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Conditional models with intermittent missingness: SAS

code and applications
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200 street, Atabey, Playa, Ciudad Habana, Cuba.
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Abstract

The present work provides a set of macros performed over SAS (Statistical
Analysis System) for Windows, capable to fit conditional models under the
problematic scenario of intermittent missingness in longitudinal data. Model
fitting is based on the Missing Completely At Random (MCAR) or Miss-
ing At Random (MAR) assumptions, and the separability condition. The
problem translates to maximization of the marginal observed data density
only, which for Gaussian data is again Gaussian, meaning that likelihood
can be expressed in terms of the mean and covariance matrix of the observed
data vector, thus allowing implementation by means of a matrix oriented
language like IML (Interactive Matrix Language) of SAS. A practical appli-
cation is also given, where a convenient conditional model is fitted to the
data from a clinical trial that assessed the effect of a Cuban product on a
disease of the respiratory system. A parsimonious transition model of order
seven with six parameters is obtained. A strong dependence is detected of the
actual value of the primary endpoint, oxygenation index, on previous values
reached one hour, three hours and seven hours before. Time distinguishes as
a significant covariate: it is possible to say that oxygenation index tends to
raise its values with time. This conclusion conveys a gradual improvement
of patients, at least during the three days of treatment.
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1. Introduction

In a conditional model the parameters describe a feature (expectation,
probability, odds, logit . . .) of a response, given values for the other
responses (Cox, 1972). In a longitudinal study, the subset of conditioned re-
sponses can be conveniently selected as the set of all measurements recorded
earlier in time, or maybe a subset of the more recent measurements (Molen-
berghs and Verbeke, 2005). Such models are known as transition models.
The order of a transition model is the number of previous observations that
is considered to influence the actual one. Molenberghs and Verbeke (2005)
describe in detail how to implement transition models in SAS. They explain
that model fitting is easy, because subsequent measurements, given their past
history, are independent of each other, and hence standard software can be
used, such as the SAS procedure MIXED for Gaussian data, and GENMOD
and LOGISTIC for discrete data. One only needs to ensure that the previous
measurement(s) can be used as a covariate and the useful macro %dropout is
presented. Nevertheless, the proposed method is only valid under monotone
missingness (dropout).

It is not unusual for some measurement sequences in a longitudinal study
to terminate early for reasons outside the control of the investigator. Any
unit so affected is called a dropout. In addition, intermediate scheduled
measurements might be missed, which are termed intermittent missing val-
ues. In his 1976 paper, Rubin provides a formal framework for the field
of incomplete data by introducing the important taxonomy of missing data
mechanisms, consisting of missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). An MCAR mechanism
potentially depends on observed covariates, but neither on observed nor un-
observed outcomes. An MAR mechanism depends on the observed outcomes
and perhaps also on the covariates, but not further on unobserved measure-
ments. Finally, when an MNAR mechanism is operating, missingness does
depend on unobserved measurements, maybe in addition to dependencies on
covariates and/or on observed outcomes.

Rubin (1976) contributes the concept of ignorability, stating that under
precise conditions, the missing data mechanism can be ignored when interest
lies in inferences about the measurement process. Combined with regular-
ity conditions, ignorability applies to MCAR and MAR combined, when
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likelihood or Bayesian inference routes are chosen, but the stricter MCAR
condition is required for frequentist inferences to be generally valid (Rubin,
1976; Verbeke and Molenberghs, 2000; Molenberghs and Kenward, 2007).

In this work, by means of a refined use of the capabilities of SAS, valid
codes under the general scenario of intermittent missingness patterns present
in data collected of a longitudinal kind are provided, which allow fitting of
the conditional model for Gaussian data formalized in section 2.2. These
codes generalize those described in Molenberghs and Verbeke (2005). The
assumptions about the missingness mechanism now relax to Missing Com-
pletely At Random (MCAR) or Missing At Random (MAR), and the validity
of the regularity conditions that warrant ignorability of the missingness pro-
cess. According to Rubin (1976) and Little and Rubin (1987), the problem
then translates to maximization of the marginal distribution of the observed
data; for Gaussian data, this marginal distribution is again Gaussian, mean-
ing that the objective function can be expressed in terms of the mean and
covariance matrix of the observed data vector. This fact allows solving the
problem via a matrix oriented programming language such as IML in SAS.

In the next section some theory is revised. Section 2.1 formalizes the
assumptions supporting ignorability and section 2.2 defines a general kind
of transition model, with useful results. Next, in section 3, the macros are
briefly described, with all the necessary code developed in the appendix.
Section 4 is devoted to a practical application, where a convenient conditional
model is fitted to the data from a Cuban clinical trial. A brief discussion is
presented in section 5. Finally, section 6 provides some concluding remarks.

2. Theoretical framework

2.1. Direct likelihood

The present work assumes an MCAR-MAR missingness mechanism, and
that the regularity conditions that warrant ignorability of the missingness
process are satisfied. Namely (see Verbeke and Molenberghs, 2000), let us
decide to use likelihood based estimation. The full data likelihood contribu-
tion for subject i assumes the form

L∗
i (θ, ψ|yi, ri) ∝ f(yi, ri|θ, ψ)

Here Yi = (Yi1, ..., Yini
) is the response vector, Ri = (Ri1, ..., Rini

) is the
missingness indicator vector (Rij = 1 if Yij is observed, Rij = 0 if Yij is
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not observed), θ and ψ are parameter vectors that describe the measurement
and missingness processes, respectively, and the dependence on covariates is
omitted to simplify notation. Since inference has to be based on what is
observed, the full data likelihood L∗ has to be replaced by the observed data
likelihood L:

