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ABSTRACT: This Letter presents the R-package implementation of the recently introduced polynomial method for calculating
the aggregated isotopic distribution called BRAIN (Baffling Recursive Algorithm for Isotopic distributioN calculations). The
algorithm is simple, easy to understand, highly accurate, fast, and memory-efficient. The method is based on the application of
the Newton-Girard theorem and Viet̀e’s formulae to the polynomial coding of different aggregated isotopic variants. As a result,
an elegant recursive equation is obtained for computing the occurrence probabilities of consecutive aggregated isotopic peaks.
Additionally, the algorithm also allows calculating the center-masses of the aggregated isotopic variants. We propose an
implementation which is suitable for high-throughput processing and easily customizable for application in different areas of mass
spectral data analyses. A case study demonstrates how the R-package can be applied in the context of protein research, but the
software can be also used for calculating the isotopic distribution in the context of lipidomics, metabolomics, glycoscience, or
even space exploration. More materials, i.e., reference manual, vignette, and the package itself are available at Bioconductor online
(http://www.bioconductor.org/packages/release/bioc/html/BRAIN.html).

Mass spectrometry has become a fundamental tool in
proteomics, metabolomics, lipidomics, and other high-

throughput studies of complex biochemical samples. The
successful interpretation of mass spectrometry data often
depends on the comparison of the detected signals with
theoretical features of a putative molecule.1−3 One such feature,
referred to as isotopic distribution, originates from the fact that
most biomolecules are composed out of polyisotopic elements.
For small molecules, the calculation of the theoretical isotopic
distribution is relatively easy. However, the calculation becomes
very complex for large molecules such as proteins or polymers,
because of a combinatorial explosion of the number of terms
that must be computed. Therefore, there is a need for efficient
algorithms that overcome the combinatorial problem.4 Most

methods that have been proposed are subject to limitations like,
e.g., loss of accuracy or high time/memory complexity.
In this short note, we present an implementation of the

method for the efficient calculation of aggregated isotopic
distributions called BRAIN (Baffling Recursive Algorithm for
Isotopic distributioN calculations). It should be noted that
BRAIN does not calculate the isotope fine structure of the
molecule, as observed by high-resolution mass spectrometry,
such as FTICR MS. Instead, the BRAIN method lumps
together the isotopic variants with equal nucleon count, hence
the term aggregated isotope distribution. From this perspective,
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the result of BRAIN is similar to the isotope distribution
observed in mass instruments with a resolution of 10 000−50
000. Small mass differences between isotope variants with an
equal nucleon count cannot be distinguished in such mass
spectrometers, because coalescing ion bundles in the mass
detector. For the sake of brevity of presentation, we do not
compare here our approach with competing software packages.
It should be emphasized that a comprehensive comparison with
other programs has been already conducted for a prototype
implementation in MATLAB.5−7

The BRAIN algorithm requires the elemental composition
and the elemental isotope distribution as main input
parameters. The output of BRAIN is the aggregated isotope
distribution in stick representation. Figure 1 displays the
aggregated isotope distribution for a light and heavy molecule.
This aggregated approach does not limit the BRAIN application
for the identification of molecular species in a complex mass
spectrum. Only in the case of extremely high-mass resolution
on FTICR, the assumption of coalescing ion bundles is not
valid anymore, and the isotopic distribution does not appear as
an aggregated distribution. However, identification based upon
MS1 spectra is complex. The monoisotopic and average masses
(separately or combined) can be used to reduce the list of
potential candidates and, in some cases, will return one single
candidate. Therefore, combining MS1-based identification with
MS2-based analysis is a more promising approach and can also
use BRAIN to generate isotope distributions for spectral
comparison.
Our approach uses the concept of the polynomial

expansion8,9 and applies the Newton-Girard theorem and
Viet̀e’s formulae to obtain a simple recursive equation to
calculate the occurrence probabilities of consecutive aggregated
isotopic variants. The method also provides the exact center-
masses of the aggregated isotopic variants.5

■ IMPLEMENTATION
In the formulation of the BRAIN algorithm, we use the
representation proposed by Rockwood and Van Orden.10

Consider a molecule with a composition CvHwNxOySz, i.e., with
v carbon (C) atoms, w hydrogen (H) atoms, x nitrogen (N)
atoms, y oxygen (O) atoms, and z sulfur (S) atoms. For such a
molecule, let us formulate the following polynomial:
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where I is a variable representing the additional neutron
content of a molecule relative to the monoisotopic variant. The
coefficients PC12

, PC13
, ..., PS36 correspond to the natural

abundances of isotopes, e.g., PC12
= 98.93% and PC13

= 1.07%.
The following expansion of the polynomial Q is of interest:
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with n = v + w + x + 2y + 4z indicating the order of the
polynomial or, equivalently, the number of aggregated isotopic
variants (without the monoisotopic variant). The coefficient qj
is equal to the occurrence probability of the j-th isotopic
variant, i.e., the molecule with j additional neutrons as
compared to the monoisotopic one. Using the Newton-Girard
theorem and Viet̀e’s formulae, the following system of recursive
equations for coefficients qj can be obtained:
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Figure 1. Stick representation of the aggregated isotopic distribution of C50H71N13O12 (panel A) and C23832H37816N6528O7031S170 (panel B). In panel
B, the monoisotopic mass is indicated by an arrow. Note that the BRAIN package returns the average mass of the molecule computed by a closed
formula taking into consideration the average mass of the composing elements (function calculateAverageMass).
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where ψl is a power sum of roots of the polynomials QC(I),
QH(I), ..., QS(I). This power sum can be represented as follows:

