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ICC centro, subsolo, módulo 15, CEP 70910-900
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Av. Pádua Dias 11, CP 9, CEP 13418-900
Piracicaba, SP, Brazil

Geert Molenberghs
I-BioStat, Universiteit Hasselt and Katholieke Universiteit Leuven

Agoralaan 1, 3590 Diepenbeek, Belgium

1Keywords: Bayesian data analysis; Generalized Linear Models; Tissue Culture; Markov Chain
Monte Carlo; Binomial Distribution; Gibbs sampling; Random Effects

2Corresponding author; Email: afranio@unb.br



Abstract1

Joint generalized linear models (JGLM) and double generalized linear models (DGLM) were2

designed to model outcomes for which the variability can be explained using factors and/or3

covariates. When such factors operate, the usual normal regression models, which inherently4

exhibit constant variance, will under-represent variation in the data and hence may lead to5

erroneous inferences. For count and proportion data, such noise factors can generate a so-6

called overdispersion effect, and the use of binomial and Poisson models underestimates the7

variability and, consequently, incorrectly indicate significant effects. In this manuscript, we8

propose a double generalized linear model from a Bayesian perspective, focusing on the case9

of proportion data, where the overdispersion can be modeled using a random effect that10

depends on some noise factors. The posterior joint density function was sampled using Monte11

Carlo Markov Chain (MCMC) algorithms, allowing inferences over the model parameters. An12

application to a dataset on apple tissue culture is presented, for which it is shown that the13

Bayesian approach is quite feasible, even when limited prior information is available, thereby14

generating valuable insight for the researcher about its experimental results.15



1 Introduction16

Many well-known experimental designs that are applied across a diverse range of scientific17

domains are based on the assumption of variance homogeneity. It is a quite strong assump-18

tion when one is faced with situations where environmental or external factors influence the19

experimental measures. Modeling the variability from planned experiments gained momentum20

with Taguchi’s work (Taguchi, 1985), which emphasizes the need to adequately deal with the21

influence of noise and control factors in industrial experimentation, as a means to reducing22

loss of information and hence optimizing product quality. In a conventional approach, if ei-23

ther environmental factors, the process factors under investigation, or a combination thereof,24

influences the variance of the continuous response variable, then it means that all statistical25

inferences from the resulting model will be based on a single dispersion measure, likely inflated26

by the effects not entered into the model. For proportion or count data, the effect of not27

taking into account such overdispersion is to produce underestimated variances if the stan-28

dard, too restrictive, models, such as binomial or Poisson-based models are used. Needless to29

say that ultimately inference is in jeopardy then. Related to this, not taking account of this30

phenomenon can lead to the selection of overly complex models (Hinde & Demétrio, 1998).31

The approach of Taguchi to deal with dispersion effects was criticized and a discussion32

started about effectiveness and alternatives to the signal-to-noise ratios (Box, 1988). One33

argument against signal-to-noise regards the fact that a transformation is chosen a priori. An34

alternative presents itself by way of the Box and Cox transformation family (Box & Cox, 1964),35

where the choice of the best variance-stabilizing transformation is data driven. However, the36

alternatives proposed to quantify and graph dispersion effects takes the form of exploratory37

tools; a joint approach was not considered. At the same time, a modeling approach was38

undertaken.39

The concept of modeling heterogeneity through a pair of parametric non-linear predictors40

was formally established by Harvey (1976), with the parameters linked to the mean and variance41

estimated by maximum likelihood, for a normally distributed response variable.42

For this case, when all factors are quantitative, alternatives exists in the form of so-called43

dual response surface methodology, where the mean and dispersion models are optimized44

simultaneously (Myers et al., 1992).45

This problem was revisited later, and various regression models have been proposed to46

jointly model mean and dispersion (Aitkin, 1987; Wolfinger & Tobias, 1998; Smyth, 1989;47

Nelder & Lee, 1991). These authors base inferences, including hypothesis testing and interval48

estimation, on asymptotic theory (McCullagh & Nelder, 1989). Such methods work well49

with large sample sizes combined with modest numbers of model parameters. However, in50

agricultural research, many experiments exhibit a large number of parameters relative to the51

sample size. The asymptotic-theory-based estimators and their corresponding measures of52

uncertainty can then be questionable and lead to erroneous conclusions. This motivates our53

choice for a relative small set of data.54

In this paper, we propose a double generalized linear model (DGLM) for proportion data55

using a Bayesian framework for parameter estimation. This approach allows one to incorporate56

the uncertainty about the unknown quantities of the model using prior information into the57

estimation procedure. The difficulty of obtaining the parameters’ posterior marginal densities is58

overcome by the use of Monte Carlo Markov Chain (MCMC) algorithms (Gamerman & Lopes,59

