
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Modeling and Storing Scientific Protocols

Peer-reviewed author version

KWASNIKOWSKA, Natalia; Chen, Yi & Lacroix, Zoé (2006) Modeling and Storing

Scientific Protocols. In: On the Move to Meaningful Internet Systems 2006. p. 730-739.

DOI: 10.1007/11915034_97

Handle: http://hdl.handle.net/1942/1432



Modeling and Storing Scientific Protocols

Natalia Kwasnikowska1, Yi Chen2, and Zoé Lacroix2
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Abstract. We propose an abstract model for scientific protocols, where
several atomic operators are proposed for protocol composition. We dis-
tinguish two different layers associated with scientific protocols: design
and implementation, and discuss the mapping between them. We illus-
trate our approach with a representative example and describe Proto-
colDB, a scientific protocol repository currently in development. Our
approach benefits scientists by allowing the archiving of scientific pro-
tocols with the collected data sets to constitute a scientific portfolio for
the laboratory to query, compare and revise protocols.

1 Introduction

Scientific discovery relies on the adequate expression, execution, and analysis of
scientific protocols. Although data sets are properly stored, the protocols them-
selves are often recorded only on paper or remain in a digital form developed to
implement them. Once the scientist who has implemented the scientific protocol
leaves the laboratory, the record of the scientific protocol may be lost. Collected
data sets without the description of the process that produced them may become
meaningless. Moreover, to support scientific discovery, anyone should be able to
reproduce the experiment. Therefore, a detailed description of the protocol is
necessary, together with the collected data sets.

A scientific protocol is the process that describes the experimental compo-
nent of scientific reasoning. Scientific reasoning follows a hypothetico-deductive
pattern and is composed of the succession of the expression of a causal question,
a hypothesis, the predicted results, the design of an experiment, the actual re-

sults of the experiment, the comparison of the predicted and the experimental
results, and the conclusion, supportive or not of the hypothesis [1]. Scientific
protocols (also called data-analysis pipelines, workflows or dataflows) are com-
plex procedural processes composed of a succession of tasks expressing the way
the experiment is conducted. They usually involve a data-gathering stage, that
may be followed by an analysis stage. A scientific protocol thus describes how
the experiment is conducted and records all necessary information to reproduce
the experiment. In bioinformatics, the importance of identifying protocol tasks
has been addressed by Stevens et al. [2] and Bartlett et al [3], while Tröger [4]



has proposed a language for expressing in silico protocols that approximates
research method used for in vitro experiments.

We propose a high-level abstract model for scientific protocols representing
two different layers associated with scientific protocols: design and implementa-
tion, and discuss the mapping between them. Our approach benefits scientists
by allowing the archiving of scientific protocols with data sets to constitute a
scientific portfolio for the laboratory to query, compare and revise protocols.

2 Related Work

Several approaches integrate scientific protocol models with a database system,
but provide little support for the actual design phase of a protocol, do not
distinguish between design and implementation, and provide limited support for
querying and versioning of protocols. They include the Object Protocol Model [5]
and Zoo [6] that both use the object-oriented data model. More recent efforts
propose an integration of protocols and relational databases. Shankar et al. [7]
propose a language for modeling protocols that is tightly integrated with SQL.

On the other hand, several systems focus on the design issues of protocols,
sometimes combined with the (distributed) execution of protocols, but with-
out fully leveraging the storage and query capability of databases. They include
Taverna [8], with a vast integration of bioinformatics resources, and Kepler [9,
10], based on the Ptolemy II system. WOODSS [11] emphasizes the support
of several abstraction levels of protocol design and facilitates protocol composi-
tion and reuse. Several researchers have agreed on the separation of the design
of a protocol from its implementation [10, 12–14]. For instance, Ludäscher et
al. [10] propose a distinction between abstract and concrete protocols and use
database mediation techniques for an abstract-to-concrete translation. Zhao et
al. [14] propose an XML-based virtual data language for a typed and composi-
tional protocol specification, with mapping descriptors between the design and
implementation. A formal graphical language for hierarchical modeling of proto-
cols has also been proposed in Hidders et al. [15], and combines Petri nets with
operators and typing system from nested relational calculus.

Compared with previous work, we focus here on how to define a formal,
abstract model for defining scientific protocols that is as high-level as possible,
so as to be suitable to general applications as well as for storage of protocols in
a database system. We distinguish the design from possible implementations of
protocols and define the mapping between them.