ψ = + + + +
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with rC, rH, and rN denoting the unique roots of QC(I), QH(I),
and QN(I), respectively. The pair of the conjugate roots of the
second-order polynomial QO(I) are denoted by rO and rO̅, with
a similar notation used for the two pairs of the roots of the
fourth-order polynomial QS(I): rS,1, rS̅,1, rS,2, and rS̅,2. Note that
in this case all roots can be expressed in a closed form. The
recursion in Eq 1 starts by the calculation of the occurrence
probability of the monoisotopic variant: q0 = PC12

v PH1

w PN14

x PO16

y PS32
z .

The occurrence probabilities corresponding to the consecutive
aggregated isotopic variants are calculated recursively using
Eq 1.
The recursive algorithm of BRAIN has been implemented as

an R (http://www.r-project.org) package distributed via
Bioconductor11 under GNU General Public License. The
computational complexity of the algorithm depends on the
required number of the aggregated isotopic variants to be
computed. If only the first 10 variants are required, only 10
iterations are needed. Moreover, the algorithm is memory-
efficient: for each j-th aggregated isotopic variant, only two
values (qj and ψj) need to be stored. The function useBRAIN in
the R package implements several stopping criteria, such as an
upper bound on the coverage (expressed as a percentage) of
the isotopic distribution or on the number of aggregated
isotopic variants to be computed. The R-implementation of
BRAIN is perfectly adapted to high-throughput computation
and batch processing. As in some specific environments (e.g., in
meteorites), the abundances of stable isotopes of particular
atoms may differ from those reported in terrestrial matter; the
user may change values of these abundances in the
configuration file (see file input.R in the source code).

■ PROTEOMIC CASE STUDY

To illustrate the computational performance of the BRAIN
implementation in a high-throughput setting, we have selected
over 50 000 human proteins from the Uniprot database release
2011_1112,13 with the monoisotopic masses lower than 100 000
Da. The goal of this simple case was to explore and model the
relationship between the masses of the monoisotopic and the
most abundant aggregated isotopic variants. The motivation
comes from the fact that, in a mass spectrum, the peak
representing the monoisotopic mass of a molecule does not
necessarily correspond to the most abundant isotopic variant.
In fact, for large molecules, the monoisotopic variant is often
not even visible by mass spectrometry, as can be observed in
Figure 1B. On the other hand, the most abundant variant can
be estimated on the basis of the observed isotope pattern. Thus,
an interesting question is whether the monoisotopic mass of a
molecule can be predicted from the observed mass of the most
abundant variant.
To this aim, the aggregated isotopic distributions of the

selected proteins were calculated. More specifically, the part of
the distribution between the monoisotopic and most abundant
variants was obtained. Afterwards, a regression model was used
to estimate the relationship between the monoisotopic mass
and the mass of the most abundant aggregated variant. As a
result, the following linear formula was obtained: monoMass =
0.482 + 0.9994 × mostAbundantPeakMass.
From the distribution of residuals (c.f. Figure 2A), it can be

seen that an error tolerance of approximately 2 Da should be
allowed when predicting the monoisotopic mass based on the
observed most abundant mass. For this reason, the mass
spectrometry community prefers to characterize the mass of
large molecules by means of the average mass of an observed
isotope cluster. Figure 2B,C shows another representation of
the regression model, with the mass of the monoisotopic
variant regressed against the difference between the masses of
the monoisotopic and the most abundant variants. Analogously,
the linear model predicting average mass from the most

Figure 2. (A) Residuals of the linear model predicting the monoisotopic mass from the most abundant peak mass. The global shape of the residual
distribution is a bell-shape curve with a standard deviation of 0.656. (B) The difference between the masses of the most abundant and monoisotopic
variants is shown as a function of the monoisotopic mass. It is worth mentioning that the mass difference can exceed 60 Da or more for heavy
molecules above 100 000 Da. The green line shows this difference modeled by linear regression. Blue and red colors (B, C) indicate lower and upper
bounds of the 95% prediction interval (PI). Note that prediction intervals refer to a probability interval in which future responses will fall, based on
previous observations, i.e., the Uniprot data mentioned in the manuscript. Panel C illustrates a close-up of the region near 10 Da in panel B. It should
be noted that the vertical lines in panel B are in fact slightly distributed over the mass axis. The regression line in panel B provides a better insight
into the residuals for a given mass interval (C).
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abundant peak mass can also be built using BRAIN (c.f. Suppl.
Figure S1, Supporting Information, for residuals of the model).
Finally, this application study illustrates the power of BRAIN

in high-throughput processing. All computations have been
performed using BRAIN (version 1.4.0.) as an open-source
Bioconductor package on PC with two Intel(R) Core(TM)2
2.40 GHz CPUs and took around 80 min in total to process the
52 589 proteins. To facilitate a comparison with the MATLAB
version of the BRAIN algorithm, Suppl. Table S1 is added to
the Supporting Information.
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