Li(θ, ψ|y
o
i , ri) ∝ f(yoi , ri|θ, ψ)

with

f(yoi , ri|θ, ψ) =

∫

f(yi, ri|θ, ψ)dy
m
i =

∫

f(yoi , y
m
i |θ)f(ri|y

o
i , y

m
i , ψ)dy

m
i

and
Y o
i = subvector of observed responses

Y m
i = subvector of not observed responses

Under a MAR process, we obtain

f(yoi , ri|θ, ψ) =

∫

f(yoi , y
m
i |θ)f(ri|y

o
i , ψ)dy

m
i = f(yoi |θ)f(ri|y

o
i , ψ)

If, further, θ and ψ are disjoint in the sense that the parameter space of
the full vector (θ, ψ) is the product of the parameter spaces of θ and ψ, then
inference can be based on the marginal observed data density only. This
technical requirement is referred to as the separability condition. When the
separability condition is satisfied, and within the likelihood framework, the
missingness mechanism may be ignored.

2.2. General Model

A transition model, enlarged with a random effect and a measurement
error, is defined next. This model constitutes a basic material for our further
developments. The model is:























Yij = Xijβ + bi + δij + εij
δij = α1δi,j−1 + α2δi,j−2 + ...+ αnδi,j−n + zij , j > n
bi ∼ N(0, d2); δi ∼ N(0, λ2H); εi ∼ N(0, σ2IM)
zij independent of (δi1, ..., δi,j−1)
b1, ..., bN , δ1, ..., δN , ε1, ..., εN independent

(1)

Yij represents the response of subject i at time j, 1 ≤ i ≤ N , 1 ≤ j ≤
M , N is the number of subjects, M is the number of measurements over
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time, Xij is a (1 × p) vector of known covariates, β is a (p × 1) vector of
fixed effects related to the mean structure, bi represents a random intercept,
δi = (δi1, δi2, ..., δiM) is a vector of residual terms that relate the actual mea-
surement to the previous n measurements - serial correlation component -,
n is the order of the model, zi = (zi1, zi2, ..., ziM) is a vector of indepen-
dent innovations and εi = (εi1, εi1, ..., εiM) is an extra component reflecting
the variability introduced by the measurement process. It is assumed that
measurement occasions are equally spaced over time and that the correlation
matrix H is of type Toeplitz - constant correlation across each diagonal -,
with generic element hij = |i− j|, where k = Corr(j, j + k), k ≥ 0.

The model just described implies that the variance of Yij is constant and
its value is ν2 = V ar(Yij) = d2+λ2+σ2. Further, the correlation between two
measurements Yij and Yij′ only depends on the time lag k = |j − j′| and its
value is rk = Corr(Yij, Yij′) = Cov(Yij, Yij′)/ν

2 = (d2+λ2ρk)/ν
2. The model

is sensible when there are repeated measurements over time from a certain
quantitative characteristic that does not depend on subjective factors. Let α
and ρ denote the column vectors defined by α = (α1, ..., αn), ρ = (ρ1, ..., ρn).
Define Hm = order m matrix with generic element hij = ρ|i−j|, and define
αj = 0 if j < 1 or j > n. Four propositions are presented next.

Proposition 1. The following relation holds: α1ρ1+...+αnρn+V ar(zij)/λ
2 =

1. In particular, the variance of zij is constant and will be denoted by τ 2.

Proof. If j > n then Corr(δij, δij) = Cov(δij, δij)/λ
2

= Cov(α1δi,j−1 + α2δi,j−2 + ... + αnδi,j−n + zij)/λ
2

⇒ 1 = α1Corr(δi,j−1, δij) + ...αnCorr(δi,j−n, δij) + Cov(zij, δij)/λ
2

⇒ 1 = α1ρ1+ ...αnρn+Cov(zij, α1δi,j−1+α2δi,j−2+ ...+αnδi,j−n+zij)/λ
2

⇒ 1 = α1ρ1 + ...αnρn + Cov(zij, zij)/λ
2

⇒ 1 = α1ρ1 + ...αnρn + V ar(zij)/λ
2

Proposition 2. The following relations hold: ρ = Hn · α, ρj = α1ρj−1 +
α2ρj−2 ++αnρj−n, j ≥ n.

Proof. If m is some natural number greater than n and j, then

δim = α1δi,m−1 + ...+ αnδi,m−n + zim

To get the first relation it is enough to take, in turn, correlation in both
sides with δi,m−1, δi,m−2, ..., δi,m−n. To get the second relation it is enough
to take correlation in both sides with δi,m−j.
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Proposition 3. Let A, B be the squared matrices of order n with generic

elements aij = αi−j, bij = αi+j. Then (In −A− B)ρ = α.

Proof. If C is the matrix with generic element cij = ρi−j · 1(i>j), then
Hn = In+C+CT . Also the following relations hold: C ·α = A·ρ, CT ·α = B·ρ.
Hence, ρ = Hn ·α = (In+C+CT ) ·α = α+C ·α+CT ·α = α+A · ρ+B · ρ,
and α = ρ− (A +B)ρ = (In − A− B)ρ.

Proposition 4. If the matrixHn+1 is positive-definite, then it is also positive-

definite every Hm with m > n.

Proof. Define the column vector x = (ρ1, ρ2, ..., ρm−1). Then

Hm =

(

1 xT

x Hm−1

)

Define the column vector
∼
α= (α1, α2, ..., αm−1) = (α1, ..., αn, 0, ..., 0). If in

the identity

δim = α1δi,m−1 + ...+ αm−1δi,1 + zim

we take, in turn, correlation in both sides with δi,m−1,δi,m−2,...,δi1, we get

x = Hm−1·
∼
α

One also may write

detHm = det

(

1 xT

x Hm−1

)

= det

(

1 xT

x Hm−1

)

det

(

1 0
−H−1

m−1x I

)

= det

(

1− xTH−1
m−1x xT

0 Hm−1

)

= (1− xTH−1
m−1x) detHm−1

The trick of multiplying by a determinant of unit value has been used.

