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Abstract

Efficiently planning drayage operations is an important task for transportation
companies since these operations constitute a large part of the cost of an intermodal
transport. In this paper a full truckload vehicle routing problem for transporting
loaded and empty containers in drayage operations is studied. For empty container
transports either the origin or the destination is not predefined. The problem is
formulated as an asymmetric multiple vehicle Travelling Salesman Problem with
Time Windows (am-TSPTW). Two solution approaches are proposed: a sequen-
tial and an integrated approach. For both approaches, a single and a two-phase
deterministic annealing algorithm are presented. Results show that the proposed
algorithms are able to find good quality solutions in a small amount of computa-
tion time. The integrated approach clearly outperforms the sequential one and the
results confirm the advantage of using a two-phase algorithm for vehicle routing
problems with hierarchical objectives. Finally, it is shown that the proposed inte-
grated solution method improves previous results on a similar problem.

Keywords: Vehicle routing, Empty containers, Drayage, Deterministic Annealing

1 Introduction
In the hinterland of a major seaport, drayage operations are concerned with the trans-
port of loaded and empty containers between shippers, consignees, inland container
terminals and container terminals at the port. Efficiently planning these operations is
an important task for shipping lines and transportation companies since they represent
a considerable amount of the total cost of an intermodal transport (Smilowitz, 2006).
Special attention should be paid to minimizing empty container movements since they
are costly non-revenue generating activities.
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Traditionally, a sequential approach is used for the operational planning of loaded
and empty container movements. The problem is decomposed into two subproblems,
an allocation and a routing problem. First, an empty container allocation model is
used to determine the optimal repositioning of empty containers based on the locations
of demand and supply in the region. Such an allocation model minimizes the total
distance travelled by empty containers, without taking vehicle routing decisions into
account. Next, a routing model is used to create efficient vehicle routes performing both
loaded and empty container transport requests (Crainic et al, 1993; Huth and Mattfeld,
2009). The objective is to minimize the number of vehicles used, minimize the distance
travelled, minimize travelling time or a combination of these. Such vehicle routing
models are known to be very complex, especially when time windows are involved
(Cordeau et al, 2007). To solve problems of realistic size often meta-heuristics, such
as tabu search or simulated annealing, are used.

Palmgren et al (2003) describe a similar decomposition approach for the log truck
scheduling problem in the forest industry. The authors solve a transportation problem
to find the possible flow between supply and demand points. When creating feasible
routes for their problem, the results of the transportation problem are used to limit the
number of demand points that can be reached from a certain supply point.

Recently, some efforts are made to integrate the allocation and routing subproblems
in drayage operations described above. By using an integrated approach, thus consid-
ering empty container allocation and vehicle routing decisions simultaneously, drayage
costs may be reduced. Since the origin or destination of empty container transports are
not determined in advance, the resulting problem is even more complex. Although sev-
eral papers have addressed this idea, the advantage of an integrated over a sequential
approach for planning drayage operations, has not been quantified.

In this paper both a sequential and integrated approach are presented and compared
with each other for a full truckload drayage problem with time windows. For both
approaches, the problem is formulated as an asymmetric multiple vehicle Travelling
Salesman Problem with Time Windows (am-TSPTW) and a single and a two-phase
deterministic annealing algorithm are proposed to solve the problem. Results clearly
show that the integrated approach outperforms the sequential one. Besides, results in
this paper confirm the advantage of using a two-phase approach for vehicle routing
problems with the hierarchical objective of first minimizing the number of vehicles
used and second total distance travelled. Finally, to assess the quality of the proposed
solution method, it is shown that our algorithm improves previous results on a similar
problem.

In Section 2, an overview of related literature is given. A detailed problem descrip-
tion, together with an overview of both solution approaches, is presented in Section
3. In Section 4, the proposed deterministic annealing algorithms are described. The
experimental design and results are discussed in Section 5. Finally, conclusions are
drawn and future research opportunities are identified in Section 6.

2 Literature review
In this section, related literature is presented. First, literature on empty container al-
location models and full truckload routing is discussed. Next, recent approaches to
integrate empty container allocation and vehicle routing decisions are described.
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2.1 Empty container allocation models
The objective of an empty container allocation model is to determine the best dis-
tribution of empty containers, while satisfying both known and forecasted demand
(Crainic et al, 1993). Besides empty container demand and supply, repositioning empty
containers in order to be able to satisfy empty container demand in future periods may
be considered. Container allocation models are described among others in Chang et al
(2008); Chu (1995); Crainic et al (1993); Di Francesco et al (2006); Jula et al (2003)
and Olivo et al (2005). For a detailed review of these and other empty container allo-
cation models the reader is referred to Braekers et al (2011).

2.2 Full truckload routing
Routing problems in drayage operations can be classified as full truckload pickup and
delivery problems (Erera and Smilowitz, 2008). The routing problem considered in
this paper is a deterministic Full Truckload Pickup and Delivery Problem with Time
Windows (FT-PDPTW), which can be reduced to an asymmetric multiple vehicle Trav-
elling Salesman Problem with Time Windows (am-TSPTW).

