 6= ∅, δ(q2, a
j) ∩ R 6= ∅,

and (ai, aj) ∈ E. The latter test is in ptime.

12. DISCUSSION

In this section, we present some concluding remarks. We start by making some
concrete recommendations which directly follow from our results.

We have shown in Section 4, that the extra expressiveness of XML Schema
over DTDs is only used to a very limited extent. A possible explanation is that
users are simply not aware of what kind of context dependencies can be expressed
within XML Schema. Our characterization in terms of ancestor-based schemas
(Section 6.4), makes this ability explicit. To facilitate the use of these vertical
patterns, we propose to add them as a conservative extension to XML Schema or
develop a simple front-end based on DTDs as explained in Section 5.3 for less ex-
perienced XML users who might be discouraged by the high complexity of XML
Schema.

We have argued that EDC does not capture the complete class of all efficiently ty-
peable schemas. We have formalized the latter class as the EDTDs admitting 1PPT.
Interestingly, the latter semantically defined class can be captured by EDTDs with
restrained competition regular expressions. So the global constraint of 1PPT is
characterized by a local constraint on regular expressions. Although restrained
competition regular expressions are not syntactical, just like the one-unambiguous
regular expressions characterizing UPA, a quadratic algorithm exists to recognize
them. Just like for EDTDs with EDC, we provide a clear syntactical character-
ization in terms of ancestor-sibling-based schemas. This characterization makes
explicit which context dependencies can be expressed while adhering to the 1PPT
constraint. Again, these patterns can be added to XML Schema or can be incorpo-
rated in a front-end. So, for these reasons we propose to replace the EDC and the
UPA constraints by restrained competition EDTDs.

In Section 8.7, we argued that both EDC and UPA already imply 1PPT (and
therefore efficient typing). Thus, w.r.t. efficient typing, when adhering to UPA, it
does not make much sense to also enforce EDC and vice-versa. It should be noticed
that the class of EDTDs satisfying both EDC and UPA (like XML Schema) are a
strict subclass of the EDTDs satisfying only one of EDC and UPA.

Although we think the restriction to unambiguous typing increases transparency
and efficiency of validation, the recommendations in the present paper do not justify
the former. For instance, Relax NG as well as the formal model for XML Schema
of Siméon and Wadler [Siméon and Wadler 2003] allow ambiguous typing to relieve
users from opaque restrictions and reaches the robust class of unranked regular tree
languages which are closed under all Boolean operations. Especially in the context
of data exchange it is of extreme importance that a schema language is closed under
union (which is not the case for XML Schema). However, if unambiguous typing

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 41

and efficient processing is required, it should not be enforced by ad-hoc restrictions,
but by the most liberal ones. We believe the restriction to 1-pass preorder typeable
schemas is adequate. Moreover, it can be reached by allowing restrained competi-
tion regular expressions or by making use of the equivalent syntactic framework of
ancestor-sibling-based schemas.

We already mentioned that Murata, Lee, and Mani already showed that DTD
6⊆ EDTDst 6⊆ EDTDrc 6⊆ EDTD [Murata et al. 2005]. They exhibited concrete
tree languages that are in one class but not in the other. Our semantical char-
acterizations provide tools to show inexpressibility for arbitrary tree languages.
For instance, using the closure of restrained-competition EDTDs under ancestor-
guarded subtree exchange, it is immediate that EDTDrc cannot define the set of
all Boolean tree-shaped circuits evaluating to true.

Acknowledgments

We thank Nicole Schweikardt, Luc Segoufin, Dan Suciu, Jan Van den Bussche,
and Stijn Vansummeren for helpful discussions. We thank the anonymous referees
whose thorough comments and suggestions improved the presentation of the paper.

REFERENCES

Alur, R. and Madhusudan, P. 2004. Visibly pushdown languages. In Proceedings of the 36th
Symposium on the Theory of Computing (STOC). ACM Press, New York, 202–211.