∴ xTH−1
m−1x = xTH−1

m−1Hm−1
∼
α= xT

∼
α= ρTα⇒ detHm = (1−ρTα) detHm−1

⇒ detHm = (1− ρTα)m−n detHn ⇒ detHn+1 = (1− ρTα) detHn

∴ Hn+1 is positive-definite ⇒ detHn > 0, detHn+1 > 0
⇒ 1− ρTα > 0 ⇒ detHm > 0 ⇒ Hm is positive-definite.
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The propositions presented constitute a theoretical pier that justifies and
guides our work. According to proposition 2, the ρj do not constitute new pa-
rameters, but are quantities expressible throw the α’s. That’s why the general
model (1) depends only on n+ p+ 3 parameters α1, ..., αn,β1, ..., βp,d

2,λ2,σ2.
Proposition 4 gives a necessary and sufficient condition for the correct defi-
nition of the model: model (1) is correctly defined if and only if the matrix
Hn+1 is positive-definite. This condition may be reviewed by an iterative op-
timization algorithm to avoid non-feasible operations; for example, extraction
of squared roots to negative numbers due to the presence of matrices that
in theory should be positive-definite but are not because actual estimates lie
outside the parameter space. This situation will be illustrated in section 3.

3. Description of the macros

The main product of this work is developed in the appendix. It is or-
ganized in a group of macros performed over SAS 9.1.3 for Windows, which
allow the fitting of the general model (1). Matrix oriented language IML of
SAS is invoked. The macros are: %start, %definition, %variance, %case i,
%optimization, %estimators, %modelfitting, %dimension. Part I of SAS code
in the appendix develops the first seven ones; these do not change. Macro
%dimension, on the other hand, needs to be updated when model or data
change. Part II of SAS code in the appendix defines a sample data set (see
also section 4.1), and part III fits the data (see also section 4.3).

Macros %start and %definition generate constants and parameters; %vari-
ance creates the variance-covariance matrix of the subvector of observed data;
%case i gathers information on each individual; %optimization contains the
important call to the NLPNRR subroutine of IML, which maximizes the
objective function defined in module loglik of macro %modelfitting; %es-
timators produces estimates of parameters in the model besides precision
estimates and p-values; %modelfitting produces the vector of parameter es-
timates besides its variance-covariance matrix. The implementation of the
objective function, that is, the marginal observed data density, uses the ex-
pressions developed in propositions 1, 2, 3 of section 2.2. The feasibility
of the estimates is tested via module nlc of macro %modelfitting, using the
findings of proposition 4. To see results, just submit the whole SAS code
(Parts I, II and III) as shown in the appendix.
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4. Illustration

4.1. Cuban clinical trial

In 2004 a clinical trial on a new Cuban product intended to treat a disease
of the respiratory system started. The primary endpoint was a quantitative
variate known as oxygenation index, a numeric indicator of the performance
of the respiratory system, with high values indicating good performance and
low values, poor performance. 27 measurements of this variate were taken
from each subject over time. Patients were allocated in two groups: 21 re-
ceived standard therapy plus new product and 18 received standard therapy
only. It was an opened, controlled, randomized phase II clinical trial. Inter-
est focused on detection of a possible favourable effect of the new product
as measured by oxygenation index, assessment of effects of relevant control
variables on the response, and drawing conclusions about the evolution of
the primary endpoint over time.

The product under study was administered every 8 hours during three
days. Measurements of oxygenation index were collected an hour, 4 hours
and 8 hours after each administration for patients who received the product,
and in the scheduled times for patients in the control group. As a result,
measurement occasions were (in hours after start of treatment):

1, 4, 8, 9, 12, 16, 17, 20, 24, 24, 28, 32, 33, 36, 40, 41, 44, 48, 49, 52, 56, 57, 60, 64,

65, 68, 72

Control and secondary variables were also collected. This work will focus
on the control variables age, weight and height, and the important covariate
group.

In the appendix (part II of SAS code), the vertically organized dataset
cubanct is introduced, starting form the horizontally organized dataset cuban
ct h. Each row in cubanct h represents a subject, and each row in cubanct
represents an observation. Because there were 27 measurements of the pri-
mary endpoint per subject over time, and there are 39 subjects enrolled in
the trial, cubanct has a total of 27×39 = 1053 rows. Table 1 shows a portion
of the vertically organized dataset.

There are eleven variables in cubanct: id, idcod, group, age, weight,
height, day, evaluation, hour, time, and oxindex. id is a numerical iden-
tifier; idcod is also an identifying code, with initials from the assistance in-
stitution followed by inclusion number; group is 1 for experimental arm and
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id idcod group age weight height day evaluation hour time oxindex

1 AM-1 2 39 70 1.65 1 1 1 1 188
1 AM-1 2 39 70 1.65 1 1 4 4 211
1 AM-1 2 39 70 1.65 1 1 8 8 195
1 AM-1 2 39 70 1.65 1 2 1 9 153
1 AM-1 2 39 70 1.65 1 2 4 12 233
1 AM-1 2 39 70 1.65 1 2 8 16 ·