Gronalt et al (2003) develop four savings based heuristics for a FT-PDPTW. Goods
are transported between distribution centers or depots. Vehicles are based at differ-
ent depots and may perform several routes during the planning period. A FT-PDPTW
with multiple vehicle depots and additional weight constraints in the context of log
truck scheduling is studied by Gronalt and Hirsch (2007). Different variants of the
tabu search meta-heuristic are proposed to solve the problem. Imai et al (2007) in-
troduce a full truckload pickup and delivery problem in the context of an intermodal
terminal. Caris and Janssens (2009) extend this problem to a FT-PDPTW by including
time window constraints at the customer locations. The problem is solved by a local
search heuristic. In a subsequent work, a deterministic annealing algorithm is proposed
to solve the problem (Caris and Janssens, 2010). The effect of the introduction of an
appointment-based access control system at a port on full truckload drayage opera-
tions with time windows is studied by Namboothiri and Erera (2008). Mes et al (2007;
2010) propose an agent-based approach for a dynamic version of the FT-PDPTW.

Jula et al (2005) and Wang and Regan (2002) show that a FT-PDPTW may be trans-
formed to an asymmetric multiple vehicle Travelling Salesman Problem with Time
Windows (am-TSPTW) by collapsing each transport request into a single node. Wang and Regan
(2002) use a time window partitioning method to solve the problem. The authors iter-
atively solve an under- and over-constrained version of the problem. Jula et al (2005)
present two exact approaches for solving small instances of the am-TSPTW, using
dynamic programming and genetic algorithms. An insertion heuristic is proposed to
solve large problem instances. Lower bounds on the number of vehicles for the (a)m-
TSPTW are presented by Desrosiers et al (1988) using Lagrangian relaxation, and by
Mitrović-Minić and Krishnamurti (2006) using precedence graphs.

The Multiple Depot Vehicle Scheduling Problem with Time Windows (MDVSPTW),
which is equivalent to a FT-PDPTW with multiple vehicle depots, is studied by Mingozzi et al
(1995); Desaulniers et al (1998) and Hadjar and Soumis (2009). Currently, problems
up to 900 tasks and can be solved to optimality. However, since the problem is applied
in the context of urban bus scheduling, time windows are assumed to be small (maxi-
mum 30 minutes) while in our problem time windows up to four hours are considered.

3



2.3 Integrated approaches
Dejax and Crainic (1987) already suggested that the independent consideration of con-
tainer allocation and vehicle routing neglects possible synergies arising from an in-
tegrated view on these problems. However, Crainic et al (1993) stated that a single
mathematical model comprising container allocations and vehicle routing would be
computationally intractable. Due to the continuous improvement of Operations Re-
search techniques and computer capabilities, this opinion has changed. Recently, a
number of attempts have been made to integrate container (or trailer) allocation and
vehicle routing decisions.

Baldacci et al (2006) study the Multiple disposal facilities and multiple inventory
locations Rollon-Rolloff Vehicle Routing Problem (M-RRVRP). The problem arises in
the sanitation industry where tractors move trailers between customer locations, dis-
posal facilities and inventory locations. Five types of trips are identified. For some trip
types, the origin or destination of an empty trailer is not predefined. A set partition-
ing formulation is used and an exact solution method is proposed. Deidda et al (2008)
propose a static, deterministic optimization model simultaneously addressing the allo-
cation of empty containers between shippers, consignees and a port and the design of
vehicle routes for empty containers. Loaded container transports are not considered.
Vehicles are located at a single depot at the port and have a capacity of two containers.
An exact algorithm is proposed. Huth and Mattfeld (2009) compare the results of a
sequential and an integrated decision making approach for allocating and routing swap
containers in a hub-and-spoke network. Vehicle routing decisions for both loaded and
empty containers with a vehicle capacity of two containers are considered. The allo-
cation problem is modelled as a multi-stage transportation problem while the routing
problem is modelled as a generalization of the pickup and delivery problem. A Large
Neighborhood Search (LNS) is used to solve the routing model in both the sequential
and integrated approach. Results show the advantage of an integrated approach for this
type of problem.

Some integrated approaches for full truckload (drayage) problems with time win-
dows have been proposed as well. Currie and Salhi (2004) propose a tabu search
heuristic for a FT-PDPTW with heterogeneous products and vehicles where the pickup
points of goods to be delivered to customers are not predefined. The objective is to
minimize total costs, including a fixed cost per vehicle used. Smilowitz (2006) stud-
ies the routing and scheduling of loaded and empty trailers or containers in drayage
operations. Trailer allocation decisions are made simultaneously with vehicle routing
decisions by introducing flexible tasks for empty trailers demanded and supplied (ori-
gins resp. destinations are not predefined). Only allocations with a distance smaller
than a threshold are considered as possible executions for a flexible task. The objec-
tive of the model is to both minimize fleet size and travel time. The model is solved
by a branch-and-bound heuristic using column generation. This solution method is
improved in a subsequent work (Francis et al, 2007). Recently, dynamic versions of
this problem are studied by Escudero et al (2011) and Zhang et al (2011a). Another
column generation approach embedded in a branch-and-bound framework for optimiz-
ing drayage operations of trailers is proposed by Ileri et al (2006). A heterogeneous
fleet of drivers with different start and end locations is assumed. The objective is to
minimize costs with company drivers having a different cost structure than third party
drivers. When travelling between certain types of tasks, intermediate stops at empty
container storage and supply locations are introduced to ensure that vehicles arrive at
the starting location of a task appropriately (empty or with an empty trailer). A sim-
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ilar problem, in the context of container transportation, is investigated by Zhang et al
(2009). Empty container allocations are integrated with routing decisions for vehicles
with a single container capacity. A single container terminal and several vehicle depots
with an empty container stock are considered. Vehicles do not need to return to their
starting depot. The objective is to minimize total travel time. It is shown that the prob-
lem can be formulated as a multiple vehicle Travelling Salesman Problem with Time
Windows (m-TSPTW) and multiple depots. A Reactive Tabu Search (RTS) algorithm
is proposed to solve the problem. Zhang et al (2010) extend this problem to a multiple
depot, multiple terminal problem and solve it by a time window partitioning method.
Finally, Zhang et al (2011b) look at the single depot, single terminal problem where the
number of empty containers available at the depot is limited. Again an RTS algorithm
is proposed. It seems that solving this problem is much more complex than solving the
problems in Zhang et al (2009) and Zhang et al (2010) where there is no limit on the
number of empty container available at the depots.

