
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A hierarchical Bayesian approach for the analysis of longitudinal count

data with overdispersion: A simulation study

Peer-reviewed author version

AREGAY, Mehreteab; SHKEDY, Ziv & MOLENBERGHS, Geert (2013) A

hierarchical Bayesian approach for the analysis of longitudinal count data with

overdispersion: A simulation study. In: COMPUTATIONAL STATISTICS & DATA

ANALYSIS, 57 (1), p. 233-245.

DOI: 10.1016/j.csda.2012.06.020

Handle: http://hdl.handle.net/1942/14593



A Hierarchical Bayesian Approach for the Analysis of Longitudinal Count

Data with Overdispersion: A Simulation Study

Mehreteab Aregaya, Ziv Shkedyb, Geert Molenberghsb,a

aI-BioStat, Katholieke Universiteit Leuven, Leuven, Belgium

bI-BioStat, Universiteit Hasselt, Diepenbeek, Belgium

Abstract

In sets of count data, the sample variance is often considerably larger or smaller than the sample

mean, known as a problem of over- or underdispersion. The focus is on hierarchical Bayesian
modeling of such longitudinal count data. Two different models are considered. The first one

assumes a Poisson distribution for the count data and includes a subject-specific intercept, which
is assumed to follow a normal distribution, to account for subject heterogeneity. However, such

a model does not fully address the potential problem of extra-Poisson dispersion. The second
model, therefore, includes also random subject and time dependent parameters, assumed to be

gamma distributed for reasons of conjugacy. To compare the performance of the two models, a
simulation study is conducted in which the mean squared error, relative bias, and variance of

the posterior means are compared.

Keywords: Deviance information criteria, Hierarchical Poisson-Normal model (HPN),
Hierarchical Poisson-Normal overdispersed model (HPNOD), Overdispersion.

1. Introduction

In medical research, data are often collected in the form of counts, e.g., corresponding to the

number of times that a particular event of interest occurs. A common model for count data is
the Poisson model, which is rather restrictive, given that variance and mean are equal. Often,

in observed count data, the sample variance is considerably larger (smaller) than the sample
mean — a phenomenon called overdispersion (underdispersion). Generically, this is referred to

as extra-(Poisson)-dispersion (Iddi and Molenberghs 2012). If not appropriately accounted for,
extra-dispersion may cause serious flaws in precision estimation, and inferences based there upon

(Breslow, 1990). However, such excess variation has little effect on estimation of the regression
coefficients of primary interest (Cox, 1983).

One of the approaches to this problem is to assume a specific, flexible parametric distribution for

the Poisson means associated with each observed count. Margolin et al. (1981) assumed a gamma
mixing distribution for the Poisson means which leads to the negative binomial model. The
advantage of this parametric approach is that parameter estimates may be obtained by maximum
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likelihood, leading to estimates that are asymptotically normal, consistent, and efficient if the

parametric assumptions are accurate (Cramér, 1946; Wald, 1949).

Under conditions discussed by Cox (1983), maximum likelihood methods maintain high efficiency
for modest amounts of extra-dispersion, even when not explicitly accounted for in the parametric

model. Pocock et al. (1981) proposed an intermediate solution, via maximum likelihood, to
the problem of fitting regression models to tables of frequencies when the residual variation
is substantially larger than would be expected from assumptions. Williams (1982) proposed

a moment method for logistic linear models, and Breslow (1984) used the method proposed
by Pocock et al. (1981) and Williams (1982) for log-linear models. Furthermore, the quasi-

likelihood method, which can be considered a moment method, was applied for overdispersion
by McCullagh and Nelder (1989) and Wedderburn (1974). The asymptotic properties of all these

moment method for extra-binomial and extra-Poisson variation were studied by Moore (1986).

For modeling longitudinal count data with overdispersion, similarly to Zeger (1988), Thall and
Vail (1990) developed a mixed-effects approach in which the regression coefficients are estimated

by generalized estimating equation and the variance component is estimated using method of
moments. This may be viewed as an extension of Liang and Zeger’s (1986) model for longitudinal

count data. Variance components are generally of broad interest (Pryseley et al. 2011).

Besides, Booth et al. (2003) and Molenberghs et al. (2007) brought together both modeling
strands and allowed at the same time correlation between repeated measures and overdispersion

in the counts. This work was extended by Molenberghs et al. (2010) to data types different from
counts. Molenberghs et al. (2007) termed their model the combined model. All of these authors

conducted parameter estimation and inferences using a likelihood paradigm. In contrast, this
paper takes a likelihood perspective. In particular, two versions of a hierarchical Poisson model
for longitudinal count data are studied. The first one includes subject-specific random effects

to account for subject heterogeneity (a conventional generalized linear mixed model) and the
second one includes an additional parameter accounting for overdispersion, generated through

an additional gamma distributed random effect (a combined model). The two models are applied
to real longitudinal count data and compared using a simulation study.

This paper proceeds as follows. In Section 2, the motivating study is described, which comprises

a set of data on epileptic patients. The statistical methodologies is laid out in Section 3. In
Section 4, the dataset is analyzed, followed by a simulation study in Section 5.

2. The Epilepsy Data

The data set used in this study is obtained from 89 epileptic patients that are randomized

into either placebo or novel anti-epileptic drug (AED), in combination with one or two other
AED’s after a 12-week run-in period. 45 patients were assigned to the placebo group, the rest

to AED. This is a double-blind, parallel group multi-center study. Patients were measured
weekly and followed during 16 weeks. That said, some patients were measured up to 27 weeks.

The aim of the study was to compare between the groups, the number of seizures experienced
during the last week. Note that there are relatively few observations from 20 weeks onwards.

Table 1 shows the number of measurements at a selection of time-points. These data were used
as one of the three illustrating examples in Booth et al. (2003) who also considered models

for longitudinally observed counts that accommodate, at the same time, overdispersion and
correlation between repeated measures; for a more elaborate discussion regarding the data, refer
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Table 1: Epilepsy Data. Number of measurements available at a selection of time points, for both treatment groups
separately.