3 Modeling Scientific Protocols

The abstract protocol definition language introduced in this section aims at
representing the structure of scientific protocols, and is, by design, unbiased
towards any specific data model or query language. We aim at modeling in vivo,
in vitro, as well as in silico experiments.



Each step of a scientific protocol can be represented by a task [2, 3]. To
model a protocol, we distinguish its design, that captures its scientific aim, from
its implementation, that specifies resources selected to execute the tasks. This
distinction allows for comparison between different choices of resources, allowing
the scientist to select the implementation best meeting the protocol’s needs.
Therefore we decompose each scientific protocol into two components: protocol

design and protocol implementation. Both components consist of coordinated
tasks, but at different abstraction levels. As we present a syntactical model, we
will specify the data flow by identifying its conceptual type and format.

Each task of the protocol design is defined by its task name, conceptual input

type, and conceptual output type. When an ontology is available to describe the
scientific objects and tasks involved, the input and output of each protocol design
task may be defined by their respective concept classes. The protocol design task
itself may appear in the ontology, as a relationship defined between the input
concept class and output concept class.

A task of the protocol implementation describes the resource selected to
implement a protocol design task. Each protocol implementation task is defined
by its application name, input format, and output format. The input/output
format is a possible representation for the conceptual input/output type of the
corresponding design task. The name of a protocol implementation task denotes
a resource, an application or a service, implementing the corresponding protocol
design task, together with its annotation (e.g., parameters, url etc).

3.1 Protocol Design Model

A scientific protocol can be defined inductively from tasks, or basic protocols,
and four connectors. Formally, the protocol design model is defined as follows.

Definition 1. Let T be a set of task names. Let C be a set of conceptual type

names, over which an operator ⊕ is defined and a sub-typing relation “�”. A

protocol design task TD is a triple (i, n, o) with i, o ∈ C and n ∈ T . The set

TT ,C = C × T × C is the set of protocol design tasks defined from T and C. Now

we define recursively the set PT ,C of protocol designs defined from T and C, and

for each protocol design D we impose requirements on its input type In(D) and

its output type Out(D):

– if D = (i, n, o) then D ∈ PT ,C, with In(D) = i and Out(D) = o;

– if D1 ∈ PT ,C and D2 ∈ PT ,C and Out(D1) � In(D2) then D1 � D2 ∈ PT ,C,

with In(D1 � D2) � In(D1) and Out(D2) � Out(D1 � D2);

– if D1 ∈ PT ,C and D2 ∈ PT ,C then D1 ⊕ D2 ∈ PT ,C, with In(D1 ⊕ D2) �
In(D1) ⊕ In(D2) and Out(D1) ⊕ Out(D2) � Out(D1 ⊕ D2);

– if D ∈ PT ,C and Out(D) � In(D) and k is an integer then Dk ∈ PT ,C, with

In(Dk) � In(D) and Out(D) � Out(Dk);

– if D ∈ PT ,C and Out(D) � In(D) then D∗ ∈ PT ,C, with In(D∗) � In(D) and

Out(D) � Out(D∗).



In the above definition, the operator “�” denotes the successor connector, i.e.,
the serial composition. The operator “⊕” denotes the split-merge connector,
i.e., the parallel composition. The operators k and ∗ denote k-recursion, and
star-recursion, respectively. Relation “�” denotes sub-typing between concep-
tual type names, provided by chosen ontology or type system. Type i1⊕ i2, with
i1, i2 ∈ C, denotes a collection type, whose precise semantics depends on the
semantics of the split-merge connector.

We emphasize that Def. 1 only captures the syntax of a protocol design, where
the data flow is only described in terms of conceptual type names. Nevertheless,
based on the interaction with our collaborators, we claim that our definition
of protocol design is sufficient to faithfully model scientific protocols used in
practice, once suitable semantics are provided for the operators.

Definition 2. Let (i, n, o) ∈ C × T × C. We define recursively the set of types

Types(D) and the set of Tasks(D) of a protocol design D as follows:

– if D = (i, n, o) then Types(D) = {i, o} and Tasks(D) = {(i, n, o)},
– if D = D1 � D2 or D = D1 ⊕ D2, then Types(D) = Types(D1) ∪ Types(D2)

and Tasks(D) = Tasks(D1) ∪Tasks(D2),
– if D = Dk

1 or D = D∗
1, then Types(D) = Types(D1) and Tasks(D) =

Tasks(D1).