3 Problem description
The problem in this paper is to create efficient vehicle routes performing all loaded and
empty container transport requests in a region during a single day. It is assumed that a
single vehicle depot and one or more container terminals are located in the region. Both
the container terminals and the vehicle depot are opened during the whole planning
period. Empty containers can be stored at each container terminal and sufficient empty
containers are available at each terminal.

A loaded container transport represents a transport from a shipper to a container
terminal (outbound loaded container) or from a container terminal to a consignee (in-
bound loaded container). For each container, the terminal to be used is predefined so
that for all loaded container transports the origin and destination are known in advance.
Time windows are imposed on these transport requests.

For empty container transports, either the origin or the destination is not defined in
advance. A shipper may request an empty container to be delivered before a specific
point in time. The origin of this empty container is irrelevant for the shipper and can
be chosen by the decision maker. On the other hand, a consignee will have an empty
container available after unloading an inbound loaded container. This container be-
comes available at a certain point in time and should be picked up before the end of
the day. The destination of the empty container is determined by the decision maker.
Empty containers can thus be transported from consignees to a container terminal, from
a container terminal to a shipper or directly from a consignee to a shipper.

A homogeneous fleet of vehicles with a single container capacity is assumed. All
vehicles start and end their route at the vehicle depot. When a vehicle arrives early at a
location, waiting is allowed at no cost. The service time to load and unload containers
is constant and the same for loaded and unloaded containers. A hierarchical objective
function is used. The primary objective is to minimize the number of vehicles used
while the secondary objective is to minimize total distance travelled.

The problem described above is similar to the ones studied in Zhang et al (2009)
and Zhang et al (2010), although some differences exist. The objective is twofold in
this paper (first minimize vehicles, then minimize distance) while respectively only
total travelling time and total operation time are minimized in Zhang et al (2009) and
Zhang et al (2010). Besides, when a vehicle delivers a loaded container to a consignee,
it does not have to wait at this location until the container is unloaded and can be picked
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up. Instead, in this paper it is assumed that the vehicle may leave for another task and
an empty container that becomes available at the consignee’s location may be picked
up by any vehicle. Finally, in this paper only a single vehicle depot is assumed and the
empty container stocks are located at the container terminals rather than at the vehicle
depot.

In the following sections, the sequential and integrated solution approaches are
described in detail. To make this discussion more clear, a small example is shown
in Figure 1 to demonstrate how a solution is found by the two solution approaches.
Figure 1(a) shows a small problem situation. The network consists of a vehicle depot,
two container terminals with an empty container stock, a single loaded container that
has to be transported from one of the terminals to a consignee, a single empty container
supply location and a single empty container demand location. No time windows and
a single vehicle are considered in this example. Parts (b), (c) and (d) of Figure 1 are
discussed throughout Sections 3.1 and 3.2.

Figure 1: Illustration of both solution approaches

3.1 Sequential approach
When solving the problem sequentially, empty container allocations are determined
before vehicle routes are created. This may lead to a suboptimal solution but reduces
the complexity of the vehicle routing problem. The allocation model is discussed in
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Section 3.1.1. This model results in a set of empty container transports that need to
be performed. In a second step, the routing problem is solved for loaded and empty
container transports together. This problem is described in Section 3.1.2.

3.1.1 Empty container allocation problem

Based on known demand and supply locations, the best distribution of empty containers
is determined by an allocation model. The objective is to minimize the total distance
travelled by empty containers.

The problem is formulated as a transportation problem. The set of origins is com-
posed of the container terminals and the empty containers supplied by consignees.
Similarly, the set of destinations is composed of the container terminals and the empty
containers demanded by shippers. For each container terminal, supply at the origins
and demand at the destinations are set to respectively the number of empty containers
demanded and supplied in the region. For each possible allocation, the cost is rep-
resented by the distance between the origin and destination. The cost for allocations
that are not feasible because of time window violations is set to a very large value.
Finally, terminal-terminal allocations have a cost of zero since they do not represent
actual movements.

The transportation problem is solved optimally by the well-known Ford-Fulkerson
algorithm (Ford and Fulkerson, 1956). The optimal allocations (consignee-shipper,
consignee-terminal and terminal-shipper) represent the empty container transports that
need to be performed. These transports now have a fixed start and end location. For
each transport, the time window for the start of service at the origin is determined based
on the time windows of the origin and destination.

Solving the empty container allocation problem for the example in Figure 1 leads
to the optimal (least-distance) solution shown in part (b) of this figure. The empty
container supplied is transported to the container terminal on the right while the empty
container demanded is supplied from the container terminal on the left. Another option
is to perform a street turn by transporting the empty container supplied directly to the
empty container demand location, but then the distance traveled by the empty container
would be larger.