· · · · · · · · · · · ·
1 AM-1 2 39 70 1.65 3 3 1 65 ·
1 AM-1 2 39 70 1.65 3 3 4 68 ·
1 AM-1 2 39 70 1.65 3 3 8 72 ·

· · · · · · · · · · · ·
39 VIL-2 2 38 65 1.68 1 1 1 1 132
39 VIL-2 2 38 65 1.68 1 1 4 4 ·
39 VIL-2 2 38 65 1.68 1 1 8 8 143
39 VIL-2 2 38 65 1.68 1 2 1 9 ·
39 VIL-2 2 38 65 1.68 1 2 4 12 ·
39 VIL-2 2 38 65 1.68 1 2 8 16 ·

· · · · · · · · · · · ·
39 VIL-2 2 38 65 1.68 3 3 8 72 ·

Table 1: Portion of cubanct dataset.
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2 for control arm; age (years), weight (kg) and height (m) describe general
characteristics; day (1, 2, 3), evaluation (1, 2, 3), hour (1, 4, 8), and time
(from 1 to 72 hours) describe each measurement occasion (for example: day
2, evaluation 3, hour 4 will always imply time = 24 + 16 + 4 = 44 hours,
wich means that a measurement of the primary endpoint was collected at
hour 4 of evaluation 3 of day 2, that is, 44 hours after start of treatment);
finally, oxindex records values collected from oxygenation index.

Next, the enlarged dataset cubanctiml is defined. For each subject, there
are 72 rows which represent values of corresponding variables, hour after
hour, from hour 1 to hour 72: oxindex is filled with missing data - empty cells
- in new occasions, because its value is unknown; time takes on all values from
1 to 72; id, idcod, age, weight and height remain constant per subject. New
variables are added: logoxindex (natural logarithm of oxygenation index)
and group1 (indicator variable defined as 1 if group = 1, and 0 if group = 2).

4.2. Exploratory data analysis

Figure 1 shows logarithmic oxygenation index mean observed profiles per
treatment group over time. Initially both profiles overlap, but towards the
end a favorable trend for the experimental group is perceived, with systematic
higher values of the primary endpoint. The fitting of a convenient model will
confirm or disclaim this assertion.

Figure 2 shows squared ordinary least squares (OLS) residuals from a
model with a saturated mean structure (all available covariates plus the
group-by-time interaction), thus ignoring that not all measurements are in-
dependent, and a smoothed average trend. This graph, together with plots
of OLS residual profiles (not shown), allows assuming a constant variance
over time.

Sampling correlations of standardized residuals, for pairs of time points
1 hour apart, may be calculated. Their value is around 0.74. Similar cal-
culations may be performed for correlations of residuals 3 hours apart, 4
hours apart... Preliminary results are compatible with the assumption that
correlations of logarithmic oxygenation index depend on the time lag only.

Moreover, following Verbeke and Molenberghs (2000), one can summarize
each individual response vector by a linear combination of its components,
standardize these linear combinations, and then apply a usual normality test
to these summaries, calculated by replacing all parameters by their maximum
likelihood estimates. As an example, the Shapiro-Wilk test does not reject
the null hypothesis of normality, when applied to the standardized sums of
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the components of the individual responses (logarithmic oxygenation index)
for the Cuban data, giving a p-value of 0.49. Histograms and normality plots
confirm this behaviour.

4.3. Model fitting

The results of the preceding section allow conceiving a model of the gen-
eral kind (1) as a reasonable candidate for fitting the Cuban data. Tree facts
support this decision: the approximate constancy of the variance function,
the probable dependency of correlations on the time lag only, and the con-
sistency of the normality assumption with the behaviour of the transformed
primary endpoint.

Hence, as a first candidate for fitting the Cuban data, an order-eighth
transition model is considered. This initial model includes all available covari-
ates age, weight, height, group, time, and also the group-by-time interaction.
The dependent variable is logarithmic oxygenation index. A heuristic justifi-
cation for the choice of the eighth order is that, because the new product was
administered each 8 hours, it is reasonable to hope it be unnecessary to rely
on previous measurements more than 8 hours apart, to explain the actual
measurement of the primary endpoint. Thus our initial, saturated model is
model (1) with Xij = (1, groupi, agei, weighti, heighti, timeij , groupi·timeij),
n = 8, p = 7, N = 39,M = 72, and with groupi taking on the value of the
indicator variable group1 in the i-th patient - see section 4.1 -. When a back-
ward selection method is applied, the following reduced model is obtained,
with beta-parameters renowned:















Yij = β1 + β2timeij + δij
δij = α1δi,j−1 + α3δi,j−3 + α7δi,j−7 + zij , j > 7
δi ∼ N(0, λ2H); zij independent of (δi1, ..., δi,j−1)
δ1, ..., δN , ε1, ..., εN independent

(2)

This is model (1) with six parameters given by β1, β2, α1, α3, α7, λ
2, and

assuming Xij = (1, timeij), p = 2, n = 7, N = 39, M = 72, α2 = α4 = α5 =
α6 = d2 = σ2 = 0. It is a classical transition model of order seven.

Part III of SAS code in the appendix performs model fitting. Stacked
design matrix x, stacked response vector y, preliminary parameter vector
initial, and constants nsub (number of subjects) and ntime (number of mea-
surements per subject), are first created via PROC IML. Next, in macro %di-
mension, values are assigned to the following constants: nbeta = number of

12



Effect Parameter Estimate (s.e.)
Mean structure:

Intercept β1 5.096 (0.065)
Time β2 0.007 (0.001)

Recurrent parameters:
One hour before α1 0.404 (0.050)
Three hours before α3 0.274 (0.051)
Seven hours before α7 0.247 (0.040)

Variance:
var(δij) λ2 0.192 (0.023)

Table 2: Parameter estimates and standard errors obtained from fitting the reduced model
(2).

parameters β (p in model (1)); nalpha = order of the model (n); palpha0 =
components of α to be estimated (the remaining components are set equal to
0); nalfa0 = number of components to be estimated from α; nd = indicator
for d2 (nd = 0 if d2 is set equal to 0; nd = 1 otherwise); nlambda = indi-
cator for λ2 (nlambda = 0 if λ2 is set equal to 0; nlambda = 1 otherwise);
nsigma = indicator for σ2 (nsigma = 0 if σ2 is set equal to 0; nsigma = 1
otherwise); npar = number of parameters. Finally, macros %modelfitting
and %estimators are invoked.