2006). The rest of the paper is organized as follows. In Section 2, the generalized linear models60

(GLM) framework, the extended quasi-likelihood estimation method, and the model proposed61

by Smyth (1989) and Nelder & Lee (1991) are briefly described and commented. A Bayesian62

perspective on the DGLM is presented in Section 3. In Section 4, an apple tissue culture63

experiment described in Ridout & Demétrio (1992) is introduced, with the results presented64

1



and discussed in Section 4.2.65

2 Joint Modeling of Mean and Dispersion66

The methodology proposed by Smyth (1989) and Nelder & Lee (1991) for the joint modeling67

of mean and dispersion involves two generalized linear models (GLM; McCullagh & Nelder,68

1989). For a random sample of n observations (yi,xi), where yi, i = 1, . . . , n is an observed69

value for a single response variable Yi, and xi = (x1i, x2i, . . . , xpi)
T is a p-dimensional vector70

of explanatory variables, the three components of a GLM are (Hinde & Demétrio, 1998): (i)71

independent random variables Yi, stemming from the exponential family of distributions with72

mean µi and constant scale parameter φ, i.e., observations from a density of the form:73

f(y|θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
,

where a(φ) = φ/w, φ is the dispersion parameter, w is a prior weight, θ is the canonical param-74

eter [it can be shown that E(Y ) = b′(θ) and Var(Y ) = φb′′(θ)]; (ii) a linear predictor vector η75

given by η = Xβ, where β is a vector of p unknown parameters and X = (x1,x2, . . . ,xn)T
76

is an n × p design matrix; (iii) a link function g(·) relating the mean to the linear predictor,77

i.e., g(µi) = ηi = xT
i β; hence, E(Yi) = g−1(ηi).78

In this paper, we focus on the particular GLM with binomial distribution and logit link79

function. Assuming that a random variable Yi, the number of successes out of mi samples,80

has a binomial distribution with probability of success πi, it follows that θi = ln [µi/(mi − µi)],81

b(θi) = mi ln(1+ eθi) and φ = 1. Therefore, E(Yi) = miπi = µi, Var(Yi) = miπi(1−πi) and82

g(µi) = ln [µi/(1− µi) = ηi]. Parameter estimation conventionally proceeds by maximum83

likelihood; in computational terms, the iteratively re-weighted least square algorithm (IRLS)84

is popular.85

Note that, because the dispersion parameter φ = 1, the variance function depends solely on
the mean parameter. However, it is quite common in experimental situations that proportions
show variability larger than that allowed by the theoretical variance of the binomial distribution,
the aforementioned overdispersion. Hinde & Demétrio (1998a) reviewed a wide variety of
avenues for overdispersion modeling, together with methods of estimation. These authors
also discussed applications to agricultural experimentation data. Nelder & Pregibon (1987)
proposed the extended quasi-likelihood (EQL) method for parameter estimation, based only
on the first two moments of a distribution. The EQL method consists of maximizing the
function

Q+ = −1

2

n∑
i=1

{d(yi, µi)

φi

+ log(2πφiV (yi))},

where

d(y, µ) = −2

∫ µ

y

y − t

V(t)
dt

is the deviance function and V(·) is the variance function evaluated in yi. The dispersion86

parameter is indexed by observation, allowing for flexible modeling. For example, experimen-87

tal factors and/or covariates affecting the variability of the data may be encompassed. For88

proportion data, the method allows for the modeling of overdispersion as a function of a linear89

predictor that may differ from the one describing the mean.90

The joint-modeling ideas for mean and dispersion, proposed by Smyth (1989) and Nelder91

& Lee (1991), all share the same double structure of generalized linear models. Assuming that92

E(Y ) = µ and Var(Y ) = φV(µ), and that both the mean and the dispersion parameters vary93

across observations in a parametric way, i.e., ηi = g(µi) = xT
i β and ζi = h(φi) = zT

i γ and94
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where β is a vector of mean parameters, γ is as vector of dispersion parameters, g(·) and h(·)95

are link functions for the mean and dispersion, and xT
i and zT

i are the row-vectors of the design96

matrices X and Z, respectively. The matrix X contain covariates and/or factors affecting the97

mean, and the matrix Z contains covariates and/or factors affecting the dispersion parameter.98