3.1.2 Routing problem

Once the empty container transport requests are known, the routing problem becomes a
Full Truckload Pickup and Delivery Problem with Time Windows (FT-PDPTW). Since
vehicles are assumed to have a single container capacity, the origin and destination of
a transport request should be visited immediately after each other by the same vehicle.
Therefore, a transport request may be represented by a single node and the problem
can be formulated as an asymmetric multiple vehicle Travelling Salesman Problem
with Time Windows (am-TSPTW) (Jula et al, 2005; Wang and Regan, 2002).

The following notation is used. Let G = (N,A) be a graph with node set N =
{0,1, ...,n} and arc set A = {(i, j)|i, j ∈N, i ̸= j}. The set of nodes consists of a vehicle
depot (index 0) and n tasks or transport requests to be performed. Each task i ∈ N\{0}
has:

• a start location,

• an end location,
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• a distance di which is the distance to travel directly between the start and end
location,

• a duration si which is the sum of the loading time, the travel time from start to
end location and the unloading time,

• a time window [ai,bi] between which the node should be reached by a vehicle in
order to be able to perform the task in time.

For the vehicle depot (i = 0), di and si are equal to zero and the time window is equal to
the total planning period [0,b0]. It is assumed that the distance and travel time between
two locations are proportional to the Euclidean distance between these locations.

The parameters di j and ti j represent respectively the distance and time to travel
from the end location of task i to the start location of task j. The maximum number of
vehicles available is K and M is a very large number (at least b0 +max(i, j)∈A ti j).

Binary decision variables xi j are used to determine whether any vehicle v ∈V trav-
els directly from the end location of task i to the start location of task j. Continuous
variables ti represent the point in time at which a vehicle starts task i. The routing
problem is formulated as follows:

lexmin(∑
i∈N

x0i, ∑
(i, j)∈A

di jxi j + ∑
i∈N

di) (1)

Subject to

∑
j∈N

xi j = 1 ∀i ∈ N, i ̸= 0 (2)

∑
j∈N

x0 j ≤ K (3)

∑
j∈N

xi j = ∑
j∈N

x ji ∀i ∈ N (4)

ti + si + ti j ≤ t j +M(1− xi j) ∀(i, j) ∈ A, j ̸= 0 (5)
ti + si + ti0 ≤ b0 +M(1− xi0) ∀i ∈ N (6)
ai ≤ ti ≤ bi ∀i ∈ N (7)
ti ≥ 0 ∀i ∈ N (8)
xi j ∈ {0,1} ∀(i, j) ∈ A (9)

As discussed in Section 3, a hierarchical or lexicographic objective function is used
(1). The primary objective is to minimize the number of vehicles used (∑i∈N x0i). The
secondary objective is to minimize total distance travelled, which consists of the dis-
tance travelled from each task to the next (∑(i, j)∈A di jxi j) and the distance travelled to
perform each task itself (∑i∈N di). Constraints (2), (3) and (4) are flow constraints.
Constraint (5) ensures that a vehicle cannot start a new task before finishing the previ-
ous task and travelling to the new one. Constraint (6) ensures that all vehicles return to
the vehicle depot before the end of the planning period. Time windows are represented
by constraint (7). Finally, constraints (8) and (9) make sure that both types of variables
only take on the appropriate values.

Figure 1(b) shows that after solving the empty container allocation problem for
the small example, three transport tasks need to be performed: one loaded container
transport and two empty container transports. Using the vehicle routing problem de-
scribed above leads to the optimal solution for the sequential approach which is shown
in Figure 1(c).
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Table 1: Node parameters
Nodes Distance di Duration si Time window [ai,bi]

i ∈ NV D 0 0 [0,b0]
i ∈ NL Distance between

start and end location
Loading time + travel
time between start
and end locations +
unloading time

[ai,bi]

i ∈ NS 0 Loading time [ai,b0]
i ∈ ND 0 Unloading time [0,bi]

3.2 Integrated approach
When using an integrated approach, empty container allocations are not made before-
hand but simultaneously with vehicle routing decisions. This means that the origin
(destination) of an empty container demanded by a shipper (supplied by consignee) is
not fixed in advance.

The integrated problem can be formulated by creating a node for the vehicle de-
pot, for all loaded container transports and for all feasible empty container allocations.
Extra constraints should impose that exactly one allocation node for each consignee
and for each shipper is chosen. Such a formulation of the problem can be found in
Braekers et al (2010). Solving this problem is however problematic since the number
of possible allocations and thus the number of nodes in the network becomes very large
for problems of a realistic size. Smilowitz (2006) uses a similar approach by defining
feasible allocations as possible executions of a flexible task. To overcome the problem
of the exponential growth of the network, a heuristic column generation approach is
proposed and the number of feasible allocations is restricted by imposing a maximum
distance.

Alternatively, the integrated problem can be formulated like the routing problem for
the sequential approach. This is done by introducing an intermediate stop at a container
terminal when travelling between certain types of nodes (Ileri et al, 2006; Zhang et al,
2009). The node set N is composed of the vehicle depot (NV D, index 0), a set of nodes
for the loaded container transport (NL), a set of nodes for the empty container demand
locations (ND) and a set of nodes for the empty container supply locations (NS).

