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ABSTRACT 

 

In this paper and talk we present a short proof of a theorem of Naranan stating that if sources 

grow exponentially and if items in sources also grow exponentially, then the system is 

Lotkaian, i.e. its size-frequency function is the law of Lotka.  

 

We apply this technique to the case of power law growth of sources and of items in sources 

and determine the size- and rank frequency functions in this case. These functions have a 

greater variety of shapes than in the classical Naranan case and we give practical examples. 

We also show that, in this context, the law of Heaps can be proved.  

We also further generalise this technique to general growth models of sources and items in 

sources. 
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Introduction 

 

Information Production Processes (IPPs) can be generally described by sources that have (or 

produce) items. Many examples (in informetrics and beyond) can be given. 

 

                               sources                              →                              items                    

 

authors 

  

articles 

journals articles 

articles citations, references 

articles authors 

books borrowings 

words (types) occurence in a text (tokens) 

websites hyperlinks (in/out) 

cities, villages  inhabitants 

employees production 

employees salaries 

...  

  

 

To measure these IPPs we use two related functions. 

 

(i) The size-frequency function f: 

  

 for each  1,2,3,...,n f n  is the number of sources with n items. 

 

If we rank the sources in decreasing order of the number of items they have, we can define the 

second function: 

 

(ii) The rank-frequency function g: 
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for each 1,2,...,r T ,  g r  is the number of items in the source on rank r (T = total 

number of sources). 

 

In informetric models we use continuous variables. Here, for 1j  ,  f j  is the density of the 

sources with item density j and, for  0,r T ,  g r  is the item density in the source density r. 

In this context, the size-frequency function f and the rank-frequency function g are related as 

in (1) and (2) 

 

 1' '
j

r f jdj g j


                                                (1) 

 

where  j g r  and 

 


 1

1

'
f j

gg j


                                                (2) 

 

where 
1g 
 is the inverse function of the (injective) function g (g is injective since it strictly 

decreases, by (1)) and g' is the derivative of g. 

 

Obviously (1) implies (2) and (2) implies (1) given that  0g    (hence  1 0g    ). For 

these introductory results, we refer to Egghe (2005). 

 

General shape-relations between f and g can be proved, based on (1) and (2). They are given 

in Egghe and Waltman (2011): 

 

Proposition 1: 

 

(A)  f  is decreasing if and only if g is convex. 

 

(B) f  is first increasing and then decreasing if and only if g has an S-shape: first convex 

 and then concave. 
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Also in Egghe and Waltman (2011) examples of both cases are given, see Fig. 1. 

 

 

 

Fig. 1. Size-(left) and rank-(right) frequency functions in chemistry (type (A)) and in 

economics (type (B)), taken from Egghe and Waltman (2011), p. 242. 

 

The most classical examples of size- and rank-frequency functions are the laws of Lotka and 

Zipf, respectively, being decreasing power laws: 

 

 
C

f j
j

                                                           (3) 

 

0C  , 1  , 1j   and 

 

 
B

g r
r

                                                          (4) 

 

, 0B   ,  0,r T . 

 

We have the following well-known result (see Egghe (2005), Egghe and Rousseau (2006) 

where a proof is available in the Appendix). 
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Proposition 2:  The following assertions are equivalent: 

 

(i) We have Lotka's law (3) 

 

(ii) We have Zipf's law (4) 

 

In this case the exponents α and β relate as in (5) 

 

1

1






                                                             (5) 

 

In Naranan (1970) there is the following rationale for Lotka's law given: 

 

Proposition 3:  Let us have an IPP in which 

 

(i) The number of sources  t  grows exponentially in time t, denoted as 

 

   1 1

tt ca                                                             (6)  

 

(ii) The number of items  t  in each source grows exponentially in time t and the 

growth is the same in each source, denoted as  

 

   2 2

tt ca                                                           (7) 

 

( 1 2, 0c c  , 1 2, 1a a  ). Then this IPP satisfies Lotka's law (3) and we have formula (8) 

for the relation between Lotka's exponent α and the growth rates 1a  and 2a : 

 

 
1

2

ln
1

ln

a

a
                                                        (8) 
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The proof is long and clarified in Egghe (2005). In Egghe (2010) we presented a short proof 

of this result whereby we prove Zipf's law. Hence, by Proposition 2 we have also shown 

Lotka's law. In the next section we will present this short proof in the even shorter version as 

given in Egghe (2012b). 