In this model, φ represents the independent variation of the mean and V(µ) is the mean-99

dependent variation. Apart from this commonality between the modeling frameworks, they100

exhibit particular aspects, too.101

Parameter estimation proposed by Smyth (1989) and Nelder & Lee (1991) is based on102

a two-step iterative algorithm: (i) holding γ fixed, the vector β is estimated; (ii) fixing the103

estimated value of β, the vector γ is estimated. These two steps are then alternated until104

convergence. Although both proposals are based on different estimation methods, results are105

often very similar.106

Nelder & Lee (1991) based estimation on extended quasi-likelihood. In their algorithm,107

the step where φ is assumed fixed coincides with Smyth’s (1989) method, thus reducing to108

quasi-likelihood. When β is fixed, the extended quasi-likelihood function becomes a gamma109

likelihood function, where di is the response variable. Lee & Nelder (1998) also considered110

an alternative for the estimation method based on REML with adjustment proposed by Cox111

& Reid (1987). Lee & Nelder (2006) extended their proposal to a larger class of double112

hierarchical generalized linear models, jointly incorporating random effects in both mean and113

dispersion linear predictors. This class will not be explored in this work.114

At this point, it is important to emphasize key differences between the JGLM and the115

Bayesian DGLM explored here. The JGLM is a fixed-effects model that deals with disper-116

sion modeled in a particular way. This involves another generalized linear model for deviance117

components as a response, a logarithmic link function and a linear predictor. The Bayesian118

perspective for the proportion data, which will be described in Section 3, proceeds by hier-119

archically modeling the overdispersion through a random effect, where the linear predictor is120

linked to the variance of the random effect. So, even though the results of both approaches121

may lead to the same conclusions, the interpretations are different.122

3 The Double Generalized Linear Model from a Bayesian Perspective123

3.1 Model for Normally Distributed Measurements124

The frequentist estimation approaches of Smyth (1989) and Nelder & Lee (1991) are clearly125

approximate and dependent on asymptotic assumptions. In agricultural experimentation, the126

number of experimental units is mostly limited owing to physical space, resources, and/or127

ethical constraints. Situations are common where the number of parameters is relatively large128

compared with the number of observations. The frequentist approach can then lead to strongly129

biased estimates (Smyth & Verbyla, 1999). An alternative way to tackle this problem is to130

work with the double generalized linear model (DGLM) from a Bayesian point of view.131

One proposal for a Bayesian DGLM was presented by Cepeda & Gamerman (2000), with132

the following structure:133

yi = µi + εi,
εi ∼ N(0, σ2

i ),
µi = xT

i β,
g(σ2

i ) = zT
i γ,

(1)

where xT
i β is the linear predictor for the mean µ, εi is the random component, the variance134

σ2
i , which is linked to the linear predictor Zγ by a non-linear link function g(·), and xT

i and135

zT
i are known rows of design matrices for mean and dispersion, respectively. These authors136

3



assumed the following prior joint probability density function for β and γ:137 (
β
γ

)
∼ N

[(
b0

g0

)
,

(
B C
CT G

)]
,

where the hyper-parameters b0, g0, B, C, and G are assumed known. The posterior joint138

probability density function is given by139

π(β, γ|X,Z) =
p(X,Z|β, γ)p(β, γ)∫

β

∫
γ

p(X,Z|β, γ)p(β, γ)∂γ∂β

(2)

∝ p(X,Z|β, γ)p(β, γ).

As (2) assumes an intractable analytical form for integral manipulation, the Metropolis-140

Hastings (MH) algorithm was employed, together with a block-wise scheme to obtain the141

samples of the posterior marginal density functions for each parameter (Gamerman, 1997).142

3.2 Model for Overdispersed Proportion Data143

The ideas behind a Bayesian DGLM for normal data do not carry over to the binomial situation,144

because in that case there is no separate variance parameter. Hinde & Demétrio (1998b)145

describe a logistic-normal model with the following structure146

Yi|zi ∼ Bin(mi, pi),

logit(pi) = xT

i β + σzi, (3)

zi ∼ N(0, 1),

with the aim of accommodating the overdispersion effect through the random effect zi. Bor-147

gatto et al. (2006) proposed a hierarchical random-effects model to account for both overdis-148

persion and zero-inflation effects, as an alternative to the model described in Vieira et al.149