Bex, G., Martens, W., Neven, F., and Schwentick, T. 2005. Expressiveness of XSDs: from
practice to theory, there and back again. In Proceedings of the 14th International Conference
on World Wide Web (WWW). ACM Press, New York, 712–721.

Bex, G., Neven, F., and Van den Bussche, J. 2004. DTDs versus XML schema: A practical
study. In International Workshop on the Web and Databases (WebDB). 79–84.

Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and Yergeau, F. 2004. Ex-

tensible Markup Language (XML). Tech. rep., World Wide Web Consortium. February.
http://www.w3.org/TR/REC-xml/.

Brüggemann-Klein, A., Murata, M., and Wood, D. 2001. Regular tree and regular hedge

languages over unranked alphabets: Version 1, april 3, 2001. Tech. Rep. HKUST-TCSC-2001-0,
The Hongkong University of Science and Technology.

Brüggemann-Klein, A. and Wood, D. 1998. One-unambiguous regular languages. Information
and Computation 142, 2, 182–206.

Buck, L., Goldfarb, C., and Prescod, P. 2000. Datatypes for DTDs (DT4DTD) 1.0. Tech.
rep., World Wide Web Consortium. January. http://www.w3.org/TR/dt4dtd/.

Clark, J. 2002. Multi-format schema converter based on RELAX NG.

http://www.thaiopensource.com/relaxng/trang.html.

Clark, J. and Murata, M. 2001. Relax NG specification. http://www.relaxng.org/spec-
20011203.html.

Coen, C. S., Marinelli, P., and Vitali, F. 2004. Schemapath, a minimal extension to XML
Schema for conditional constraints. In Proceedings of the 14th International Conference on

World Wide Web (WWW). ACM Press, New York, 164–174.

Cover, R. 2005. The Cover pages. http://xml.coverpages.org/.

Cristau, J., Löding, C., and Thomas, W. 2005. Deterministic automata on unranked trees. To
appear in FCT 2005.

DuCharme, B. 2002. Filling in the dtd gaps with schematron. O’Reilly xml.com.

Fernandez, M., Malhotra, A., Marsh, J., Nagy, M., and Walsh, N. 2005. XQuery

1.0 and XPath 2.0 data model. Tech. rep., World Wide Web Consortium. April.

http://www.w3.org/TR/xpath-datamodel/.

ACM Journal Name, Vol. V, No. N, February 2006.

42 · Expressiveness and complexity of XML Schema

Fiorello, D., Gessa, N., Marinelli, P., and Vitali, F. 2004. DTD++ 2.0: adding support for

co-constraints. In Extreme Markup Languages 2004.

Fokoué, A. and Schloss, B. 2004. XML Schema quality checker.

http://www.alphaworks.ibm.com/tech/xmlsqc.

Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley.

Hosoya, H. and Pierce, B. C. 2003. XDuce: A statically typed XML processing language. ACM

Transactions on Internet Technology (TOIT) 3, 2, 117–148.

Hromkovic, J., Seibert, S., and Wilke, T. 2001. Translating regular expressions into small

ε-free nondeterministic finite automata. Journal of Computer and System Sciences 62, 4,

565–588.

Jelliffe, R. 2001. The current state of the art of schema languages for XML. Presentation at

XML Asia Pacific, Sidney, Australia.

Jelliffe, R. 2005. Schematron. http://xml.ascc.net/schematron/.

Klarlund, N., Moller, A., and Schwartzbach, M. I. 2000. The DSD schema language. In

Proceedings of the 3th ACM SIGSOFT Workshop on Formal Methods in Software Practice

(FMSP).

Koch, C. and Scherzinger, S. 2003. Attribute grammars for scalable query processing on

XML streams. In Proceedings of the 9th International Workshop on Database Programming
Languages (DBPL). Springer, Berlin, 233–256.

Lee, D. and Chu, W. 2000. Comparative analysis of six XML schema languages. ACM SIGMOD

Record 29, 3, 76–87.

Mani, M. 2001. Keeping chess alive - Do we need 1-unambiguous content models? In Extreme
Markup Languages. Montreal, Canada.