Again, to each node is assigned a distance di, a duration si and a time window
[ai,bi]. For the vehicle depot and the nodes representing the loaded container trans-
ports, these values are identical as those for the sequential approach. For the empty
container supply and demand locations di is zero and si is equal to the (un)loading
time. Time windows are [0,bi] for demand locations with bi the latest time the con-
tainer should be delivered at node i and [ai,b0] for supply locations with ai the time
that the container becomes available for pickup node i. An overview of these values is
shown in Table 1. The calculation of the distance d̂i j of travelling between two nodes i
and j is shown in Table 2, where r is the number of container terminals in the region.
When an intermediate stop at a container terminal needs to be made, the choice for
the terminal is based on a lowest distance basis. Travel times t̂i j between two nodes
are calculated similarly as the distances, but augmented with the container loading and
unloading time when making an intermediate stop at a container terminal or travelling
directly from an empty container supply to an empty container demand location. The
other variables (K,M,xi j, ti) and the formulation of the problem are the same as for the
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Table 2: Calculation of distance coefficients d̂i j

j ∈ NV D∪NL j ∈ NS j ∈ ND

i ∈ NV D∪NL di j di j mine=1,...,r(die +de j)
i ∈ NS mine=1,...,r(die +de j) mine=1,...,r(die +de j) di j
i ∈ ND di j di j mine=1,...,r(die +de j)

sequential approach, except that variables di j and ti j are replaced by respectively d̂i j
and t̂i j.

Although the formulation is the same, the integrated problem is harder to solve
than the routing problem of the sequential approach. The reason is twofold. First,
the number of nodes slightly increases. Second, the nodes representing the empty
container demand and supply locations have much wider time windows than the nodes
representing empty container transport requests in the sequential approach.

When the integrated approach is used to solve the small example in Figure 1(a), the
optimal vehicle route is determined without first deciding on the origin and destination
of the empty container demanded respectively supplied. Figure 1(d) shows the optimal
solution. Clearly the total distance traveled is less than for the solution of the sequen-
tial approach (shown in Figure 1(c)). The reason for this lower distance is that another
empty container allocation is chosen. In this case, an empty container is transported
directly from the empty container supply location to the empty container demand lo-
cation. Although the distance traveled by empty containers is larger for the integrated
solution (since the optimal container allocation is not chosen), total distance traveled
by the vehicle is smaller than for the solution of the sequential approach.

4 Deterministic annealing algorithms
In the previous section it is shown that for both solution approaches an am-TSPTW
needs to be solved. Solving such a problem exactly for realistic problem sizes is very
hard (Jula et al, 2005). Meta-heuristics can be used to find good and often optimal or
near-optimal solutions. In this paper, a deterministic annealing algorithm is proposed.

Deterministic annealing is a variant on the well-known simulated annealing meta-
heuristic. With deterministic annealing, also known as threshold accepting, a neighbor-
ing solution worsening the objective function is accepted if the worsening is smaller
than a certain threshold (Dueck and Scheuer, 1990). This threshold may be adapted
during the search. Deterministic annealing has been proven more effective than its
stochastic counterpart simulated annealing for several problems. Recently, determinis-
tic annealing has been successfully implemented for a number of vehicle routing prob-
lems (Bräysy et al, 2003; 2008; Caris and Janssens, 2010; Nikolakopoulos and Sarimveis,
2007; Tarantilis et al, 2004).

In Section 4.1, the insertion heuristic used to find a feasible starting solution for
the algorithm is discussed. The local search operators and the deterministic annealing
scheme are respectively described in Sections 4.2 and 4.3. Finally, the implementation
of the algorithm on the problem under study is discussed in Section 4.4.
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4.1 Insertion heuristic
An initial solution for the problem is obtained by a parallel insertion heuristic similar
to the one proposed by Jula et al (2005). Starting from a number of vehicles equal to
the lower bound, a node is randomly selected and inserted in its best possible position.
This operation is repeated until all nodes are inserted. If no insertion is possible, an
additional vehicle is added. The procedure is iterated a number of times to obtain a
good starting solution.

4.2 Local search operators
Several local search operators are used to improve the initial solution. Three opera-
tors try to reduce the distance travelled. With the relocate operator, a node is removed
from its route and reinserted in another route or in another place in its original route.
The 2-Opt* operator (Potvin and Rousseau, 1995) removes an arc from two routes and
recombines the resulting parts, that is: the first part of route one with the second part
of route two and vice versa. The exchange operator swaps a number of nodes be-
tween two routes. Several variations of this operator are used, based on the number of
nodes that are swapped: exchange(1,1), exchange(2,1), exchange(2,2), exchange(3,2)
and exchange(3,3). Only one of these exchange operators is used in an iteration of the
algorithm. For the exchange(1,1) operator the insertion position of a node can also be
one place before or after the removal position of the other node. When two nodes from
a route are swapped to another route, the reverse insertion of these nodes is consid-
ered as well. For each operator, one route is selected randomly and all combinations
of nodes or arcs of this route with those of the other routes are considered. A first
improvement strategy is used.

Finally, two operators try to reduce the number of vehicles by reinserting all nodes
of respectively one or several routes into the other routes. The first operator tries to
insert all nodes of a randomly selected route into the other routes. The second operator
tries to insert all nodes of the p shortest routes into all other routes and p− 1 empty
routes. The parameter p is defined as a percentage of the number of routes in the
solution.