Table 2 presents results from fitting the reduced, final model (2). Only
time remains as a significant covariate and a strong dependence is detected
of the actual value of oxygenation index on previous values reached one hour,
three hours and seven hours before. According to these results, no evidence is
detected of an obvious effect of the new product under study on the behaviour
of the primary endpoint. Neither an influence is detected of covariates age,
weight or height, but we can do claim that oxygenation index tends to raise
its values with the course of time, at least during the 72 hours of treatment;
that is, the condition of the patient improves. Namely, after each hour, the
primary endpoint oxygenation index raises its values by an amount of 0.7%.

5. Discussion

Figure 3 shows observed and fitted individual profiles of logarithmic oxy-
genation index according to model (2), under a conditional interpretation.
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Figure 3: Conditional fitting (dashed lines): Irregularity is recognized.

That is, each point in the profile is defined as the expected actual response,
given the past observed responses. This interpretation is an advantage of the
conditional model formulation. It should be emphasized that, under general
model (1), the response vector Yi = (Yi1, Yi2, ..., YiM) is multivariate normal
with mean Xiβ , where Xi is the matrix with i-th row equal to Xij, and
variance-covariance matrix V = d2JM +λ2H+σ2IM , where JM is anM ×M
matrix of ones. Hence, under a marginal interpretation, the fitted profiles
implied by model (2) are merely straight lines. The conditional interpre-
tation allows keeping a record of the past history, thereby recognizing and
absorbing irregularities in the profiles. The conditional formulation provides
a parsimonious and elegant description of the driving mechanism behind such
irregularities. Further, the parameters in model (1) admit a marginal inter-
pretation, allowing the study of average characteristics in populations, for
example group effects in controlled clinical trials.

It could be confusing the claim that no obvious evidence is detected of an
effect of the Cuban product on one side, and the claim that oxygenation index
tends to raise its values with the course of time on the other side. The first
fact is a between-groups effect, and the second a within-group effect. Thus,
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it should be no contradiction with the absence of one, and the presence of the
other. An explanation of the absence of a group effect and, nevertheless, the
presence of a time effect in the Cuban data, is a probable gradual response
of subjects to standard therapy.

This work is based on the MCAR-MAR assumption. As stated by Molen-
berghs and Verbeke (2005), it is difficult to exclude the option of a more
general missingness mechanism. One solution is to fit an MNAR model.
However, as pointed out by several authors, one has to be extremely careful
with interpreting evidence for or against MNAR using only the data under
study. A sensible compromise between blindly shifting to MNAR models
or ignoring them altogether is to make them a component of a sensitivity
analysis.

In sensitivity analysis, several statistical models are considered simultane-
ously and/or a statistical model is further scrutinized using specialized tools,
such as diagnostic measures. One such promising tool, proposed by Verbeke
et al. (2001), and employed by Thijs et al. (2000) and Molenberghs et al.
(2001), is based on local influence (Cook, 1986). Another option is to con-
sider pattern-mixture models as a complement to selection models (Thijs et
al., 2002; Michiels et al., 2002). Important concepts to consider are: impre-
cision, resulting from the stochastic component of the model and for finite
sampling, and uncertainty, arising from incompleteness in the data. Both
can be combined into uncertainty (Kenward et al., 2001).

It has been considered in this work the general model (1), where the value
of the actual error term is expressed in terms of previous error terms. Al-
ternatively, the value of the actual outcome may be expressed in terms of
values of previous outcomes. Reasoning and code are easily translated to
the second situation, but as Diggle et al. (1994) point out, coefficients then
loose their marginal interpretation. An advantage of the second situation
is the simplicity of codes when there is not random effect or measurement
error (usual transition model). In such a case, if missingness patterns are
only monotone, a standard code as described by Molenberghs and Verbeke
(2005) may be used, resting on PROC MIXED. In the presence of intermit-
tent missingness, it is enough to rest on Multiple Imputation to monotonize
patterns, and then to apply PROC MIXED.

We have provided codes for direct implementation of the likelihood via
PROC IML of SAS. An alternative approach is to rest on the Multiple Impu-
tation method. Thus, intermittent missingness patterns are previously trans-
formed to monotone and the problem of intermittence disappears. Hence, in
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the absence of a random effect or a measurement error, standard code may be
used. However, in the presence of either one of these two stochastic compo-
nents, it is necessary to rely on IML macros or, as an alternative, on PROC
NLMIXED.

The question may arise about the correct definition of general model (1),
which includes a measurement error εij when there are already independent
innovations zij . The answer is that the variance parameter τ 2 of the zij, is
related to λ2, that is, it is not a free parameter. The inclusion of an error
term pursues to add the free parameter σ2, thus giving greater flexibility to
the model.

The main products of this work are the IML macros. There were difficul-
ties in the way that were necessary to overcome. For example, in a beginning
the blc argument of the NLPNRR optimization subroutine was invoked to
avoid interruption of the iterative process by error messages (squared roots
of negative numbers, non-feasible solutions...). The alternative subroutine
NLPQN was then invoked, which admits the ”nlc” argument (non-linear
constrains), with equally adverse results because the implemented algorithm
is not a ”feasible point algorithm” (see SAS Institute Inc., 2004). Finally,
NLPNRR was again invoked and the problem was solved though the resource
of assigning a missing data to the likelihood value, in case of violation of the
feasibility conditions; this trick forces the subroutine to ignore the actual
guess and to test a different one.