# Observations

Week Placebo Treatment Total

1 45 44 89
5 42 42 84

10 41 40 81
15 40 38 78

16 40 37 77
17 18 17 35
20 2 8 10

27 0 3 3

Table 2: Sample mean (Sample variance) at a selection of time-points, for both treatment groups separately.

mean (variance)
Week Placebo Treatment

1 3.17 (17.19) 3.55 (26.39)

3 3.56 (27.87) 5.25 (157.45)
5 3.14 (14.86) 2.33 (8.66)

10 2.44 (8.30) 4.63 (109.37)

15 3.30 (47.49) 3.47 (55.28)
16 1.90 (6.55) 2.38 (22.63)

17 2.61 (14.84) 3.94 (143.56)
19 11.60 (644.30) 1.00 (2.00)

20 2.50 (4.50) 1.13 (2.41)
27 - 2.33 (16.33)

to Faught et al. (1996) and Molenberghs et al. (2007). The individual profile curves for both arms
is shown in Figure 1 and reveals substantial variability between subjects; the graphs also show
the presence of rather extreme values. It was noticed that there was up and down behavior in

the mean evolution. Specifically, on average, there was a substantially higher number of epileptic
seizures on week 19 in the placebo group than in the treatment group (Figure 2). The observed

variances at each week are shown in Figure 2. Notice that there is very high variability in week
19 in the placebo group.

To gain insight into the extent of overdispersion, the sample mean and sample variance at each

week for the treatment and placebo group was calculated (Table 2). Clearly, the sample variance
is much larger than the sample mean, underscoring the presence of overdispersion in the data.

This effect is evident as well from the scale of the mean evolution and variance structure in
Figure 2.
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Figure 1: Individual profiles of the epilepsy data for both treatment groups

3. A Hierarchical Poisson Normal Model with Extra-dispersion

Let Yij represent the number of epileptic seizures that patient i experiences during week j,

i = 1, 2, . . . , 89 and j = 1, 2, . . . , ni, where ni is the number of repeated measurements for
patient i. There are 1419 measurements available in total. We assume the following hierarchical
Poisson-Normal model (HPN): Yij ∼ Poisson(λij|bi) with

ηij = log(λij) = β00 × Ii + β01 × (1− Ii) + β10 × Ii × tij + β11 × (1 − Ii) × tij + bi, (1)

where Ii is an indicator variable which takes value 1 for a treated subject and 0 for a placebo
subject. Hence, the mean response is given by

E(Yij|bi) =

{

β00 + β10 × tij + bi, if active,

β01 + β11 × tij + bi, if placebo.

Here, β = (β00, β01, β10, β11)
′ is the parameter vector of the fixed effects and bi is the subject-

specific parameter. Independent, non-informative prior distributions for both β and bi are used:
bi ∼ N (0, σ2

b) and βlk ∼ N (µlk, σ
2
βlk

), for l = 0, 1, k = 0 (treatment) or 1 (placebo). To
complete the specification of the hierarchical model, assume the following hyper-prior distribu-

tions: σ−2
b ∼ G(0.01, 0.01) and σ−2

βlk

∼ G(0.01, 0.01) Non-informative independent normal priors

µlk ∼ N(0; 100, 000) were specified for the prior means of the components of β (Gelman 2006).

The hierarchical model specified above assumes that the sources of variability associated with
the response variable is related to the Poisson distribution and the subject heterogeneity. For

Poisson regression, this is often not the case and extra variability is called for. A number of early
extensions of the HPN models have been proposed by Breslow (1984) and Lawless (1987). A

commonly encountered step is to allow an overdispersion parameter φ 6= 1, so that Var(Y ) = φµ.
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Figure 2: Mean evolution over time (left panel) and variance structure (right panel) of the epilepsy data for both
treatment groups

This is similar to the moment-based approach, though such moments may arise from a random
sum of Poisson variables, a point made by Hinde and Demétrio (1998a) and Hinde and Demétrio

(1998b). Molenberghs et al. (2007) as well discussed an extension to the HPN model that account
for extra-dispersed count data (HPNOD model). This is effectuated by adding a multiplicative
dispersion parameter to the mean structure, i.e.,

Yij ∼ Poisson(λijθij |bi, θij), (2)

ηij = log(λij). (3)

Hence, the Poisson parameter in (2) has two components. The first is identical to the linear
predictor in (1) and is expressed as (3) and captures covariate dependence, while the second

one captures overdispersion. It is assumed that θij ∼ Gamma(α, 1/α). Thus, E(θij) = α2

and Var(θij) = α3. Molenberghs et al. (2007) assumed that the components θij of the vector

θi = (θi1, θi2, . . . , θini
)′ are independent. Note that for 1/α → ∞, Var(θij) → 0, and the above

HPNOD model is reduced to the HPN model. The same prior distributions for the parameters
as discussed in Section 3 were used. In addition, a uniform distribution U(0, 100) was considered

as the prior distribution of α.

Breslow and Clayton (1993) analyzed the epilepsy data set from Thall and Vail (1990) by
considering the covariates: logarithm of baseline seizure count, treatment, logarithm of age, visit,

and the treatment by log(base) interaction. Similarly, the model specified in (1) is extended with
these effects. The resulting HPN is:

Yij ∼ Poisson(λij|bi),
ηij = log(λij) = β0 + β1 × Ii + β2 × log(basei) + β3 × tij + β4 × log(agei)

+β5 × Ii × tij + β6 × Ii × log(basei) + bi.
(4)

Likewise, the HPNOD becomes:

Yij ∼ Poisson(λijθij|bi, θij),
ηij = β0 + β1 × Ii + β2 × log(basei) + β3 × tij + β4 × log(agei)

+β5 × Ii × tij + β6 × Ii × log(basei) + bi.

(5)
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To aid convergence when fitting the HPN and HPNOD models (4) and (5), respectively, the

covariates log(base), log(age), and Ii × log(basei) were centered about their mean. The same
prior distribution was considered for the parameters as in (1) and (2).