4.3 Deterministic annealing scheme
The proposed deterministic annealing scheme is based on the one in Bräysy et al (2008)
and Caris and Janssens (2010). It is shown in Algorithm 1. The current best solution
Sbest is set to the best solution found by the insertion heuristic and the threshold T
is set to its maximum value Tmax. The deterministic annealing algorithm is iterated n
times. At each iteration, all local search operators are used in a random order. New
solutions with a lower number of vehicles as the current solution are always accepted.
New solutions with the same number of vehicles and total distance lower than the
distance of the current solution plus the threshold T are accepted. If a solution is better
than the best solution found so far, this solution is set as best solution. When no new
best solution has been found, the threshold T is reduced by the threshold reduction
parameter ∆T . Whenever T becomes negative, it is reset to r×Tmax, with r a random
number between zero and one. In case T becomes negative and no improvement has
been found for nimp iterations, the search is restarted from the best solution.
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Algorithm 1 Implementation of the deterministic annealing algorithm
T = Tmax, ilast = 0 and Sbest = best solution of the insertion heuristic
for i = 1→ n do

for j = 1→ m do
Apply local search operator on S and accept or reject new solution S′

if S′ is accepted then
S← S′

if f (S)< f (Sbest) then
Sbest ← S
ilast ← 0

end if
end if

end for
if ilast > 0 then

ilast ← ilast +1
T ← T −∆T
if T < 0 then

T ← r×Tmax
if ilast > nimp then

S← Sbest
ilast ← 0

end if
end if

end if
end for
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4.4 Implementation
In this section, the implementation of the deterministic annealing algorithm on the
problem described in Section 3 is discussed. For both the sequential and integrated
approach a single and a two-phase solution algorithm are presented.

4.4.1 Single phase algorithms

The implementation of the single phase algorithms is straightforward. An initial solu-
tion is found by the insertion heuristic and this solution is improved by the deterministic
annealing algorithm for a predefined number of iterations. All local search operators
are used during the algorithm which means that the number of vehicles and total dis-
tance are minimized simultaneously.

4.4.2 Two-phase algorithms

As pointed out by Bent and Van Hentenryck (2006) and Homberger and Gehring (2005),
simultaneous reduction of the number of vehicles and total distance travelled in vehi-
cle routing problems by a meta-heuristic controlling a neighborhood search, may lead
to an important shortcoming. The objective function often drives the search towards
solutions with a small distance. This complicates reaching solutions with a low num-
ber of vehicles but higher distance, i.e. the search is mainly guided by the secondary
objective. To overcome this shortcoming, a two-phase solution method may be used
where the number of vehicles is minimized during the first phase and total distance
is minimized during the second phase. Homberger and Gehring (2005) present such
a two-phase solution method for the vehicle routing problem with time windows. A
(µ,λ )-evolution strategy is used during the first phase, while a tabu search algorithm
is used during the second phase. Bent and Van Hentenryck (2006) use respectively a
simulated annealing algorithm and a Large Neighborhood Search (LNS) during their
two-phase algorithm for the pickup and delivery problem with time windows. Since
these two-phase methods provide very good results, a two-phase solution method for
the problem in this paper is proposed as well. During both phases the deterministic
annealing meta-heuristic is used.

First phase: reduce the number of vehicles Instead of using objective function (1),
a specific hierarchical objective function presented by Bent and Van Hentenryck (2006)
is used during the first phase of the algorithm. This objective function (10) guides the
search towards solutions with a small number of vehicles, while partially ignoring the
secondary objective of reducing total distance. Parameter lv represents the number of
nodes visited by vehicle v ∈V .

lexmin(∑
i∈N

x0i, −∑
v∈V

l2
v , ∑

(i, j)∈A
di jxi j + ∑

i∈N
di) (10)

The objective function (10) consists of three hierarchically (or lexicographically) struc-
tured objectives. The primary objective is to minimize the number of vehicles used
while the secondary objective is to maximize the sum of the squares of the number
of nodes in each route. Finally, minimizing total distance is the third objective. The
purpose of the second objective is to favour solutions with an unbalanced distribution
of nodes over the vehicles over solutions with an even distribution of nodes, i.e. a solu-
tion with a few long and a few short routes is preferred over a solution where all routes
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have a length close to the average. The idea behind this objective is to remove nodes
from shorter routes and insert them into longer routes, thereby gradually reducing the
number of vehicles (Bent and Van Hentenryck, 2006).

During each iteration of the deterministic annealing algorithm, all five types of
local search operators are applied in a random order. The two route reducing opera-
tors have an effect on the primary objective, while the relocate, 2-Opt*, exchange(2,1)
and exchange(3,2) operators improve the secondary objective. The exchange(1,1), ex-
change(2,2) and exchange(3,3) operators only have an effect on the third objective and
are mainly used to diversify the search. During this phase, the acceptance rule of a
neighboring solution is as follows. A new solution is accepted when it is better as the
current solution according to objective function (10) or when it has the same number of
vehicles and the worsening of the second objective value is smaller than the threshold
value T .

The implementation of the first phase of the sequential algorithm is again straight-
forward: the initial solution found by the insertion heuristic is improved by the deter-
ministic annealing algorithm for a fixed number of iterations. The implementation for
the integrated algorithm is more complex. The insertion heuristic and first phase of the
algorithm are not directly applied on the integrated problem. Instead, an initial solution
is found in the same way as for the sequential problem (by first determining the optimal
empty container allocations by the transportation problem) and during half the number
of iterations of the first phase, the number of vehicles is reduced while keeping the
empty container allocations fixed. Next, the best solution found so far is transformed
to a solution for the integrated problem by relaxing the optimal allocations. During
the second half the number of iterations of the first phase, the number of vehicles is
reduced further.

Second phase: reduce total distance During the second phase, the best solution
found during the first phase is further improved with respect to total distance. The
original objective function (1) is used. The two route reducing operators are not used
since reducing the number of vehicles is not considered anymore.