With respect to departures from normality, a mixture of normals could
be assumed rather than a normal distribution. But in that case, we sug-
gest relying on the EM (Expectation-Maximization) algorithm, described in
Dempster et al. (1977), for likelihood implementation. The adaptation of the
SAS/IML macros is a matter of future developments.

Morariu and Buimaga-Iarinca (2009) report an application of autoregres-
sive modelling on coding sequence lengths in bacterial genome. Ding et
al. (2007) apply autoregressive modelling to electrocardiogram data. Other
fields of application of autoregressive modelling are: agriculture (annual crop
yield of sugar-beets and their price per ton for example), business (daily stock
prices, weekly interest rates, monthly rates of unemployment and annual
turnovers), meteorology (hourly wind speeds, daily maximum and minimum
temperatures and annual rainfall), geophysics (continuously observation of
the shaking or trembling of the earth in order to predict possibly impending
earthquakes), medicine (an electroencephalogram traces brain waves made
by an electroencephalograph in order to detect a cerebral disease, an electro-
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cardiogram traces heart waves), social sciences (survey of annual death and
birth rates, number of accidents in the home and various forms of criminal
activities), and quality assurance (parameters in a manufacturing process are
permanently monitored in order to carry out on-line inspections).

In general, for data recorded longitudinally in time, it is always recom-
mended to consider the option of a conditional modelling and interpretation
to gain a better understanding of the data generating mechanism or to pre-
dict future values of the response. The assumption of linear dependence
serves to simplify, or make possible, a theoretical analysis.

6. Concluding remarks

We may conclude that it is possible to fit transition models in the presence
of intermittent missingness. This work provides a set of SAS/IML macros to
this respect. A transition model of order 7 with few parameters was fitted to
the Cuban clinical trial data. No evidence of an effect of the new product was
detected, nor an effect of the control variables age, weight or height. A time
effect was nevertheless detected. We can state that the status of the patient
tends to improve with the course of time, probable due to a gradual response
to standard therapy. It is recommended to apply the results obtained in
this work to real situations, with the objective of accumulating practical
experience and to evaluate the behaviour of the presented tools. Also, not
to give inappropriate weight to the conclusions obtained about the Cuban
clinical trial data. Only when other techniques be applied that confirm or
disclaim our results, conclusions about, say, the effect of the Cuban product
under study should be drawn.
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Appendix

SAS Code

/*Part I: SAS macros*/

%macro start;use x;read all into x;use y;read all into y;

use nsub;read all into nsub;use ntime;read all into ntime;

use initial;read all into initial;%mend;

%macro definition;beta=parameters[1:nbeta];

alpha0=parameters[nbeta+1:nbeta+nalpha0];

alpha=j(nalpha,1,0);alpha[palpha0]=alpha0;d2=0;lambda2=0;

sigma2=0;if nd then d2=parameters[nbeta+nalpha0+nd];

if nlambda then lambda2=parameters[nbeta+nalpha0+nd+nlambda];

if nsigma then sigma2=parameters[npar];alphamat=i(nalpha);

do i=1 to nalpha;do j=1 to nalpha;

if i+j<=nalpha then alphamat[i,j]=alphamat[i,j]-alpha[i+j];

if i>j then alphamat[i,j]=alphamat[i,j]-alpha[i-j];end;end;

rho=inv(alphamat)*alpha;nrho=nalpha;nrhho=max(nrho,nrhho);

rhho=j(nrhho,1,0);rhho[1:nrho]=rho;do j=nrho+1 to nrhho;
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rhho[j]=t(alpha)*rhho[j-1:j-nrho];end;%mend;

%macro variance;

vcciobs=lambda2*toeplitz(1//rhho)[indexobs,indexobs];

viobs=d2+vcciobs+sigma2*i(dimyiobs);%mend;

%macro case_i;xi=x[(ind-1)*ntime+1:ind*ntime,];

yi=y[(ind-1)*ntime+1:ind*ntime];mui=xi*beta;

pi=constant("PI");dimyiobs=ncol(loc(yi^=.));

if dimyiobs>0 then do;indexobs=t(loc(yi^=.));

xiobs=xi[indexobs,];yiobs=yi[indexobs];muiobs=mui[indexobs];

%variance;invviobs=inv(viobs);detviobs=det(viobs);end;%mend;

%macro optimization;

con=j(2,npar,.);opt=j(1,11,.);opt[1]=1;opt[2]=5;

call nlpnrr(rc,parest,"loglik",initial,opt,con);%mend;

%macro estimators;proc iml;%start;%dimension;use parest;

read all into parest;use covar;read all into covar;

var=vecdiag(covar);stde=sqrt(var);start cor_1(parameters);

nrhho=1;%dimension;%definition;var_y=d2+lambda2+sigma2;

cor_1=(lambda2*rhho[1]+d2)/var_y;return(cor_1);finish cor_1;

call nlpfdd(cor_1,grad_1,hessian_1,"cor_1",parest);

var_cor_1=grad_1*covar*t(grad_1);stde_cor_1=sqrt(var_cor_1);

parest=parest//cor_1;stde=stde//stde_cor_1;zval=parest/stde;

pval=2*(1-cdf("normal",abs(zval),0,1));pval[nbeta+nalpha0+1:

npar]=1-cdf("normal",zval[nbeta+nalpha0+1:npar],0,1);

create result var {parest stde zval pval};append;

namesbeta=concat("beta",compress(char(1:nbeta)));

namesalpha=concat("alpha",compress(char(t(palpha0))));

namesvar=concat("var_",compress(char(1:nd+nlambda+nsigma)));

namescor="cor_1";

parameter=t(namesbeta||namesalpha||namesvar||namescor);

create parameters from parameter[colname="parameter"];

append from parameter;data result;merge parameters result;run;

proc print data=result;run;quit;%mend;