(2000). A Bayesian version of (3) was also proposed by Hinde & Demétrio (1998b), taking150

the form151

Yi|bi ∼ Bin(mi, pi),

logit(pi) = xT

i β + bi, (4)

bi ∼ N(0, σ2),

and assuming a prior distribution for β and τ = σ−2 to incorporate the uncertainty associated152

with these parameters.153

Here, we propose a generalized version of (4), to allow for covariates and/or factors af-154

fecting the dispersion parameter of the random-effect distribution. To this end, the following155

hierarchical double generalized linear model is assumed:156

Yi ∼ Bin(mi, pi),

logit(pi) = xT

i β + δi,

δi ∼ N(a, τi), (5)

τ i = 1/ exp(zT

i γ),

where xi and zi are the appropriate rows of the design matrices X and Z, respectively, δi is157

a random effect, β and γ are vectors of unknown parameters. The normal distribution for a158

random effect, used to accommodate overdispersion, is a sensible choice whenever this random159
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variable is required to range over the entire real line. Evidently, other distributions could be160

entertained as well, such as, for example, a scaled t-distribution. We further assume that βj161

and γk are independent, i.e., p(βj, γk) = p(βj)p(γk), which is sensible given that it is difficult to162

establish a prior dependence structure for these parameters in common experimental situations.163

In this model, the link function for the mean of Yi is logit(pi) = ln[pi/(1− pi)] = ln[µi/(mi−164

µi)]. The link function for the dispersion is assumed to be ln τ−1
i , to enforce positive variance;165

this can, of course, be modified to other monotone link functions, as appropriate. It was166

assumed for β and γ a priori to be normally distributed with known hyper-parameters specified167

by βj ∼ N(b, c), j = 0, . . . , r, and γk ∼ N(d, e), k = 0, . . . , s, respectively. The normal168

priors with vague hyper-parameters is a way to establish non-informative uncertainty for the169

parameters.170

The posterior joint probability density function for model (5), obtained by the Bayes’ rule,171

can be described by172

p(β, γ, δ|X,Z,y) ∝ L(β|δ,y,X)p(δ|γ,Z)p(β)p(γ). (6)

Model (5) can be represented by a directed acyclic graph (DAG), as described in Best &173

Green (2005) as can be seen from Figure 1 in the Supplementary Materials. The advantage174

of presenting a model in DAG form is that the essence of the model structure is elucidated,175

making clear the functional flow of the information, thereby suppressing the distributional176

assumptions and deterministic relations between variables and parameters. Moreover, such a177

graphical model representation may suggest a conditional independence structure, convenient178

for efficient implementation. The Bayesian computation environment OpenBUGS (Thomas et179

al., 2006) was built to sample the posterior marginal distributions of the parameters under180

DAGs that can be described graphically or through the BUGS language (Spiegelhalter et al.,181

1996). Best & Green (2005) and Thomas et al. (2006) provide more details and information182

about directed acyclic graphs and the BUGS language.183

Sampling From the Posterior Marginal Densities184

Assuming the priors for β and γ and for the random effect δi, and using the binomial likelihood185

function for Yi, the posterior joint density function can be written as (see the Appendix for186

more details):187

p(β, γ, δ|X,Z,y) ∝ exp

{
yT (Xβ + δ)− 1

2
1TZγ −

n∑
i=1

exp(−zT

i γ)(δi − a)2−

− 1

2c

r∑
j=0

(βj − b)2 − 1

2e

s∑
k=0

(γk − d)2

}
×

×
n∏

i=1

[1 + exp(xT

i β + δi)]
−mi . (7)

From (7) it is not possible to derive analytic forms for the posterior marginal density functions188

for β, γ, and δ. Furthermore, it is not a viable alternative, neither to make use of numeric189

integration, because of its multi-dimensionality. Therefore, stochastic simulation of the poste-190

rior marginal densities, through the Monte Carlo Markov Chain (MCMC) methods, offers an191

appealing route.192

So, to sample from the posterior joint density function (7), it is necessary to construct an193

appropriate Markov chain (Gamerman & Lopes, 2006), which can be done by using an MCMC194

algorithm, such as the Metropolis-Hastings algorithm, Gibbs sampling, or using a more general195
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MCMC algorithm such as, for example, the slice sampler (Neal, 2003). All of these algorithms196

are based on the full posterior marginal density function, given by197

p(βj|β−j, γ, δ,X,Z,y) ∝ exp

{
yTXβ − 1

2c

r−1∑
j=0

(βj − b)2

}
n∏

i=1

[1 + exp(xT

i β + δi)]
−mi ,(8)

p(γk|γ−k, β, δ,X,Z,y) ∝
exp

{
−1

2

∑n−1
i=1 exp(−zT

i γ)(δi − a)2 − 1
2e

∑s
k=0(γk − d)2

}√
exp (1TZγ)