5 Experimental design and results

5.1 Experimental design
In order to test the robustness of the algorithm, a 24 factorial design is set up (Law,
2007). Four problem characteristics are identified. For each characteristic a high (+)
and low (-) value is determined. The time window width for loaded containers (F1) is a
random number between 60 and 120 minutes (-) or between 120 and 240 minutes (+).
The number of container terminals (F2) is one (-) or three (+). For each instance the
number of nodes (F3) is 100 (-) or 200 (+). These nodes exist of an even amount of
loaded container delivery locations, loaded container pickup locations, empty container
supply locations and empty container demand locations. Finally, the (X,Y)-coordinates
of all nodes (F4) are randomly chosen between 0 and 25 kilometers (-) or between 0
and 50 kilometers (+) on both axes. This results in 16 problem classes as shown in
Table 3. For each problem class three random problem instances are generated.

It is assumed that a single vehicle depot is located in the center of the square region
and the location of the container terminals is the same for each instance. The plan-
ning period equals eight hours. Service time for loading/unloading a container is ten

14



Table 3: Overview of problem classes
Class F1 F2 F3 F4 Class F1 F2 F3 F4

1 - - - - 9 - - - +
2 + - - - 10 + - - +
3 - + - - 11 - + - +
4 + + - - 12 + + - +
5 - - + - 13 - - + +
6 + - + - 14 + - + +
7 - + + - 15 - + + +
8 + + + - 16 + + + +

minutes.

5.2 Lower bound
Lower bounds on the sequential and on the integrated problem are found by a time
window partitioning method. Time window partitioning or discretization is introduced
by Wang and Regan (2002) for solving a m-TSPTW. The time window of each node is
partitioned into smaller parts, which are considered subnodes. Binary flow variables for
links between nodes are replaced by binary flow variables for links between subnodes.
Exactly one subnode of each node should be visited and for each node a vehicle must
enter and leave the same subnode. An underconstrained version of the problem is
formulated by replacing constraints (5), (6), (7) and (8) in the formulation of Section
3.1.2 with constraint (11). This underconstrained model results in a lower bound for
the original problem.

xi j(ai + si + ti j−b j)≤ 0 ∀(i, j) ∈ A (11)

Wang and Regan (2002) use an iterative approach by partitioning the time windows
into smaller parts at each iteration. Recently, Zhang et al (2010) improved this method
by immediately looking for a good partitioning width. In this way the underconstrained
problem needs to be solved only once, reducing computation time to a large extent.
The authors found that instances with up to 800 subnodes could be solved efficiently.
In this paper, the method of Zhang et al (2010) is slightly adapted to obtain a better
lower bound. The binary restrictions on the flow variables are relaxed. The resulting
LP-relaxation of the underconstrained model can be solved very efficiently. Therefore,
problems with up to 5000 subnodes can be solved within 5 minutes. The lower bounds
generated in this way are tighter than those generated by the integer restricted problems
in a comparable amount of computation time.

Separate lower bounds are calculated for the sequential and integrated problem. To
obtain a lower bound on the number of vehicles, the objective function of the problem
is changed to minimizing the total time needed to perform all transport requests. The
total time needed is then divided by the length of the planning period to find a lower
bound on the number of vehicles (Koo et al, 2004). A lower bound on the total distance
is found by removing the fixed vehicle costs from the objective function. It should
be noted that lower bounds on the integrated problem are less tight than those of the
sequential problem. The reason is that the average time window width is much larger
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Table 4: Overview of results
Value Sequential Integrated

Single phase Two-phase Single phase Two-phase

Average number of vehicles 10.46 10.04 10.33 9.99
Average gap (absolute) 1.00 0.58 1.08 0.74
Average distance (km) 1813 1837 1805 1815
Average gap (%) 2.78 3.74 4.74 5.33
Average computation time (s) 3.40 5.38 4.27 6.59

for the integrated problem. Therefore the partitioning width was chosen somewhat
wider in order to ensure a lower bound is found within reasonable computation time.

5.3 Results
The best parameter values are found by testing the algorithms for a single problem
instance of each class. Best results are achieved with the following parameter values.
The insertion heuristic is iterated 1000 times to obtain a good starting solution. The
deterministic algorithm is run for 50000 iterations (during each phase). For the single
phase algorithms and the second phase of the two-phase algorithms, the maximum
threshold value Tmax is set at 4 kilometers for 25 square kilometer regions and at 8
kilometers for 50 square kilometer regions. The threshold reduction parameter ∆T is
set at Tmax/2500. During the first phase of the two-phase algorithms the maximum
threshold value Tmax is set at 6 for the sequential algorithm and at 12 for the integrated
algorithm while the threshold reduction parameter ∆T is set at Tmax/1500. For all
algorithms, the reset parameter nimp is equal to five times the number of vehicles used
in the current best solution. The transportation problem and deterministic annealing
algorithm are implemented in C on a 2.1GHz Intel Core 2 laptop with 4GB RAM. The
lower bounds are computed using Lingo 10.0.