4. Analysis of the Epilepsy Data Set

The model discussed in Section 3 was fitted using the R2Winbugs package. A MCMC simulation

of 100,000 iterations from which the first 10,000 were considered to be the burn-in period and
discarded from analysis, was used to estimate the model parameters. For both models, conver-

gence was assessed using trace plots, estimated potential scale reduction factor, R̂, and Brooks,
Gelman and Rubin’s (BGR) plot (Gelman and Rubin, 1992). Model selection was done using

the Deviance Information Criteria; DIC (Gelman et al., 2004). Diagnostic plots for all param-
eters considered were studied and indicated convergence for all model parameters. The BGR
plot indicates convergence for all model parameters. Moreover, the estimated potential scale

reduction factor R̂ values for all the parameters were close to one, which indicates convergence
for all model parameters.

The posterior means for parameters and DIC values are presented in Table 3. The DIC values of

the HPNOD model (4830.54) is smaller than that of the HPN model (6047.67), which indicates
that the first model is to be preferred.

The posterior mean for the variance of the random effects obtained for the HPNOD model is

equal to 1.152 (credible interval [0.829;1.598]) slightly smaller than the posterior mean obtained
for the HPN model, which is 1.213 (credible interval [0.882;1.657]). Figure 3 shows the scatter

plot of the estimated posterior means b̄i, obtained from the HPN and HPNOD models. The
agreement between both sets is striking but not unexpected. Because the overdispersion random

effect enters the linear predictor as an additional component in the intercept, it does not distort
the interpretation of the random effecs bi, a point on which will be elaborated in Section 5.2.3.

The posterior mean for α is equal to 2.48, which implies that Var(θij) = 2.483 = 15.3 and

E(θij) = 2.482 = 6.21. Figure 4 shows the posterior distribution of θ̄ij , the posterior mean of
the overdispersion parameter for the ith subject at the jth occasion. it is noticeable that the

empirical mean is

E(θ̄ij) =
1

1419

89
∑

i=1

ni
∑

j=1

θ̄ij = 6.21,

which equals 2.482, as reported in Table 3, and as it should. Further, only 5 from θ̄ij (out of

1419) are smaller than 1. This indicates overdispersion. It is observed that there are differences
in the parameter estimates between the HPN and HPNOD models. The estimated posterior

means for the intercept for both treatment groups obtained for the HPN models are positive,
while the sign is reversed for the intercept obtained for the HPNOD model. However, the slope

parameters obtained from both models have similar magnitude and sign. On the other hand,
both models produce non-significant values for the difference and ratio in slopes.

The posterior summary statistics for the model specified by (4) and (5) are shown in Table 4.

Similar to the model in (1) and (2), the DIC value for the HPNOD (4833.79) is smaller than the
DIC value for the HPN (6049.19) model, which establishes that the first model fits better. The

posterior mean of α was equal to 2.495, indicating substantial overdispersion in the data. Note
that the variance of the random effect for both HPN and HPNOD is approximately 0.4. Given
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Table 3: Epilepsy Data. Posterior summary statistics for the HPN and HPNOD

Parameter Mean SD MC error 95% Credible interval Rhat

HPN Comb HPN Comb HPN Comb HPN Comb HPN Comb

β00 0.6441 -1.184 0.1686 0.2494 0.0033 0.0063 (0.306, 0.971) (−1.676,−0.702) 1.00 1.00
β01 0.8243 -0.8717 0.1709 0.2493 0.0033 0.0063 (0.494,1.164) (-1.353, -0.376) 1.00 1.00

β10 -0.0120 -0.0114 0.0043 0.0074 2.17E-05 6.86E-05 (-0.021, -0.004) (-0.023, 0.003) 1.00 1.00
β11 -0.0143 -0.0252 0.0044 0.0072 2.22E-05 7.12E-05 (-0.023, -0.006) (-0.039, -0.009) 1.00 1.00

σ2 1.213 1.152 0.1993 0.1929 6.44E-04 7.09E-04 (0.882,1.657) (0.829, 1.598) 1.00 1.00
β10- β11 0.0023 0.0128 0.0062 0.0107 3.06E-05 9.84E-05 (-0.009, 0.014) (-0.008, 0.034) 1.00 1.00

β10/β11 0.9544 0.5398 4.272 3.883 0.0086 0.0089 (0.227, 2.367) (-0.126, 1.648) 1.08 1.05
α 2.48 0.2138 0.0060 (2.096, 2.938) 1.00 1.00

DIC 6047.57 4830.54

the strong overdispersion in the data (Table 2), the advantage of using HPNOD over HPN is
that the overdispersion not captured by the normal random effect can be accommodated. In

line with expectation, both models produced similar results for the slopes. The difference in
intercepts is not worrisome; this point is addressed in the next section.

Further, both models show that there is an effect of baseline seizure rate and time on the

number of epileptic seizures. However, it was found that the treatment and its interaction with
the baseline seizure count and time do not have a significant effect on the response. These
models produce also non-significant value for age.

Note that the Monte Carlo error quantifies the efficiency of the posterior sample mean for the
corresponding population estimand. As a rule of thumb, a Monte Carlo error < 1 − 5% of the
posterior standard deviation is requested. It is clear from Tables 3 and 4 that the Monte Carlo

error for all parameters satisfies this rule of thumb.

Table 4: Epilepsy Study. posterior summary statistics using HPN and HPNOD model with covarites Age, base,
time, treatment by base interaction and treatment by time interaction.