, (9)

p(δi|δ−i, β, γ,X,Z,y) ∝
exp

{
yTδ − 1

2

∑n−1
i=1 exp(−zT

i γ)(δi − a)2
}∏n−1

i=1 [1 + exp(xT
i β + δi)]mi

, (10)

where the vectors β−j, γ−k, and δ−i refer to the parameter vectors without the elements βj,198

γk and δi, respectively.199

These algorithms are implemented in the statistical computing environment R (R Devel-200

opment Core Team, 2007), using the library BRugs (Thomas et al., 2006). The functions201

related with this library use the BUGS language. It is therefore necessary and sufficient to202

specify the model structure (5), the data set, and the initial values for each parameter, in203

order to start the Markov chain iterations. When the sequence generated by the Markov chain204

θt, t = 1, 2, . . . reaches convergence, the sample of θt can be considered a sample of p(θ|y).205

It can be formally shown that the convergence of the chain is to the stationary distribution.206

For a given set of data, it is important to construct some exploratory graphical diagnostics207

and to obtain further diagnostic measures to scrutinize convergence (Gelman et al., 2000).208

The use of a Bayesian approach via stochastic simulation methods demands that Markov209

chain for each parameter be examined for convergence, so as to guarantee that the sam-210

ples contain the principal characteristics of the equilibrium distribution, including shape, the211

first few sample moments, etc. Some formal, e.g., test-based, methods, as well as informal212

graphically-based ones, are quality indicators for the simulated samples. Here, some graphical213

devices (history plot, auto-correlation function plot) and the Gelman-Rubin criterion (Gelman214

& Rubin, 1992) were used for Markov chain convergence diagnosis. Alternatively, the test,215

proposed by Raftery & Lewis (1992) and Heidelberger & Welch (1983), could be applied as216

well. These tests are all implemented in the R environment through the coda library (Plummer217

et al., 2007).218

To perform model selection, the Deviance Information Criteria (DIC, Spiegelhalter et al.,219

2002) was used. This index is calculated as DIC = pD + Eθ[D(θ)], where pD = Eθ[D(θ)] −220

D(Eθ[p(θ|y)]), representing the effective number of parameters; Eθ[D(θ)] is the average of221

D calculated over all values of θ from the sample obtained from the MCMC algorithms; and222

D(Eθ[p(θ|y)]) is the deviance measure calculated over the average of the sampled values of223

θ. As is well known, this measure, as well as the AIC and BIC, quantify the model fitting and,224

at the same time, penalize the complexity of the candidate models.225

4 The Apple Tissue Experiment226

4.1 Data Description227

As a motivation to the modeling tools developed here, an apple tissue culture experiment,228

described in Ridout & Demétrio (1992), is analyzed. The treatment structure was a 2 ×229

5 factorial (2 media and 5 varieties), and the plot structure completely randomized. The230

experimental unit was a Petri dish, divided into a 5 × 5 array, hence having 25 individual231

compartments. In each compartment, a standard volume of some culture medium was used.232

A small piece of vegetation tissue, called explant, was added to the medium. The Petri dishes233
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were kept in a incubator for several weeks. During this period, new shoots could grow from234

the explants, which enhances the regeneration process. One aim of the researcher was to235

establish whether some of the five explant varieties and/or one of the two culture media have236

an influence on the proportion of regenerated explants. The data set is reproduced in Table 1.237

The motivation to use a relatively small set of data is twofold. First, it allows focusing238

on the methodological contributions, without the intricacies of large and potentially complex239

data manipulations. Second, this type of experiment is quite common in horticulture.240

Table 1 ABOUT HERE241

Figure 1 shows a plot with the average of regenerated explants, for each combination of242

explant variety and culture method. There clearly is a lot of variability between the means243

of regenerated explants in culture medium X, when compared with that in culture medium244