We say that a protocol design D is composed of the tasks in Tasks(D). If a
protocol design D is of the form D1 � D2 or D1 ⊕D2, with D1, D2 ∈ PT ,C , then D
is directly composed of D1 and D2. Similarly, if a protocol design D is of the form
Dk

1
or D∗

1
, then D is directly composed of D1. If a protocol design D is composed

of D1, then we also call D1 a sub-protocol of D.

3.2 Protocol Implementation Model

Once the design of a protocol is defined, its specification in terms of resources
used to execute it may be defined. Each design step may be implemented by
specifying the input format, an application name, and the corresponding out-
put format. Although sometimes a design step can be implemented by a single
implementation step, it is common that a design step needs to be mapped to a
complex process, involving multiple biological resources, thus to a sub-protocol
rather than a single task of the implementation protocol. The need for a sub-
protocol to implement a single design task may occur to include adapters to
translate the output format from the previous implementation step into the in-
put format of the selected implementation resource, or for specifying alternative
implementations.

The protocol implementation model is similar to the protocol design model.
Specifically, rather then a set of task names T , we now have a set of application
names A. Rather then a set of conceptual type names C, we now have a set
of format names F , over which an operator ⊕ is defined. The set of protocol
implementation tasks TA,F and the set of protocol implementations PA,F are



defined similar to Def. 1, except that for the sake of concreteness, we replace
sub-typing “�” on conceptual type names by equality “=” on format names.

The set Formats(I) of format names and the set Resources(I) of application
names of an protocol implementation I, i.e., I ∈ PA,F , have a definition similar
to Def. 2. It is worth noting that Formats(I) and Resources(I) provide basic
provenance information for the data collected by executing protocol I.

3.3 Mapping Design to Implementation

Each design task of the design protocol may be mapped to one or more imple-
mentation tasks or protocols.

Definition 3. A conceptual type mapping is a partial function ϕC : C → F . A

protocol design task mapping is a partial function ϕT : TT ,C → PA,F . A protocol

design task mapping ϕT is said to be consistent with a conceptual type mapping

ϕC if for every protocol design task TD ∈ TT ,C it holds that if ϕT (TD) = I then

In(I) = ϕC(In(TD)) and Out(I) = ϕC(Out(TD)). If ϕT (TD) = I then we call I
an implementation of protocol design task TD under ϕT .

Definition 4. Let D, D1, D2 ∈ PT ,C. Given a protocol design task mapping ϕT

we define its generalization ϕ̂T : PT ,C → PA,F such that ϕ̂T corresponds to ϕT

on TT ,C and:

– ϕ̂T (D1 � D2) = ϕ̂T (D1) � ϕ̂T (D2),

– ϕ̂T (D1 ⊕ D2) = ϕ̂T (D1) ⊕ ϕ̂T (D2),

– ϕ̂T (Dk) = ϕ̂T (D)k and

– ϕ̂T (D∗) = ϕ̂T (D)∗.

We call ϕ̂T a protocol design mapping. If D ∈ PT ,C and I = ϕ̂T (D) then I is an

implementation of protocol design D under ϕ̂T .

Definition 5. Let D ∈ PT ,C. We define the set Φ(D) of all possible implementa-

tions of D and its associated mappings as the set of all tuples (ϕC , ϕT , I) where:

– ϕC is a conceptual type mapping with dom(ϕC) = Types(D),

– ϕT is a protocol design task mapping with dom(ϕT ) = Tasks(D) and con-

sistent with the conceptual type mapping ϕC,

– I is a protocol implementation of D under ϕ̂T .

Finally we define the protocol itself, composed of a protocol design and a set of
protocol implementations.

Definition 6. We define a protocol P = (D, Imp(D)) as a pair of protocol

design D ∈ PT ,C and Imp(D) being a finite subset of Φ(D).



4 Example of a Scientific Protocol

We present a representative example of scientific protocol: Study of germination

of Lesquerella seeds.3 Lesquerella species are a promising oil crop with potential
for industrial applications. Different members of that species possess different
traits with regard to oil content, oil quality and yield. Current breeding pro-
grams aim to produce a variety suitable for commercial cultivation. One of the
prerequisites to achieve this aim, is prolonged storage of seeds. The following
protocol (restricted here to the in silico part for space reasons) was developed
to determine base and optimal temperatures for germination of different Les-
querella seeds.