Parameters Mean Sd MC error 95% Credible interval Rhat

HPN HPNOD HPN HPNOD HPN HPNOD HPN HPNOD HPN HPNOD

β0 0.9691 -0.7611 0.2488 0.3099 0.0075 0.0095 (0.4867, 1.464) (−1.355,−0.1556) 1.01 1.02
β1 -0.4984 -0.5664 0.4612 0.4815 0.0143 0.0150 (-1.414,0.3857) (-1.502, 0.3538) 1.01 1.01

β2 0.9518 0.9566 0.1239 0.131 0.0033 0.0036 (0.7023,1.194) (0.6969,1.209) 1.01 1.00
β3 -0.0139 -0.0236 0.0044 0.0076 2.22E-05 1.06E-04 (-0.0226, -0.0052) (-0.0385, -0.0086) 1.00 1.00

β4 -0.0186 -0.0292 0.2672 0.268 0.0036 0.0036 (-0.5478,0.5061) (-0.5477, 0.5082) 1.00 1.00
β5 0.0007 0.0086 0.0062 0.0107 4.99E-04 1.49E-04 (-0.0114, 0.0128) (-0.0123, 0.0295) 1.00 1.00

β6 0.0392 0.0353 0.1706 0.1756 0.0053 0.0055 (-0.287, 0.3786) (-0.2987, 0.3738) 1.00 1.00
σ2 0.4111 0.3868 0.0078 0.0790 4.46E-04 4.81E-04 (0.2826,0.5865) (0.2565, 0.565) 1.00 1.00
α 2.495 0.2083 0.0058 (2.116, 2.935) 1.01 1.00

DIC 6049.19 4833.79

5. Simulation Study

In this section, a simulation study is presented, conducted to evaluate the performance of the
models discussed above with and without adjustment for extra-dispersion.
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Figure 3: A plot of the random-effect estimates obtained from HPN (x-axis) versus the random effect obtained
from the HPNOD (y-axis), for the analysis of epilepsy data set

5.1. Setup of the Simulation Study

Different settings were considered in this simulation study. The steps for the first setting are
as follows: (1) Data are generated from a Poisson distribution with mean θijλij. For the extra-
dispersion parameter, θij ∼ Gamma(α, 1/α) was assumed. High, moderate, and low overdis-

persion levels were induced by setting α = 0.25; 1; 25, respectively. Additionally, data without
overdispersion were generated as well, i.e., θij = 1. Note that the mean structure for λij was the

same as defined in (4), with true values (β00, β01, β10, β11) = (2,−2, 0.05, 0.2). These values are
chosen to have induce covariate effects and opposite sign for the intercept. To check for robust-

ness, different true values for the regression coefficients in the second and third settings were
used. The main focus was be on the other model parameters, as well as on sample and cluster

sizes. The intra-cluster correlation was varied by specifying different values for the standard
deviation parameter of the random-effects term, i.e., equal to either 0.1 or 0.5. Two covariates

were used; treatment and time. Each subject forms a cluster. Initially, all clusters were equal
in size, with cluster sizes 2, 5, 10, and 20. Sample sizes in this setting were equal to 30, 60, and
120 subjects. Half of the individuals were placed in the treatment arm, with the other half in

the placebo group. This setting led to 4× 4× 2× 3 = 96 different scenarios. (2) Both the HPN
and HPNOD models are fitted, using Bayesian methods; (3) The first and second steps were

repeated 100 times for each scenario. (4) The bias was calculated, relative bias, variance, and
MSE of the parameters, and compared both models.

The second setting was similar to the aforementioned one except for β10 = −0.2, which allows

opposite signs for the slopes. The true values of the third setting were taken from the results
of the epilepsy data set, that is, β00 = 0.655, β01 = 0.9112, β10 = −0.0118, and β11 = −0.0248.

This leads to a total of 4× 2× 2 = 16 scenarios for α, σ2 and β. In this setting, n = 60 and the
cluster size is equal to 10. Evidently, the algorithmic steps in these settings are the same as in
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Figure 4: Kernel density for the posterior distribution of θ̄ij for the analysis of epilepsy data set. The vertical
dashed line is the mean of θ̄ij

the first setting.

For each simulated dataset, the model was estimated using 60,000 MCMC iterations from which
the first 30,000 were considered burn in and discarded from analysis. The number of chains

was 1.

5.2. Simulation Results

5.2.1. Effect on α and σ

For the first simulation study with n = 60, for all settings with overdispersion, the MSE for σ
for the HPNOD model is smaller or equal to that for the HPN model, as can be clearly seen
from Figures 5 and 6. Besides, for all settings, the MSE of the overdispersion parameter α

increases when the overdispersion level increases. There is more bias in α when there is low
overdispersion. For the high overdispersion scenario, the MSE of the HPN model for β00 and

β01 is smaller than the MSE obtained for the HPNOD model. Note that, when the level of
overdispersion is moderate (α = 1), the MSE of β00 and β01 for the HPN model is slightly

smaller compared with the MSE obtained for the HPNOD model. For the low (α = 25) and no
(α → ∞) overdispersion scenarios, the MSE for β00 and β01 obtained for the HPN model is much

smaller than the MSE obtained for the HPNOD model. However, for all levels of overdispersion,
the MSE for the slope parameters β10 and β11 is of the same magnitude for the two models

(Table 5; see Supplementary Appendix). The findings for HPN and HPNOD were similar for
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σ = 0.1 and σ = 0.5, except that the estimates were slightly more precise and unbiased for

σ = 0.5 (Table 5, see Supplementary Appendix).

5.2.2. Effect of Sample Size and Cluster Size

The results obtained for both models indicate that, as expected, the MSE, variance, and bias
decrease as the sample size increase (Figures 5, 6, and 7, see Supplementary Appendix). Note

that for the low overdispersion scenario, for a cluster size of 2, the HPN model introduces high
variance and MSE for β01 and β11. On the other hand, if the data are generated without

overdispersion, for clusters of size 2, the HPNOD model results in high variability and MSE
value for β01 and β11. This suggests caution, for both models, with small cluster size

5.2.3. Effect of β

To check the robustness of the simulation result with regard to the true values of β, two additional

scenarios were considered. The findings (see Supplementary Appendix) were similar to the
previous findings for the first scenario in Section 5.2.1.

Furthermore, data were generated according to the model specified in (1) and (2) with unbal-

anced time points (unequal cluster size), similar to the epilepsy data set as discussed in Section 2.
In this setting, 60 individuals were considered over variable numbers of periods of time up to
a maximum of 27 time points. Half of the individuals were assigned to the treatment group.