Y . Explant E appears to show differential behavior when compared to the other explants in245

culture medium X, suggesting a possible interaction. Ridout & Demétrio (1992) leave open246

the option that it could be a potential outlier. That said, we believe that the value of 2/25 for247

the E/X cell is scientifically plausible. Hence, the value was retained for analysis. Figure 2248

shows the standard deviations for the treatment combinations. It suggests that explant D249

probably exerts strong influence on the dispersion. It is important to note that it is a small250

and unbalanced data set and, in general, the asymptotic theory does not apply.251

FIGURES 1 and 2 ABOUT HERE252

4.2 Data Analysis253

Model (5) was applied to the apple tissue data set and, to estimate the posterior marginal254

density, three Markov chains were used, with initial points dispersed across the parameter255

space.256

Vague priors were assumed so as to incorporate the uncertainty for the vectors β and γ.257

In all cases, they were assumed normally distributed, with variance 1000 for the β parameters258

and 100 for the γ. While the value 100 may appear not sufficiently vague, choosing a larger259

value tends to jeopardize the convergence of the Markov chain process.260

Three chains of size 200,000 were generated. The first 100,000 iterations of each chain261

were discarded for burn-in purposes. In an effort to minimize the within-chain autocorrelation,262

each 50th iteration was retained. As a result, the sample size to be used for posterior inference263

about the parameters is 6,000. The models with less parameters have shown faster convergence264

of the Markov chains, indicating a better mix throughout the parameter space. The final model265

took 281 seconds under a Intel Core Duo processor on a 1.66 GHz personal computer. The R266

code using the BRugs and CODA libraries are available at the website containing supplementary267

material, with name BayesianDGLM.r. Note that the same model specification can be used268

with the OpenBUGS/WinBUGS software.269

Using the deviance information criteria (DIC), backward model selection was conducted.270

The most complex model fitted was271

η = medium + explant + medium× explant,

ζ = medium + explant + medium× explant.

Table 2 presents each fitted model, the deviance information criteria, and their components272

pD and D̄. Models 1 to 4 describe the search for a parsimonious linear predictor of dispersion.273

Model 5 minimized the DIC index; it features a linear predictor for the dispersion using the274

dummy variable for the explant D; for the mean it incorporates main effects of medium,275

explant, and the interaction term of the culture medium Y and the explant E. Model 6 has276
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a constant term only in the dispersion linear predictor. Model 7 has only a random effect δ277

with distribution N(0, 1), and Model 8 is an ordinary binomial GLM without random effects.278

In Model 5, the non-significant effects in dispersion model, related with explants B, C, and279

E, were dropped, in view of reducing the DIC. In Model 3, these non-significant terms were280

kept and while a consistent picture emerges in terms of pD and the number of parameters,281

the DIC has deteriorated.282

A strong overdispersion effect is apparent for Model 8. Models 9, 10, and 11 are nested283

for the linear predictor for the mean; they fit worse than Model 5.284

TABLES 2 and 3 ABOUT HERE285

Model checking plots are not usually presented in the Bayesian literature, where the focus286

is often directed towards MCMC diagnostics. However, some applied manuscripts present287

a type of residual analysis that mimics the frequentist approach, thereby considering some288

summary measure of the sampled marginal posterior for deviance residuals and predicted values289

(Robinson et al., 2009). Using the mean of sampled marginal posteriors, some graphical290

analysis were done. Figure 3 exhibits the Q-Q plot and the standardized residuals versus the291

predicted values, which do not indicate departure from normality or any systematic pattern292

that could suggest lack-of-fit. The 95% credibility interval plot for the standardized residual293

posterior samples, displayed in Figure 4, does indicate neither outliers nor extreme values,294

providing support for inference over the parameter estimates.295

Table 3 presents the posterior summary. Using the median as a point estimate for the296

model parameters, it can be seen that explant D increases the variance of the random effect297

δ by exp(−6.624 + 7.533) = 2.48 units, while the other type of explants reduce the variance298

of the said random effect to almost zero. We conclude that explant D is responsible for the299

overdispersion in the proportion of regenerated explants. Turning to the factorial effects on300

the mean of the regenerated explants, the larger influence owes to the interaction between301

culture medium Y and explant E. Whenever this combination occurs, the chance of explant302

regeneration increases exp(2.185) = 8.89-fold, when compared to the other explants and303

culture medium X.304

FIGURES 3 and 4 ABOUT HERE305

5 Concluding Remarks306

The objective of this work was to propose a Bayesian double generalized linear model for307

overdispersed proportion data, thereby providing an alternative to the frequentist approach of308