Martens, W. and Neven, F. 2004. Frontiers of tractability for typechecking simple XML trans-

formations. In Proceedings of the 23d Symposium on Principles of Database Systems (PODS).
ACM Press, New York, 23–34.

Martens, W. and Neven, F. 2005. On the complexity of typechecking top-down XML transfor-
mations. Theoretical Computer Science 336, 1, 153–180.

Martens, W., Neven, F., and Schwentick, T. 2004. Complexity of decision problems for simple
regular expressions. In Proceedings of the 29th International Symposium on Mathematical

Foundations of Computer Science (MFCS). Springer, Berlin, 889–900.

Martens, W., Neven, F., and Schwentick, T. 2005. Which XML schemas admit 1-pass preorder
typing? In Proceedings of the 10th International Conference on Database Theory (ICDT).
Springer, Berlin, 68–82.

Martens, W. and Niehren, J. 2005. Minimizing tree automata for unranked trees. In Prodeedings

of the 10th International Symposium on Database Programming Languages (DBPL 2005). 232–
246.

Murata, M., Lee, D., and Mani, M. 2001. Taxonomy of XML schema languages using formal
language theory. In Extreme Markup Languages. Montreal, Canada.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. 2005. Taxonomy of xml schema languages

using formal language theory. ACM Transactions on Internet Technology (TOIT) 5, 4. To
Appear.

Neven, F. 2002a. Automata, logic, and XML. In Conference for Computer Science Logic (CSL).

Springer, Berlin, 2–26.

Neven, F. 2002b. Automata theory for XML researchers. SIGMOD Record 31, 3, 39–46.

Papakonstantinou, Y. and Vianu, V. 2000. DTD inference for views of XML data. In Pro-

ceedings of the 19th Symposium on Principles of Database Systems (PODS). ACM Press, New

York, 35–46.

Papakonstantinou, Y. and Vianu, V. 2003. Incremental validation of XML documents. In

Proceedings of the 9th International Conference on Database Theory (ICDT). Springer, Berlin,

47–63.

ACM Journal Name, Vol. V, No. N, February 2006.

Martens, Neven, Schwentick, and Bex · 43

Sahuguet, A. 2000. Everything you ever wanted to know about DTDs, but were afraid to ask.

In International Workshop on the Web and Databases (WebDB).

Segoufin, L. and Vianu, V. 2002. Validating streaming XML documents. In Proceedings of the

21st Symposium on Principles of Database Systems (PODS). ACM Press, New York, 53–64.

Seidl, H. 1990. Deciding equivalence of finite tree automata. SIAM Journal on Computing 19, 3,

424–437.

Siméon, J. and Wadler, P. 2003. The essence of XML. In 30th Symposium on Principles of

Programming Languages (POPL). ACM Press, New York, 1–13.

Sperberg-McQueen, C. 2003. XML Schema 1.0: A language for document grammars. In XML

2003 - Conference Proceedings.

Sperberg-McQueen, C. and Thompson, H. 2005. XML Schema.
http://www.w3.org/XML/Schema.

Stockmeyer, L. and Meyer, A. 1973. Word problems requiring exponential time: Preliminary

report. In Conference Record of Fifth Annual ACM Symposium on Theory of Computing

(STOC). ACM Press, New York, 1–9.

Suciu, D. 2001. Typechecking for semistructured data. In Proceedings of the 8th Workshop on

Data Bases and Programming Languages (DBPL). Springer, Berlin, 1–20.

Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N. 2004. XML

Schema Part 1: Structures. Tech. rep., World Wide Web Consortium. October.

http://www.w3.org/TR/xmlschema-1/.

van der Vlist, E. 2002. XML Schema. O’Reilly.

Vitali, F., Amorosi, N., and Gessa, N. 2003. Datatype- and namespace-aware DTDs: a minimal

extension. In Extreme Markup Languages.

...

ACM Journal Name, Vol. V, No. N, February 2006.