%macro modelfitting;

proc iml;start nlc(parameters,rho,nrho);c=j(nrho,1,0);

do i=1 to nrho;c[i]=det(toeplitz(1//rho[1:i]));end;

return(c);finish nlc;

start loglik(parameters) global(x,y,nsub,ntime,nrun);

nrhho=ntime;%dimension;%definition;
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if nlc(parameters,rho,nrho)>0 & d2+lambda2+sigma2>0 then do;

ll=0;ind=1;do while (ind<=nsub);%case_i;lli=0;if dimyiobs>0

then lli=-0.5*dimyiobs*log(2*pi)-0.5*log(detviobs)

-0.5*t(yiobs-muiobs)*invviobs*(yiobs-muiobs);

ll=ll+lli;ind=ind+1;end;loglik=ll;nrun=nrun+1;file log;

put nrun;end;else loglik=.;return(loglik);finish loglik;

nrun=0;nrungrad=0;%start;%dimension;%optimization;

call nlpfdd(maxlik,grad,hessian,"loglik",parest);

inf=-hessian;covar=inv(inf);var=vecdiag(covar);stde=sqrt(var);

create parest var {parest};append;

create covar from covar;append from covar;quit;%mend;

/*Part II: Code to generate data sets*/

proc datasets kill;quit;

/*Horizontal Data Set*/

data cubanct_h;input id idcod $5. group age weight height

d1e1h1 d1e1h4 d1e1h8 d1e2h1 d1e2h4 d1e2h8 d1e3h1 d1e3h4 d1e3h8

d2e1h1 d2e1h4 d2e1h8 d2e2h1 d2e2h4 d2e2h8 d2e3h1 d2e3h4 d2e3h8

d3e1h1 d3e1h4 d3e1h8 d3e2h1 d3e2h4 d3e2h8 d3e3h1 d3e3h4 d3e3h8

@@;datalines;

1 AM-1 2 39 70 1.65 188 211 195 153 233 . . . . . . . . . . .

. . . . . . . . . . . 2 AM-10 1 47 135 1.78 148 212 160 226

202 205 313 224 200 184 205 190 190 150 204 230 233 210 . .

. . . . . . . 3 AM-11 2 27 105 1.72 104.5 96.1 86.3 104.6 103

90.1 91.1 94.6 100.1 91.1 80.6 109.8 100.6 109.3 102.8 89.5

88 55.6 54.6 104.9 126.6 222.9 221.6 83.5 91.5 115.8 153.2

4 AM-2 1 57 63 1.73 132 141 190 162 213 233 205 228.8 229.7

197.3 183.5 217.1 194.8 139 144 165 197.4 244 228.4 239 266.2

230 272.4 292.8 243 278 242 5 AM-3 1 61 70 1.6 183 144 129

127 143 115 122.5 280.1 120 97.4 116.9 144 134 150 146 182.5

138 202.5 121.8 129.2 196.5 174 169 199 193 171 142 6 AM-4 2

62 70 1.7 144.2 157.8 . . . 139.2 348 . . 239 . . . . . . . .

. . . . . . . . . 7 AM-5 2 42 80 . 163 136.4 157.6 137 217

162 280 149 . 178 100 100 345 487 456 . . . . . . . . . . . .

8 AM-6 2 60 65 1.62 146.9 181.8 286 236.8 298 320 320 522 354

395 353.2 400 . . . . . . . . . . . . . . . 9 AM-7 1 21 70

1.75 234 358 408 336 350 371 340 340 433 302 203 411 330 361
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396 . . . . . . . . . . . . 10 AM-8 1 33 95 1.7 240 297 276

254 262 353 328 302 280 296 280 . . . . . . . . . . . . . . .

. 11 AM-9 1 54 90 1.65 91 68 91 80 91 100 96 91 127 116 140

173 171 121 208 161 300 331 433 . . . . . . . . 12 CC-1 1 58

75 1.65 99.4 170.8 . . . . . . . . . . . . . . . . . . . . .

. . . . 13 CG-1 2 32 60 1.6 100 110 108 110 114 114 110 114

99 123 130 130 143 146 140 148 146 148 185 190 190 200 200

200 253 244 270 14 CG-2 1 38 95 1.76 203 200 129 . . . . . .

. . . . . . . . . . . . . . . . . . 15 CJF-1 1 58 56.5 1.73

320 276 308 629.9 272 275.6 326.1 424 410 684.2 417.5 423 427

532.1 390.9 380.2 399.2 376.3 383.4 421.5 491.1 491 293 273.8

321.2 328.3 483.9 16 CJF-2 2 67 60 1.57 112 114 162 267 186

331 285 244 131 138 164 241 417 173 442 256 304 229 224 235

322 257 222 270 285 305 251 17 CJF-3 1 75 54 1.63 156 176.5

246 213 237 236 233 247 229 215.8 198.5 137.5 226 219 245 261

297 219 219 294 378.4 267.7 266.8 266.2 433 206 353 18 CJF-5

1 44 50 1.55 132 113.3 125 101 104.7 157.8 128.7 155.3 388.2

244.8 284 288 325 335 360.2 388.9 349.2 353.3 304.6 343.5 343

328 293 326.4 367.4 208.9 207.6 19 CJF-6 2 29 70 1.78 218.3

158 . . . . . . . . . . . . . . . . . . . . . . . . .