The true values for the regression coefficients were also here β = (2,−2, 0.05, 0.2), while the
standard deviation of the random effects was 0.1 and 0.5. The results are shown in Table 6. One

notices that the bias, relative bias, variance, and MSE were similar to that of the first scenario
(Section 5.2.1). Also 30 and 120 individuals with unbalanced time points were considered, and

the results (details not shown) were similar to the balanced time points case with the same
number of individuals. Additionally, to gauge the effect of the standard deviation of the random

effect, σ = 2 was employed. The findings were very close to these of σ = 0.5 (details not shown).

To assess the effect of assigning patients randomly to the treatment group, a completely ran-
domized design was used. Each patients has equal probability of being assigned either to the

treatment or to the placebo group. Data were generated according to (1) and (2) and both the
HPN and the HPNOD model were fitted for each simulated data set. The true values for the

regression coefficients were also here β = (2,−2, 0.05, 0.2), while the standard deviation of the
random effects was 0.1 and 0.5. Initially, a sample size of 60 subjects was used, together with
clusters of size 10. The results are shown in Table 7. It can be clearly seen that the results are

similar to the previous setting with the exception that, for the data generated with low overdis-
persion level (α = 25), the bias and MSE of α in this setting were smaller than the previous

one. However, the conclusions which can be drawn from these results are similar to these for the
earlier scenarios. Note that the sample size was varied to 60 and 120 subjects, while the cluster

sizes were set to 2, 5, and 20. The results, omitted for brevity, are similar.

In general, when there is low overdispersion and when the data are generated without overdis-
persion, the HPN revealed more precise and unbiased estimates than HPNOD for the intercepts,

while there was similar precision and unbiasedness in the slopes. This is not unexpected, because
there are three contributions to the intercept in a Poisson model with normal and overdispersion

random effects. Indeed, it can be shown (details omitted), that the marginal expectation of the
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Figure 5: Simulation Study. Comparison of the MSE of the standard deviation of the random effects for different
cluster sizes, using the HPN model (solid line) and HPNOD (dashed line). The x-axis represents the value of α

which shows the amount of overdispersion amount and the y-axis represents the MSE. n = 60

count in the HPNOD equals

E(Yij) = elog E(θij)+x′

ijβ+ 1

2
σ2

.

Hence, logE(θij) + β0 + 0.5σ2 form the intercept. When comparing the HPN and HPNOD, not
simply β0, but rather β0 + log E(θij) ought to be compared. With this in mind, the bias in the

intercept becomes an apparent bias. No such phenomenon plays for the other covariate effects.
On the other hand, the HPNOD revealed less biased and precise estimates than the HPN for

σ. Besides, for all simulation settings, except for clusters of size 2, the MSE and bias of all the
parameters obtained from HPN increases when the overdispersion level increases. This indicates

that HPN is not performing well when there is high overdispersion.

The aforementioned issue with the intercept also shows through the correlation structure of
the various contributions. For example, when there is low overdispersion and when the data

are generated without overdispersion, the correlation between the intercept and overdispersion
parameter α was calculated to be more than 0.94 (Table 8).

To select the best model, the DIC for the HPN and HPNOD was calculated for each data set.

When α is equal to 0.25, the mean DIC value of the 100 data set for the HPN was 7314 which
is too large when compared with the mean DIC value of the HPNOD model: 1629. Similarly,
the DIC value of the HPN model when α = 1 was higher than the DIC value for the HPNOD.

Furthermore, when α = 25 the DIC value for the HPN is higher than for the HPNOD. This
suggests that the HPNOD is performing better when there is overdispersion. On the other hand,

when the data are generated without overdispersion, the HPNOD has slightly smaller DIC value
than the HPN (Table 5 and Figure 8). This indicates that when the data are generated without

overdispersion, both models perform similarly.
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Table 5: Summary of the simulation result of n = 60, t = 10 for over dispersed data with different α values and
without over dispersion data with HPN and HPNOD

α
σ Parameter 0.25 1 25 α→∞

GLMM HPNOD GLMM HPNOD GLMM HPNOD GLMM HPNOD

0.1 β00 Bias -0.2116 2.6697 -0.0343 -0.104 0.0031 -7.0672 -0.0032 -8.7611

Rel.Bias -0.1058 1.3348 -0.0172 -0.052 0.0016 -3.531 -0.0016 -4.3806
var 0.0757 0.1186 0.0191 0.0535 0.0032 0.6291 0.0028 0.0511

MSE 0.1205 7.2457 0.0203 0.0643 0.0032 50.511 0.0028 76.8

β01 Bias -0.2395 2.7100 -0.0559 -0.0937 -0.0617 -7.0687 - 0.0309 -8.8116
Rel.Bias 0.1197 -1.355 0.0279 0.0468 0.0308 3.534 0.0155 4.4058

var 0.1426 0.1789 0.0849 0.1142 0.0691 0.6546 0.0497 0.1060
MSE 0.1999 7.5233 0.088 0.1231 0.0731 50.621 0.0506 77.8

β10 Bias -0.0023 0.0048 -0.002 0.0014 -0.0015 0.0004 0.0007 -0.0014

Rel.Bias -0.0466 0.0961 -0.0406 0.0272 -0.029 0.0086 0.0138 -0.0284
var 0.0021 0.0022 0.0005 0.0004 <0.0001 <0.0001 <0.0001 <0.0001

MSE 0.0021 0.0022 0.0005 0.0004 <0.0001 <0.0001 <0.0001 <0.0001

β11 Bias -0.0051 -0.0043 -0.0016 -0.0055 0.0046 -0.0022 0.0028 0.0037
Rel.Bias -0.0253 -0.0215 -0.0078 -0.0276 0.0232 -0.0011 0.0138 0.0187

var 0.0031 0.0034 0.0018 0.0012 0.0011 0.0009 0.0008 0.0011
MSE 0.0031 0.0034 0.0018 0.0012 0.0011 0.0009 0.0008 0.0011