All four algorithms are tested on the 48 problem instances. For each instance, av-
erage results over five runs of the algorithm are obtained. Detailed results are shown
in Appendix A. An overview of results is shown in Table 4. The first two rows in
Table 4 show the average number of vehicles used and the average absolute gap with
the corresponding lower bound. The average distance travelled and the average rela-
tive gap with the corresponding lower bound, are presented in rows three and four. In
the last row, average computation in seconds is shown. From Table 4, it can be con-
cluded that all algorithms are able to find good quality solutions in a small amount of
time. A comparison of the sequential and integrated approach should be based on real
values instead of the gaps with the lower bounds since different bounds are calculated
for both problems. Results show that on average the integrated approach offers better
results than the sequential approach, both in terms of the number of vehicles and total
distance. Comparing results of each problem instance individually shows that the inte-
grated approach almost always performs better (21%) or equally good (74%) in terms
of the number of vehicles used. When both approaches result in the same number of
vehicles, the integrated approach is able to find a better solution in terms of distance in
95% of the cases.

It should be noted that although the computation time of the algorithms is very
small, the average computation time of the integrated approach is slightly higher than
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that of the sequential approach. To further substantiate the conclusion that the inte-
grated approach performs best, the computational experiments are redone for the se-
quential algorithms. This time, instead of a fixed number of iterations, the sequential
algorithms are run for the same time as the computation time needed by the integrated
approach. However, the results of the sequential approach hardly improve (same num-
ber of vehicles and average distances of 1812 and 1834 kilometers respectively for the
single and two-phase method) and thus the integrated approach still provides better
results.

When comparing the results of the single and two-phase algorithms, it is clear
that the two-phase method performs much better in terms of the number of vehicles.
Average distances are slightly higher for the two-phase algorithms than for the single
phase algorithms which can be explained by the fact that the two objectives (minimize
vehicles and distance) are often conflicting. Since minimizing the number of vehicles
is prioritized over minimizing total distance, it can be concluded that best solutions are
obtained by the integrated two-phase algorithm. This corresponds with the findings of
Homberger and Gehring (2005) and Bent and Van Hentenryck (2006) that two-phase
methods work well on problems with a hierarchical objective function.

5.4 Comparison with previous results
To further assess the quality of the proposed algorithms in this paper, a comparison
is made with previous results obtained by a time window partitioning method on a
similar problem (Zhang et al, 2010). Since minimizing the number of vehicles used is
not an objective in Zhang et al (2010), a comparison is made with the integrated single
phase algorithm presented in this paper. The objective function of our algorithm is
changed to minimize the total operation time of the vehicles. To meet the assumption
of Zhang et al (2010) that there are multiple vehicle depots with a limited number of
vehicles, the travel times between the vehicle depots and the nodes are initially set
to zero. After a solution has been found by the algorithm, an optimal allocation of
vehicles to the routes is made by solving a small transportation problem. Obviously,
the algorithm could be improved by addressing this decision during the search. For
example, a local search operator that swaps the starting depots of two routes could be
introduced.

In Table 5, average results obtained by the integrated single phase algorithm on
the twenty instances of Zhang et al (2010) are presented and are compared with the
results of the original paper. Average results for instances with the same time window
width are presented. For both methods, the average number of vehicles, the average
gap between the total operation time and the lower bound of Zhang et al (2010) and the
computation time are shown. Results in Table 5 show that the integrated single phase
algorithm presented in this paper outperforms the time window partitioning method
described by Zhang et al (2010). Besides, computation time is small.

6 Conclusions and future research
Drayage operations often constitute a large part of total costs of an intermodal trans-
port. In this paper, a sequential and an integrated approach are proposed to plan loaded
and empty container drayage operations. For both approaches, a single and a two-phase
deterministic annealing algorithm are presented to solve a full truckload routing prob-
lem with time windows. It can be concluded that for both solution approaches good
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Table 5: Comparison of results with Zhang et al (2010)
TW width Zhang et al (2010) Own results

Vehicles Gap (%) Time (s) Vehicles Gap (%) Time (s)

1h 47.6 1.20 103 47.1 1.13 3
2h 48.2 2.68 89 47.2 1.90 3
3h 43.2 3.96 158 40.9 2.69 3
4h 37.4 4.83 124 34.6 4.26 3
Average 44.1 3.17 118 42.5 2.49 3

quality solutions can be obtained in a small amount of time. Results clearly indicate
that the integrated approach performs better than the sequential approach. Besides,
results in this paper confirm the advantage of using a two-phase approach for vehicle
routing problems with a hierarchical objective function. Finally, it is shown that the
proposed integrated solution method improves previous results on a similar problem.

Future research could focus on a number of extensions of the problem addressed
in this paper. The number of empty containers available at each terminal could be as-
sumed to be limited. This strongly complicates the problem as is shown in Zhang et al
(2011b). Another extension may be the problem where for some containers and/or ve-
hicles, two containers can be transported simultaneously by a single vehicle. Finally,
the hierarchical objective function may be replaced by a multi-objective function. In
this way the trade-off between the number of vehicles used and total distance travelled
could be explored.

A Detailed results
Table A.1 shows detailed results for the experiments described in Section 5.3.

References
Baldacci R, Bodin L, Mingozzi A (2006) The multiple disposal facilities and mul-

tiple inventory locations rollon-rolloff vehicle routing problem. Comput Oper Res
33(9):2667–2702

Bent R, Van Hentenryck P (2006) A two-phase hybrid algorithm for pickup and deliv-
ery vehicle routing problems with time windows. Comput Oper Res 33(4):875–893

Braekers K, Janssens GK, Caris A (2010) A deterministic annealing algorithm for si-
multaneous routing of loaded and empty containers. In: Proceedings of the Industrial
Simulation Conference, Budapest, Hungary, pp 172–176

Braekers K, Janssens GK, Caris A (2011) Challenges in managing empty container
movements at multiple planning levels. Transport Rev 31(6):681–708
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