4.1 Statistical Analysis of Lesquerella Germination Data

The data obtained from the in vitro part of the experiment and stored in
Observations.xls, was analyzed using SAS programs.

1. Determination of maximum germination was performed by succession of two
SAS programs: max and first obs.sas used Observations.xls as input and pro-
duced max percentages.xls as output. That file was used as input to merge

maxmin.sas, which produced the file maxmin germshoots.xls.
2. Germination proportions were analyzed using program genmod.sas, with the

file maxmin germshoots.xls as input and two files as output: maxshoots diffs.xls

and maxshoots lsmeans.xls.
3. Preprocessing of data necessary for determination of base and optimal tem-

peratures for germination was achieved in two sub-steps. Observations.xls
was used as input to sample numbers for DAPest.sas resulting in file DAPest

sample numbers.xls, and was subsequently used as input to DAPest.sas which
produced file DAPestData.xls. Also, Observations.xls was used as input to
graphing to print.sas, which produced five bitmaps.

4. Base temperature (TB) for germination was determined by two separate
methods, but only one of the methods was suitable for determining optimal
temperatures (TO).
(a) TB by regression analysis — reg.sas was run 4 times with DAPestData.xls

as input and producing an Excel file each time. Those four files were
subsequently merged by merge datasets.sas into a single Excel file. That file
was analyzed with proc mixed.sas producing two output files TbG50mns.xls
and TbG50mndiffs.xls.

(b) TB and TO by 2-phase linear regression, broken model — the following
analysis was repeated 13 times, for each kind of seed. DAPestData.xls

was used as input to pho341.sas, producing an intermediate file. That file
served as input to pho342.sas, producing another intermediate file which
was used as input to broken3.sas. The latter produced two Excel files:
SeedID (limits).xls and SeedID (limits2).xls.

3 This protocol was collected at the U.S. Arid-Land Agricultural Research Center,
Maricopa, AZ, courtesy of Jeff White and Neal Adam, the author of the protocol.



4.2 Analysis of the Structural Features

Analyzing scientific protocols, we frequently observe that a single protocol step
includes multiple tasks. Step 1 for determining maximum germination of seeds
includes two sub-steps, each consisting of the execution of a SAS program.

The enumeration of steps does not always reflect the order of tasks. In step
4, step 4a for computing base temperature and step 4b for computing base and
optimal temperatures, can be executed in parallel, although they are stated in
sequential order in the example. Some steps introduce a loop, e.g., step 4b is
performed for every kind of seed. This is a particular kind of loop, that can be
expressed by an iteration over the “collection” of seeds.

We see that the main structure of the protocol is mostly linear (step 1 and
2), or parallel (step 4a and 4b) or introduces a loop (step 4b). We also ob-
serve that the description of the protocol mixes the design with implementation.
The implementation itself can be diverse. Most steps are implemented by using
applications, but sometimes manual interaction may be necessary.

4.3 Example Protocol Model

The protocol presented in Sect. 4.1 can be modeled with the definitions of Sect. 3
as follows. First, we define the set of type names C as {SeedData} and the set of
design task names T as {MaxGermination, Proportions, Preprocessing, BaseTemp,
BaseAndOptTemp}. We define the following protocol design tasks:

TD1 : (SeedData, MaxGermination,SeedData),
TD2 : (SeedData, Proportions,SeedData),
TD3 : (SeedData, Preprocessing, SeedData),
TD4 : (SeedData, BaseTemp,SeedData),
TD5 : (SeedData, BaseAndOptTemp,SeedData).

We define now protocol design D with input In(D) = SeedData and output
Out(D) = SeedData as D = D1 ⊕ D2, with D1 = TD1 � TD2, D2 = TD3 � D3,
D3 = TD4 ⊕ D4 and D4 = TD5

13. Note that D1 corresponds to steps 1 and 2 in
our example, D2 to steps 3 and 4, D3 to step 4 and D4 to step 4b. Last but not
least, D represents the design of the whole protocol (left-hand side of Fig. 1).