Smyth (1989) and Nelder & Lee (1991). Our model includes a normally distributed random309

effect in the linear predictor of the generalized linear model, where the variance of the random310

effect is linked non-linearly to another linear predictor. The model was successfully applied311

to an agricultural data set of a type frequently encountered. Evidently, it can be applied to312

related situations too. Experiments with the aim of identifying factors affecting the variability313

in industrial processes, such as Taguchi experiments, can be analyzed using this approach as314

well.315

The Bayesian approach adopted here and based on stochastic simulation is a very conve-316

nient and flexible mode for fitting our class of models. It conveniently extends to other such317

situations, without limitation to the exponential family of distributions. The use of directed318

acyclic graphs makes easier the presentation of the model and suggests the hierarchical con-319

struction of the probabilistic model, based on conditioning the random values on their parent320

random parameters. The use of MCMC algorithms efficiently deals with the problem of calcu-321

lating high-dimensional integrals, thus allowing to generate samples of the posterior marginal322
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densities of the associated parameters. Using such samples, summary statistics are calcu-323

lated that render feasible inferences about the fitted model. The price to pay is the method’s324

computational intensity, needing high-quality computational resources. Furthermore, the ad-325

ditional step of diagnosing the convergence of the Markov chain guarantee the coherence of326

the inferences and has to be taken seriously. The statistical computing environment R, jointly327

with the libraries BRugs and coda have shown quite flexible and efficient to the estimation328

process and data analysis.329

The proposed modeling framework can be extended in various ways, including the incorpo-330

ration of the time dimension when measurements are taken longitudinally, as well as particular331

implementations or count and time-to-event data. Also, the assumption of normal prior dis-332

tributions can be modified or relaxed. Here, they have shown to be reasonably insensitive333

to variations of the hyper-parameters for the mean linear predictor, even though they are334

sensitive to the choice of vague priors for the parameters in the linear predictor of the ran-335

dom effect variance; this calls for careful illicitation, preferably with the help of substantive336

researchers. Finally, identifiability, parameterization and tests with other prior densities need337

further research.338
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de Pessoal de Ńıvel Superior (CAPES), processo BEX 4344/07-3. We thank Dr. Rosângela343
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Appendix429

The posterior density function for model (5) can be built using (6). The prior density functions430

for βj and γk are, respectively431

p(βj) =

√
c−1

2π
exp

[
−c−1

2
(βj − b)2

]
∝ exp

[
−c−1

2
(βj − b)2

]
, j = 0, . . . , r (11)

and432

p(γk) =

√
e−1

2π
exp

[
−e−1

2
(γk − d)2

]
∝ exp

[
−e−1

2
(γk − d)2

]
, k = 0, . . . , s. (12)

Assuming that Yi ∼ Bin(mi, pi) and that ln[pi/(1− pi)] = xT
i β + δi, the likelihood function is433

p(yi|xi, β, δi) =

(
mi

yi

) [
exp(xT

i β + δi)

1 + exp(xT
i β + δi)

]yi
[
1− exp(xT

i β + δi)

1 + exp(xT
i β + δi)

]mi−yi

=

(
mi

yi

)
[exp(xT

i β + δi)]
yi

[1 + exp(xT
i β + δi)]

mi
,

and434

p(yi|xi, β, δi) ∝ [exp(xT

i β + δi)]
yi [1 + exp(xT

i β + δi)]
−mi . (13)

The conditional density of δi, given the parameter vector γ, is435

p(δi|γ) =

√
1

2π exp(zT
i γ)

exp

{
−1

2
[exp(zT

i γ)]−1(δi − a)2

}
= (2π)−

1
2 exp

{
−1

2
zT

i γ − 1

2
exp(−zT

i γ)(δi − a)2

}
and, therefore,436

p(δi|γ) ∝ exp

{
−1

2
[zT

i γ + exp(−zT

i γ)(δi − a)2]

}
. (14)

Applying (11)–(14) to (6), considering the vector of observations y, it can be shown that437

the posterior joint probability density function is438

p(β, γ, δ|X,Z,y) ∝
n∏

i=1

[exp(xT
i β + δi)]

yi

[1 + exp(xT
i β + δi)]mi

exp

{
−1

2
[zT

i γ + exp(−zT

i γ)(δi − a)2]