20 CJF-7 1 36 50 1.6 117.1 231.7 139.8 107.5 163.2 289.2

139.4 235.8 163.2 209.7 107.5 261.7 202.3 139.8 . . . . . . .

. . . . . . 21 CJF-8 2 72 65 1.63 100 100 128 224 370 153 162

310 167.6 143 143.4 259 . 226 311.5 . 52 252.8 . 223.6 173.9

. 229 181.1 . 196.9 225.4 22 EG-1 1 46 75 . 68.6 68.12 79.8

75 99.8 89.8 77.1 77.1 120 136 139 274 265 . . . . . . . . .

. . . . . 23 EG-4 2 18 70 . 259 303 316 316 356 418 386 378 .

457 515.5 399 284.2 516.8 383 331 306.7 363.2 306.7 341.5 307

431.5 356.5 288 276 278.3 826.6 24 EG-5 2 18 57 1.67 162.16

274.6 255.6 258.3 247.7 209.7 210.8 255.6 119.4 106.94 216.9

198.8 90 119.9 107.7 194.7 230 122.11 176.4 99.05 159.4 143.8

104.1 168.4 76.35 169 80 25 HA-1 1 52 90 1.7 170 232 254 266

280 296 130 230 144 197 254 292 280 268 240 272 276 156 200

220 182 292 334 356 380 380 306 26 HA-2 2 53 80 1.73 . . . .

. . . . . . . . . . . . . . . . . . . . . . . 27 HA-3 1 66 80

1.7 134.4 144.2 143 122.6 142.8 167 124.4 151.6 161 244 138

226 241 181 198 203 156 159 156 159 323 323 197 174 198 230

175.8 28 HA-4 2 39 100 1.82 180 112.8 126 145.2 141.6 185.3
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220 198.8 147 258 310 126 200 194 141.8 150.6 115 169.3 130.8

99.8 208 116.2 92.4 214 130 137 102.6 29 LDS-1 2 41 65 .

170.1 205.8 149.9 . . . . . . . . . . . . . . . . . . . . . .

. . 30 LDS-2 1 65 . . 121.6 143.2 283.9 414 176 136 378.2

157.3 243.2 407 345.2 342.2 396.8 418.8 395 385.75 393.4

387.5 377.7 321.5 330.8 142 257.5 375.75 371.2 304.8 345

31 LDS-3 2 20 52 . 145.1 254.3 111.3 126.6 140.1 126.6 140.1

401.8 201.1 149.7 371.7 153.8 161.4 175.5 233.4 243.3 174.1

201.9 156.4 369.1 175.6 129.5 256.8 164.8 197.6 189 262.1

32 MA-1 1 35 100 1.75 124 100 134 208 224 224 226 236 226 156

184 204 96 104 140 296 224 232 192 196 342 192 208 342 204

192 196 33 ME-1 1 38 100 . 128 244 218.6 206.8 282 363.4 256

. 191.2 183.4 404.3 472 383.6 386 401 400.1 441.6 360 . 364.2

489.2 478 405 464 446.2 415 372 34 ME-2 1 58 65 . 247 263

198.8 206.6 239.4 210.6 336 . 225 . 168 180 . 226 359 217 .

199.6 167.4 221.8 201.2 349.4 216.2 261 . 199.8 222.4 35 ME-3

2 45 200 1.65 144 233.4 100.4 153 464 431.2 465 437.8 460 458

373 329 329 318 444 420 337.6 426 496 442 446 370 462 518 496

334 470 36 ME-4 2 74 75 1.74 138 155.8 104.8 . . . . . . . .

. . . . . . . . . . . . . . . . 37 SA-1 1 40 99.45 1.65 130

124 129.2 147.4 141.6 159 286 214 268 175 216 176 174 220 246

234 270 134.2 169.8 195 212 208 191 170 195 177.8 200

38 VIL-1 1 66 65 1.6 246 238 220 . . . . . . . . . . . . . .

. . . . . . . . . . 39 VIL-2 2 38 65 1.68 132 . 143 . . . . .

. . . . . . . . . . . . . . . . . . .

;

/*Vertical Data Set*/

data cubanct;set cubanct_h;array y(27) d1e1h1--d3e3h8;

do j=1 to 27;day=int((j-1)/9+1);evaluation=mod(int((j-1)/3),3)

+1;hour=(mod(j,3)=1)+4*(mod(j,3)=2)+8*(mod(j,3)=0);time=24

*(day=2)+48*(day=3)+8*(evaluation=2)+16*(evaluation=3)+hour;

oxindex=y(j);output;end;keep id idcod group age weight height

day evaluation hour time oxindex;run;

/*IML Data Set*/

data cubanctiml;set cubanct_h;keep id idcod group age weight

height;run;data cubanctiml;set cubanctiml;do time=1 to 72;

output;end;run;data cubanctiml;merge cubanct cubanctiml;

by idcod time;logoxindex=log(oxindex);group1=group=1;run;
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/*Part III: Code for model fitting*/

proc iml;use cubanctiml;read all var {time logoxindex} into

data;intercept=j(nrow(data),1,1);time=data[,1];create x var

{intercept time};append;y=data[,2];create y var {y};append;

beta=4//0;alpha0=0//0//0;lambda2=0.04;initial=beta//alpha0//

lambda2;create initial var{initial};append;nsub=39;create

nsub var {nsub};append;ntime=72;create ntime var {ntime};

append;quit;%macro dimension;nbeta=2;nalpha=7;palpha0=1//3//7;

nalpha0=nrow(palpha0);nd=0;nlambda=1;nsigma=0;npar=nbeta

+nalpha0+nd+nlambda+nsigma;%mend;%modelfitting;%estimators;
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