Because the description presented in Sect. 4.1 is an actual implementation,
our protocol implementation follows it closely, with following simplifications.
Whenever multiple Excel files where generated, we assume they could have been
equally merged into one file with multiple tabs. If the multiple outputs have
different format names, additional converters are introduced. We plan to address
the issue of multiple outputs in the future when we define operator semantics.

We define the set of format names F as {Excel, Bitmap} and we simply use
the set of program names as A. The protocol implementation tasks are:

TI1 : (Excel, max and first obs.sas, Excel),
TI2 : (Excel, merge maxmin.sas, Excel),
TI3 : (Excel, genmod.sas, Excel),
TI4 : (Excel, sample numbers for DAPest.sas, Excel),



Fig. 1. Design (left) and implementation (right) of example presented in Sect. 4.1

TI5 : (Excel, DAPest.sas, Excel),
TI6 : (Excel, graphing to print.sas, Bitmap),
TI6′ : (Bitmap, convert2excel.exe, Excel),
TI7 : (Excel, reg.sas, Excel),
TI8 : (Excel, merge datasets.sas, Excel),
TI9 : (Excel, proc mixed.sas, Excel),
TI10 : (Excel, pho341.sas, Excel),
TI11 : (Excel, pho342.sas, Excel),
TI12 : (Excel, broken3.sas, Excel).

We define now protocol implementation I with input In(I) = Excel and output
Out(I) = Excel as I = I1 ⊕ I2, with I1 = I3 � TI3, I2 = I4 � I5, I5 = I6 ⊕ I7,
I3 = TI1 � TI2, I4 = I8 ⊕ I9, I8 = TI4 � TI5, I9 = TI6 � TI6′ , I6 = I10 � I11,
I10 = TI7

4, I11 = TI8 � TI9, I7 = I13
12

, I12 = I13 � TI12 and I13 = TI10 � TI11. The
protocol implementation is illustrated in the right-hand side of Fig. 1.

Now we are ready to define the mapping between protocol design D and pro-
tocol implementation I. We define ϕC as a mapping on C with ϕC(SeedData) =
Excel. The protocol design mapping is represented in the picture by dashed lines.
Finally, the whole protocol is defined as (D, {ϕC , ϕT }, I).



5 ProtocolDB

ProtocolDB is composed of an Access database as the back-end repository on the
server-side. The server side components also include the Microsoft Internet Infor-
mation Server (Version 5) and the Apache Tomcat Web Server (Version 5.5.16)
to handle user requests. The user interface interacts with these sub-systems to
provide the necessary storage and retrieval functionalities. HTTP connectors
and JDBC-ODBC connectivity functionality are used to communicate with the
database to perform the operations on the repository.

The schema is composed of five tables. The table registered users stores the
information related to the users of the system. The primary key for this table
is the attribute nickname. Once a scientist is registered, each entry or modifica-
tion of a protocol will be recorded with the scientist’s information. Information
pertaining to the protocol as a whole, including its name, scientific aim, date
and time of last edition are stored in protocol info. The attributes DateSaved,
TimeSaved and ProtocolNickname form the composite primary key for this re-
lation. Design steps of protocols are stored in the table Design Steps. The at-
tributes StepNumber, DateSaved, TimeSaved, and ProtocolNickname form the com-
posite primary key for this relation. Similarly, implementation steps are stored in
the table Implementation Steps. The structure of the protocol consisting of the
successor connector “�” and the split-merge connector “⊕” is recorded in table
connection between steps. The attributes from step, to step, ProtocolNickname,
DateSaved, and TimeSaved form the composite primary key for this relation.
The foreign key of each of the relation Design Steps, Implementation Steps, and
connection between steps is linked to the primary key (composite primary key)
of the protocol info relation to link the information corresponding to a partic-
ular protocol distributed among the different relations in the database.

6 Conclusion

The model for scientific protocols proposed in the paper aims at representing the
general structure of scientific protocols, with explicit distinction between design
and implementation. It allows for comparison of alternative implementations and
resources, an approach that is compatible with path-based guiding systems [16].
On-going and future work includes the extension of the model to allow the
storage of collected data sets, for support of cross protocol-data queries and
reasoning on data provenance.

This model is used to develop ProtocolDB, a repository of scientific protocols
where scientists can store, retrieve, compare, and re-use scientific protocols. The
system is currently under development and will be available shortly at:

http://bioinformatics.eas.asu.edu/protocoleDatabase.htm.
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