 

The third section deals with an important variant of Naranan's result: we assume that the 

growth function   and   are power laws (instead of exponential laws in Naranan) – see 

Egghe (2012a). Now we receive other laws for the size- and rank-frequency functions  f j  

and  g r . Contrary to the Naranan case we do not only have case (A) in Proposition 1 (for f 

being Lotka's law and g being Zipf's law) but we can also have case (B) in Proposition 1 (and 

we also have two other possibilities but for which we have no empirical evidence). 

 

In this case we can also give a proof of Heaps' law (or Herdan's law) (see Heaps (1978), 

Herdan (1960,1964), Egghe (2007)) relating the total number T of sources to the total number 

A of items as in formula (9): 

 

.T K A                                                                 (9) 

 

where 0K   is a constant and 0 1   is a fixed exponent (independent of time) – see also 

Egghe (2012a). Such a result is not valid in the Lotkaian case.  

 

In the last section we further generalise the Naranan formalism by assuming general growth 

functions  t  (for the sources) and  t  (for the items) and we present the general relation 

with the size- and rank-frequency functions  f j  and  g r . 
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Short proof of the Theorem of Naranan (Egghe 

(2010, 2012b)) 

 

Let t be a fixed time period (e.g. the present). The further we look back in the past, the longer 

time sources have to grow and hence their rank densities r are described by  

 

1 1

tr c a                                                            (10) 

 

for 1   (by (6)). 

 

By (7) we have for the item density on rank density r: 

 

  2 2

t tgr ca                                                      (11) 

 

Combining (10) and (11), using that 

 

1

1

ln

ln

r

c

t a


 
 
 

                                                        (12) 

 

yields 

 

 
1

1

2 2

ln

ln

2

t

r

c

a

c a
g r

a

 
 
 



                                                     (13) 
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 
2

1 1

2 2

ln
ln

ln

t

a r

a c

ca
gr

e

 
 
 


                                                       (14) 

 

 
B

g r
r

                                                             (15) 

 

where 

 

2

1

ln

ln

a

a
                                                             (16) 

 

and 

 

2

1

ln

ln

2 2 1

a

atB ca c
 

  
 
 

                                                   (17) 

 

Hence we have shown that Zipf's law is valid. By Proposition 2 we hence have proved Lotka's 

law and, using (5) and (16) we have that 

 

1

2

ln
1

ln

a

a
   

 

So also (8) is proved.           □ 

 

Because of formula (8), 

 



9 

 

1

2

ln
1

ln

a
D

a
   

 

Hence a Lotkaian IPP can be viewed as a self-similar fractal with fractal dimension 1D   . 

 

Naranan dynamics in case of power law growth of 

sources and items 

 

If we replace in Proposition 3 the exponential growth of sources and items by power law 

growth we obtain the result in Proposition 4. 

 

Proposition 4 (Egghe (2012a)):  Let us have an IPP in which 

 

(i) The number of sources  t  grows according to a power law in time t, denoted as 

   1

1

a
t ct                                                          (18) 

 

(ii) The number of items  t  in each source grows according to a power law in time t 

and the growth is the same in each source, denoted as 

  2

2

a
t ct                                                          (19) 

  1 2 1 2, , , 0ccaa . 

Then this IPP has the rank-frequency function  g r  as in (20) 

 

 

2

1

1

2

1

a

ar
gr c t

c

 
     
  

 

                                                 (20) 
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where 
1

10,
a

r ct  . 

 

Proof: Let t be a fixed time period (e.g. the present). The further we look back in the past, the 

longer time sources have to grow and hence their rank densities r are described by 

 

  1

1

a
r c t                                                          (21) 

 

for  0,1  (by(18)). By (19) we have for the item density on rank density r: 

 

    1 2

1 2

a a
grgct ct t                                     (22) 

 

From (21) we have 

 

1

1

1

ar
t

c


 
 
 

                                                      (23) 

 

(22) and (23) yield (20).         □ 

 

Contrary to the classical Naranan case of exponential growth of sources and items, here  g r  

can have convex and non-convex shapes, e.g. including the S-shape described in Proposition 

1 (case (B)). The size-frequency function  f j  corresponding with (20) is described in 

Proposition 5. 