σ Bias 0.6268 0.2106 0.2396 0.1339 0.0609 0.0606 0.0102 0.0122

Rel.Bias 6.2679 2.1061 2.396 1.3885 0.6089 0.6055 0.1021 0.1215
var 0.0073 0.0025 0.0017 0.0131 0.0003 0.0004 0.0003 0.0003

MSE 0.4001 0.0468 0.0592 0.031 0.0039 0.0078 0.0004 0.0005

α Bias 0.0073 0.0527 12.915
Rel.Bias 0.0293 0.0527 0.5166

Var 0.0004 0.0091 254.35
MSE 0.0004 0.0119 421.135

DIC 7313.68 1628.53 4131.24 2226.50 2154.22 2105.32 2062.11 2051.63

0.5 β00 Bias -0.2116 2.8153 -0.0095 -0.0329 -0.0123 -6.9979 -0.0032 -8.8303

Rel.Bias -0.1058 1.4708 -0.0476 -0.0165 -0.0062 -3.4989 0.0016 -4.4152
var 0.0758 0.1314 0.0369 0.0532 0.0126 0.851 0.0088 0.0438

MSE 0.1205 8.0576 0.046 0.0543 0.0128 49.8 0.0088 78

β01 Bias -0.2395 2.7409 -0.0869 -0.0287 -0.0319 -7.0473 -0.0681 -8.8047
Rel.Bias 0.1197 -1.3705 0.0434 0.0143 0.0159 3.5236 0.0340 4.4024

var 0.1426 0.2374 0.0908 0.1253 0.0525 0.821 0.0667 0.1059
MSE 0.1999 7.7503 0.0983 0.1261 0.0535 50.5 0.0714 77.6

β10 Bias -0.0023 -0.0040 0.0057 0.0024 <0.0001 -0.0003 <0.0001 -0.0002

Rel.Bias -0.0467 -0.0805 0.1141 0.0472 <0.0001 -0.0059 -0.0011 -0.0032
var 0.0021 0.0018 0.0007 0.0005 <0.0001 <0.0001 <0.0001 <0.0001

MSE 0.0021 0.0018 0.0007 0.0005 <0.0001 <0.0001 <0.0001 <0.0001

β11 Bias -0.0051 0.0026 0.0035 0.006 0.0011 0.0034 0.0066 -0.0028
Rel.Bias -0.0253 0.0128 0.0174 0.0300 0.0056 -0.0059 0.0328 -0.0140

var 0.0031 0.0035 0.0015 0.0016 0.0007 0.0010 0.0009 0.0010
MSE 0.0031 0.0035 0.0015 0.0016 0.0007 0.0011 0.0009 0.0010

σ Bias 0.2268 -0.0265 0.1043 -0.0124 0.0106 -0.0073 0.0020 -0.0044

Rel.Bias 0.4536 -0.0531 0.2087 -0.0247 0.0213 -0.0146 0.0040 -0.0087
var 0.0073 0.0168 0.0056 0.0069 0.0041 0.0033 0.0031 0.0035

MSE 0.0587 0.0175 0.0165 0.0071 0.0042 0.0034 0.0031 0.0035

α Bias 0.0021 0.0087 12.5088
Rel.Bias 0.0085 0.0087 0.5044

Var 0.0006 0.0081 335
MSE 0.0006 0.0082 492

DIC 7935.78 1625.49 4374.21 2240.69 2207.83 2152.35 2097.15 2090.63

6. Concluding Remarks

A Bayesian inferential route was proposed for the HPNOD (and the HPN), and compared the

performance of the HPN and HPNOD models on data generated with and without overdisper-
sion. A Bayesian approach was adopted. When the data are generated with high overdispersion

levels, the HPN model leads to higher bias and less precise estimates for the variance of the
random effect (σ2) than the HPNOD. HPN and HPNOD produce similar results for the slopes.

HPNOD and HPN provide similar bias and precision for the slopes and for the random effects

variance σ. To check the problem with the intercept estimates using the HPNOD model, the
correlation between the parameters was calculated.

The intercepts between the two models cannot be directly compared, but only indirectly, given

that it takes the form logE(θij) + β0 + 0.5σ2 in the HPNOD and β0 + 0.5σ2 in the HPN.

A Deviance Information Criterion (DIC) was applied to check the overall performance of both
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Table 6: Summary of the simulation result of the data generated from HPNOD and HPN model with n = 60
individuals, and with unbalanced time points in a way similar to the epilepsy data

α
σ Parameter 0.25 1 25 α→∞

HPN HPNOD HPN HPNOD HPN HPNOD HPN HPNOD

0.1 β00 Bias -0.2742 2.7185 -0.057 -0.0529 -0.0025 -6.7331 -0.0023 -8.8627
Rel.Bias -0.1371 1.3593 -0.0285 -0.0265 -0.0012 -3.3665 -0.0012 -4.4313

var 0.0417 0.0559 0.0132 0.0287 0.0016 0.3048 0.0009 0.0648
MSE 0.1169 7.4464 0.0165 0.0315 0.0016 45.639 0.0009 78.61

β01 Bias -0.2201 2.6775 0.0039 -0.0528 -0.0143 -6.744 -0.0189 -8.8863

Rel.Bias 0.1101 -1.3387 -0.0019 0.0264 0.0072 3.3721 0.0095 4.4431
var 0.1538 0.0699 0.0512 0.0495 0.0159 0.3159 0.0129 0.0740

MSE 0.2022 7.2391 0.0513 0.0523 0.0162 45.800 0.0133 79.04

β10 Bias 0.0013 0.0013 0.0004 -0.0005 <0.0001 0.0001 <0.0001 0.0001
Rel.Bias 0.0263 0.0264 0.0074 -0.0094 0.0006 0.0029 <0.0001 0.0024

var 0.0004 0.0003 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

MSE 0.0004 0.0003 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

β11 Bias 0.0017 0.0051 -0.0039 -0.0002 0.0004 0.0008 0.0008 0.0012

Rel.Bias 0.0084 0.0254 -0.0195 -0.0007 0.0018 0.0043 0.0039 0.0062
var 0.0011 0.0004 0.0003 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