}
×

×
r∏

j=0

exp

[
−c−1

2
(βj − b)2

] s∏
k=0

exp

[
−e−1

2
(γk − d)2

]

∝ exp

{
n∑

i=1

xT

i βyi +
n∑

i=1

yiδi −
1

2

n∑
i=1

zT

i γ − 1

2

n∑
i=1

exp(−zT

i γ)(δi − a)2−

− 1

2c

r∑
j=0

(βj − b)2 − 1

2e

s∑
k−0

(γk − d)2

}
n∏

i=1

[1 + exp(xT

i β + δi)]
−mi

and, finally,439

p(β, γ, δ|X,Z,y) ∝ exp

{
yT (Xβ + δ)− 1

2
1TZγ −

n∑
i=1

exp(−zT

i γ)(δi − a)2−
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− 1

2c

r∑
j=0

(βj − b)2 − 1

2e

s∑
k=0

(γk − d)2

}
×

×
n∏

i=1

[1 + exp(xT

i β + δi)]
−mi . (15)
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Table 1: Number of explants (yi) of apple trees that regenerated, considering 16 Petri dishes.

SOURCE: Hinde & Demétrio (1998b).

Explant Variety

A B C D E

Culture Medium
X 8, 10 9, 10 7 20, 12 2

Y 9, 11 18, 12 13 20, 5 13

Table 2: Quality-of-fit and model complexity measures for fitted Bayesian binomial DGLM

models.

Fitted Models DIC pD Eθ[D(θ)]

Model 1:

{
η = medium + explant + medium× explant

ζ = medium + explant + medium× explant
86,31 13,15 73,16

Model 2:

{
η = medium + explant + medium× explant

ζ = medium + explant
86,10 13,44 72,66

Model 3:

{
η = medium + explant + medium× explant

ζ = explant
84,69 12,79 71,9

Model 4:

{
η = medium + explant + medium× explant

ζ = γ0 + explant D
84,49 18,81 71,67

Model 5:

{
η = medium + explant + medium Y× explant E

ζ = γ0 + explant D
82,56 11,00 71,56

Model 6:

{
η = medium + explant + medium Y× explant E

ζ = γ0

87,16 14,52 72,64

Model 7:

{
η = medium + explant + medium Y× explant E

ζ = 0 ⇒ δ ∼ N(0, 1)
86,16 14,77 71,39

Model 8:
{

η = medium + explant + medium Y× explant E 107,10 7,03 100,10

Model 9:

{
η = medium + explant

ζ = γ0 + explant D
85,77 11,19 74,58

Model 10:

{
η = explant

ζ = γ0 + explant D
88,66 14,37 74,29

Model 11:

{
η = medium

ζ = γ0 + explant D
85,18 8,82 76,30
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Table 3: Model 5: posterior summary for the parameters.

Standard Standard
Parameters Mean Deviation Error IC(2.5%) Median IC(97.5%)

β0 −0.8034 0.2784 0.004268 -1.34200 -0.80550 -0.2595
βY 0.5925 0.2900 0.003788 0.02434 0.59190 1.1540
βB 0.4657 0.3246 0.004614 -0.17570 0.46720 1.0840
βC 0.0795 0.4101 0.004761 -0.75690 0.08712 0.8642
βD 0.8618 1.1030 0.019380 -1.21000 0.84280 3.2070
βE −1.8840 0.9127 0.011330 -3.92100 -1.80400 -0.3263

βY,E 2.1850 1.0190 0.013750 0.41940 2.09300 4.3770
γ0 −6.6240 3.9760 0.170800 -15.79000 -5.84400 -1.1140
γD 7.5330 4.0870 0.171400 1.46700 6.75600 16.8100

Summary statistics calculated for 6000 observations.
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Figure 1: Average number of regenerated explants as function of the culture media and the

explant varieties.
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Figure 2: Standard deviation of the number of regenerated explants as function of the culture

media and the explant varieties.
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Figure 3: Residual analysis for Model 5. The top plot is the mean for samples of marginal

posteriors for the standardized residuals versus the mean of posterior marginal samples of

predicted values; the bottom plot is the normal probability plot for the mean marginal posterior

of the standardized residuals.
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Figure 4: 95% credibility interval plots for marginal posterior samples of standardized resid-

uals.
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