 

Proposition 5 (Egghe (2012a)): Let   and   be as in Proposition 4. Then this IPP has the 

size-frequency function  f j  as in (24) 



11 

 

 
1

2
2

1
1

1
1

2

a

a
a

D
f j

j
t j

c






 
    
  

 

                                              (24) 

 

with 

 

1

1 1

1

2 2

a

ac
D

a c


                                                        (25) 

 

This is easily proved using formula (2) 

 

Based on the possible shapes of  g r  and Proposition 1 we have that  f j  can have the 

shapes of Fig. 1. 

 

In this framework of power law growth of sources and items, we can give a proof of the 

famous law of Herdan, also called Heaps' law (Heaps 1978, Herdan (1960,1964) – see also 

Egghe (2007)) 

 

Proposition 6 (Egghe(2012a)): Let   and   be as in Proposition 4. 

 

Denote, for all 0t  ,    t Tt  the total number of sources at t and by  A t  the total 

number of items at t. Then there exist constants 0K   and  , 0 1   (independent of t) 

such that 

 

 Tt KAt


                                                   (26) 
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Proof:  By (18), 

 

   1

1

a
T Tt ct                                                       (27) 

 

and by definition of  g r  and  A t  

 

 


0

Tt

At grdr  



2

1 11

1

2
0

1

a

a

act r
At ct dr

c

 
     
  

 

                                            (28) 

 

by (20) and (27). But, by (21), (28) equals 

 

   2 1
1

2 1
0

a a
At ct tdct




 



  
   

  212 1
1

12
0
1

aaa a
Atcctt d







                                           (28) 

Denote 

 

 2 1
1

12
0
1

a a
Dcc d




 




    

 

, a constant only depending on 1 2 1, ,c c a  and 2a . Then (28) becomes 

 

  1 2a a
At Dt


                                                     (29) 

 

Formula (27) implies 
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  1

1

1

aT t
t

c

 
 
 

                                                             (30) 

 

Now (30) and (29) yield 

 




1 2

1

1

a a

aTt
At D

c



 
  
 

 

 

or 

 

 Tt KAt


  

 

with 

 

1

1 2

1

a

a a

c
K

D



 

 

and 

 

2

1

1

1
a

a

 

                                                          (31) 

 

It is clear from (31) that 0 1   (since 1 2, 0a a  ).      □ 

 

Note that   only depends on the ratio 
2

1

a

a  of the power law exponents in (18) and (19). 



14 

 

Naranan dynamics for general growth functions of 

sources and items. 

 

Propositions 3 and 4 can be generalized as in Proposition 7. 

 

Proposition 7 (Egghe (2012b)):  Let us have an IPP in which 

 

(i) The number of sources grow according to a differentiable injective function  t  

 

(ii) The number of items in each source grow according to a differentiable injective 

function  t  which is the same for every source. 

 

Then this IPP has the rank-frequency function  g r  as in (32) 

 

  1gr t r                                               (32) 

 

Proof:  Let 0t   be fixed and  0,1 . 

 

By definition of the generalized Naranan framework we have that sources that are born at t  

have a period equal to t   to “grow” items. Hence, ranking sources in decreasing order of 

their number of items, we have, by definition of the rank-frequency function  g r : 

 

 r t                                                      (33) 

 

and 

 

    grg t t t                                   (34) 
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Formula (33) implies 

 11
r

t
                                                           (35) 

 

So (35) in (34) yields (32).          □ 

 

The size-frequency function is given by Proposition 8. 

 

Proposition 8 (Egghe (2012b)):   Let   and   as in Proposition 7. Then this IPP has the 

size-frequency function  f j  as in (36) 

 


 
 

1

1

'

'

t j
f j

j

 








                                                (36) 

 

This result follows easily from (32) and (2). 

 

With (32) and (36), different growth models of IPPs can be studied. This is left to the reader. 
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