MSE 0.0011 0.0004 0.0003 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

σ Bias 0.6264 0.1261 0.2439 0.0584 0.0241 0.0109 0.0104 0.0082
Rel.Bias 6.2639 1.2608 2.4398 0.5841 0.2414 0.1090 0.1042 0.0819

var 0.0101 0.0027 0.0022 0.001 0.0004 0.0003 0.0002 0.0004

MSE 0.4025 0.0186 0.0617 0.0044 0.0010 0.0003 0.0004 0.0004

α Bias 0.0035 0.0298 5.644
Rel.Bias 0.0138 0.0298 0.2258

Var 0.0003 0.0048 92.475
MSE 0.0003 0.0057 124.351

0.5 β00 Bias -0.2972 2.7655 -0.0679 -0.0306 -0.0137 -6.5554 -0.0085 -8.8618

Rel.Bias -0.1486 1.3827 -0.0339 -0.0153 -0.0069 -3.2777 -0.0042 -4.4309
var 0.0562 0.0583 0.0167 0.0418 0.0118 0.2643 0.0100 0.0676

MSE 0.1445 7.7061 0.0213 0.0427 0.0119 43.237 0.0101 78.599

β01 Bias -0.2978 2.7757 -0.0592 -0.0345 -0.0151 -6.564 -0.0043 -8.8713
Rel.Bias 0.1489 -1.3878 0.0296 0.0172 0.0075 3.2819 0.0021 4.4356

var 0.2927 0.1167 0.0819 0.0609 0.0268 0.2874 0.0204 0.0959
MSE 0.3814 7.8209 0.0854 0.0621 0.0269 43.371 0.0204 78.7959

β10 Bias 0.0024 -0.0003 -0.0008 0.0007 <0.0001 -0.0002 0.0004 0.0003

Rel.Bias 0.0484 -0.0052 -0.0166 0.0145 0.0015 -0.0039 0.0086 0.0064
var 0.0005 0.0004 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

MSE 0.0005 0.0004 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

β11 Bias 0.0058 0.0013 -0.0005 0.001 0.0173 0.0002 -0.0012 -0.0005
Rel.Bias 0.0289 0.0065 -0.0027 0.0052 0.0346 0.0008 -0.0060 -0.0026

var 0.0019 0.0005 0.0004 0.0002 0.0033 <0.0001 <0.0001 <0.0001
MSE 0.0019 0.0005 0.0004 0.0002 0.0036 <0.0001 <0.0001 <0.0001

σ Bias 0.3992 -0.0107 0.1057 0.017 0.0173 0.0172 0.0159 0.0075

Rel.Bias 0.7983 -0.0215 0.2115 0.0340 0.0346 0.0345 0.0319 0.0149
var 0.0171 0.0185 0.0055 0.00056 0.0033 0.0031 0.0036 0.0033

MSE 0.1764 0.0186 0.01657 0.0056 0.0036 0.0034 0.0039 0.0034

α Bias 0.0022 0.0157 2.9087
Rel.Bias 0.0089 0.0157 0.1163

Var 0.0003 0.0057 65.3326
MSE 0.0003 0.0059 73.793
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Table 7: Summary of the simulation result of n = 60, t = 10 for over dispersed data with different α values and
without over dispersion data with HPN and HPNOD using random allocation of patients in to either Treatment
or Placebo group

α

σ Parameter 0.25 1 25 α→∞

HPN HPNOD HPN HPNOD HPN HPNOD HPN HPNOD

0.1 β00 Bias -0.1802 2.7192 -0.0556 -0.0349 -0.0074 -6.9011 -0.005 -8.7534
Rel.Bias -0.0901 1.3596 -0.0278 -0.0174 -0.0037 -3.4506 -0.003 -4.3767

var 0.0604 0.1065 0.0175 0.0442 0.0025 0.5803 0.002 0.0913
MSE 0.0929 7.5007 0.0205 0.0454 0.0025 48.206 0.002 76.71

β01 Bias -0.2637 2.6582 -0.0943 -0.0842 -0.0375 -6.9305 -0.0007 -8.7487

Rel.Bias 0.1318 -1.3291 0.0472 0.0421 0.0188 3.4665 0.0004 4.3767
var 0.1708 0.1579 0.0827 0.1019 0.0647 0.6739 0.054 0.1651

MSE 0.2403 7.2238 0.0916 0.1089 0.0661 48.741 0.054 76.71

β10 Bias -0.0049 -0.0006 -0.0009 -0.0011 0.0002 0.0003 0.0009 0.0010
Rel.Bias -0.0990 -0.0111 -0.0179 -0.0209 0.0029 0.0053 0.019 0.0202

var 0.0017 0.0018 0.0005 0.0005 <0.0001 <0.0001 <0.0001 <0.0001
MSE 0.0017 0.0018 0.0005 0.0005 <0.0001 <0.0001 <0.0001 <0.0001

β11 Bias -0.0033 0.0062 0.0022 0.0039 0.0021 0.0024 -0.003 -0.0031

Rel.Bias -0.0165 0.0312 0.0108 0.0195 0.0106 0.0122 -0.015 -0.0155
var 0.0036 0.0029 0.0016 0.0016 0.0011 0.0011 0.001 0.0011

MSE 0.0036 0.0029 0.0016 0.0016 0.0011 0.0011 0.001 0.0011

σ Bias 0.6288 0.1649 0.2581 0.0871 0.0251 0.0154 0.015 0.0111
Rel.Bias 6.2885 1.6496 2.5808 0.8709 0.2511 0.1543 0.145 0.1113

var 0.0078 0.0050 0.0027 0.0016 0.0004 0.0003 0.0005 0.00005
MSE 0.4033 0.0322 0.0693 0.0092 0.001 0.0006 0.0007 0.00006

α Bias 0.0057 0.0223 9.6462

Rel.Bias 0.0227 0.0223 0.3858
Var 0.0005 0.0075 189.53

MSE 0.0006 0.0080 282.58

0.5 β00 Bias -0.1795 2.7272 -0.0730 0.0005 -0.0095 -6.7143 0.0024 -8.8129
Rel.Bias -0.0898 1.3636 -0.0365 0.0003 -0.0047 -3.3572 0.0012 -4.4065

var 0.0795 0.0984 0.0354 0.0724 0.0106 0.3633 0.0092 0.0467
MSE 0.1117 7.5363 0.0408 0.0724 0.0107 45.445 0.0092 77.71

β01 Bias -0.3174 2.7003 -0.0725 0.0005 -0.0297 -6.7362 -0.007 -8.8225

Rel.Bias 0.1587 -1.3501 0.0362 -0.0003 0.0149 3.3681 0.0004 4.4112
var 0.1637 0.1716 0.0997 0.1152 0.0639 0.4184 0.0607 0.1119

MSE 0.2644 7.4629 0.1049 0.1152 0.0648 45.794 0.0608 77.95

β10 Bias -0.0070 0.0004 0.0033 0.0039 0.0008 0.0007 -0.0005 -0.0005
Rel.Bias -0.1404 0.0071 0.0652 0.0789 0.0166 0.0139 -0.0096 -0.0105

var 0.0020 0.0017 0.0006 0.0006 <0.0001 <0.0001 <0.0001 <0.0001
MSE 0.0020 0.0017 0.0007 0.0006 <0.0001 <0.0001 <0.0001 <0.0001

β11 Bias 0.0066 0.0007 -0.0002 0.0015 0.0001 0.0003 -0.0033 -0.0034

Rel.Bias 0.0329 0.0034 -0.0008 0.0073 0.0007 0.0015 -0.0163 -0.0169
var 0.0029 0.0030 0.0015 0.0014 0.0009 0.0009 0.0008 0.0008

MSE 0.0030 0.0030 0.0015 0.0014 0.0009 0.0009 0.0008 0.0008

σ Bias 0.3807 -0.0039 0.1165 0.0048 0.0259 0.0216 0.0218 0.0204
Rel.Bias 0.7614 -0.0078 0.2330 0.0095 0.0518 0.0432 0.0437 0.0409

var 0.0114 0.0241 0.0050 0.0077 0.0043 0.0044 0.0048 0.0048
MSE 0.1563 0.0241 0.0186 0.0077 0.005 0.0048 0.0052 0.0052

α Bias -0.003 -0.0008 5.564

Rel.Bias -0.0102 -0.0008 0.2226
Var 0.0005 0.0089 89.665

MSE 0.0005 0.0089 120.623

models. The DIC result seems to imply that the HPNOD is much better than the HPN model

for data with high, moderate, and low overdispersion. Nevertheless, the HPNOD model has
slightly smaller DIC values than the HPN for data without overdispersion.

The results of the simulation study also show that there is an effect of cluster size and sample

size. The bias and the MSE decrease when the cluster size increase and there is a slight decrease
of the bias and the MSE when the sample size increases. To investigate the robustness of the

simulation study, three different true values for β were chosen. The results obtained were similar
under these three different true values of β which shows the robustness of the simulation study.

Most of our findings for the analysis of the epilepsy data set are in agreement with the findings

reported in Molenberghs et al. (2007). In both studies, there was a difference in the estimates
of the intercepts and also on the inference of the slopes using both models. The HPNOD model

shows also that there is no significant change in the number of epileptic seizures over time for the
patients who received the treatment while the HPN models does. This underscores the impor-

tance of careful extra-dispersion modeling. Further, both models produce non-significant values
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Table 8: Summary of the correlation between α and the parameters for n = 60 and t = 10 for the HPNOD model

α = 0.25 α = 1 α = 25 α → ∞

β00 -0.58953 -0.8739 -0.96311 -0.97212

β01 -0.55579 -0.53827 -0.94476 -0.94223
β10 -0.08627 -0.0351 0.067976 0.005266

β11 0.103553 -0.24591 0.005057 0.230678
σ 0.103553 -0.24591 0.005057 0.230678
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Figure 6: Simulation Study. Comparison of the MSE of β10 for different cluster sizes using the HPN model (solid
line) and HPNOD (dashed line). The x-axis represents the value of α which shows the overdispersion amount and
the y-axis represents the MSE. n = 60

for the difference and ratio in slopes. However, the study done by Molenberghs et al. (2007)

shows that there is significant difference in the slopes using the HPN. In both studies, the
HPNOD model fits better than the HPN model. Note that our findings are different form the

ones reported in Thall and Vail (1990) and in Lindsey (1993). This should not come as a surprise,
because these authors consider a different set of data, studying different compounds.

To conclude, the HPNOD model performs better than the HPN model for data featuring high,

moderate and low overdispersion level. However, both models perform similarly for data without
overdispersion. Using the HPN model, the bias and MSE of all parameters increases when the

overdispersion level increases. The HPN model results in bias and inefficient estimates for all
parameters, especially for σ and for data with high overdispersion (0 < α <= 0.25). This may

be due to the excess variability resulting from overdispersion not taken into account with the
HPN model. This underscores that we should accommodate the extra-model variability. Further
investigation is needed to answer the question why the HPNOD model is providing unbiased

estimate of the intercepts when the data are generated with moderate overdispersion level but
not when there is high overdispersion, low overdispersion, and no overdispersion.
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Figure 7: Simulation Study. Comparison of the bias of β01 for different cluster sizes using the HPN model (solid
line) and HPNOD (dashed line). The x-axis represents the value of α which shows the overdispersion amount and
the y-axis represents the Bias. n = 60

Supplementary Materials

The web-based Supplementary Materials presents the SAS programs for both the epileptic pa-
tients data analysis as well as for the onychomycosis trial.
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Figure 8: Simulation Study. Comparison of the DIC of HPN and HPNOD for 100 dataset that are generated from
β00 = 2, β01 = −2, β10 = 0.05, β11 = 0.2, and σ = 0.1. The x-axis represents the value of DIC for the HPNOD
model and the y-axis represents the DIC for HPN and the dashed vertical and horizontal line shows the mean of
the DIC for the 100 data sets.
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