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Abstract

The Akaike Information Criterion, AIC, is one of the most frequently used methods to select one or a

few good, optimal regression models from a set of candidate models. In case the sample is incomplete, the

naive use of this criterion on the so-called complete cases can lead to the selection of poor or inappropriate

models. A similar problem occurs when a sample based on a design with unequal selection probabilities, is

treated as a simple random sample. In this paper we consider a modification of AIC, based on reweighing

the sample in analogy with the weighted Horvitz-Thompson estimates. It is shown that this weighted

AIC-criterion provides better model choices for both incomplete and design-based samples. The use

of the weighted AIC-criterion is illustrated on data from the Belgian Health Interview Survey, which

motivated this research. Simulations show its performance in a variety of settings.
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1 Introduction

In a regression analysis, starting from a rich enough family of models and based on the data at hand, one

or a few good models can be selected, e.g. using the Akaike Information Criterion (AIC). In case of missing

data, simple deletion of the subsample of incomplete observations and treating the resulting subsample of

so-called complete cases as a simple random sample has been shown to possibly lead to biased estimates,

even when using a correct model [see 1, 2]. A similar problem occurs when the observations come from

a complex survey design, i.e. when sampling from a finite population with unequal selection probabilities.

Indeed, the probability that an observation is incomplete can also be considered as a selection probability for

that observation to be included in the sample or not. Analyzing such design-based data as a simple random

sample can also introduce bias [3].

There is a vast literature on parametric and nonparametric models in case of incomplete or design-based

samples, but most of it concerns estimation (assuming a correct model) rather than model selection. The

naive use of model selection criteria however turns out to be unreliable in case of the aforementioned compli-

cations in the data. Indeed, treating the complete cases or the design-based sample as just a simple random

sample can invoke some effects to appear or disappear and thus suggest an other (incorrect) model to be

more adequate for the data at hand.

In the context of incomplete data, selection methods like the predictive divergence for incomplete observations

(PDIO, [4]) and the complete data AIC (AICcd, [5]) have been proposed. These methods rely on modelling

the complete data likelihood, which introduces an additional model selection problem, namely the selection

of an appropriate model for the missingness mechanism (if not missing completely at random). In this
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paper we focus on selecting appropriate models for the measurement part, while treating the missingness

mechanism as a nuisance. We propose a modification of the AIC-criterion for regression models, based on

reweighing the complete cases by their inverse selection probabilities. The latter selection probabilities, if

unknown, are preferably estimated non-parametrically (using e.g. splines), in this way avoiding the selection

of a parametric model with its assumptions for the missingness process. This weighing of completely observed

cases can be seen as an implicit imputation of missing observations and is valid when the probability to be

missing depends upon the observed values but not on the unobserved values (MAR in the terminology of

Little and Rubin [6]).

For the closely related situation of design-based samples, model selection has not been really investigated.

In the next section, the motivating study illustrates both complications of missingness and design-based

sampling. In Section 3, the weighted AIC-criterion is introduced and discussed, mainly for parametric

models, but its applicability is also extended to nonparametric models. Indeed, analogous to the selection

of an optimal model from a set of parametric candidate models, one can choose the optimal smoothing

parameter in nonparametric regression based on an AIC-criterion, as shown by Hurvich et al.[7]. We will

modify this criterion to handle incomplete and design-based samples. An application to the cervix cancer

screening data is shown in Section 4 while, in Section 5, a simulation study shows the improved performance

of the modified AIC-criterion. Finally, Section 6 discusses the performance of the weighted AIC-criterion,

introduces imputation-based model selection for incomplete data and possible avenues of further research.
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2 The Belgian Health Interview Survey: Cervix Cancer Screening

To outline an evidence-based health policy, one is often interested in the profiles of persons who are at risk

to obtain certain diseases and do not respond to prevention programs, e.g. cervix cancer screening. In the

Belgian Health Interview Survey (HIS) of 1997, one of the questions investigated is in what respect the

group of women, aged 25-64, not having a smear is different from the group of women that did have a smear

taken in the past three years. For this purpose discrimination based on civil status, drug consumption, age,

educational level and financial status was of interest. In this particular dataset, two complications arise.

Firstly, sampling in the HIS was based on a combination of stratification, multistage sampling and clustering

[8]. Secondly, about 30% of the 2893 women had one or more missing covariates for the variables of interest.

These design issues, together with the likely occurrence of data to be missing, are inherent to surveys and

should be taken into account when selecting an optimal model from a candidate set of models.

In Table 2 and 3 an overview of twelve different models, based on the variables given in Table 1, is given

together with the original AIC-criterion and three weighted versions. The first modification, ’AICW1
’, cor-

rects for the survey design, the second version, ’AICW2
’, corrects for incomplete data and the combination

of both can be found in version, ’AICW1,W2
’.

Table 1 about here.

Table 3 shows that different models are chosen by the different versions of the AIC-criterion; so it indicates

that ignoring missingness or ignoring the sampling design can possibly lead to inappropriate model choices.

We refer to Section 4 for a more thorough discussion.
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Based on a theoretical justification, the weighted AIC’s are defined in the next section.

3 Weighted Akaike Information Criterion

Based on observations (xi, yi), i = 1, ..., n, consider the regression model

y ∼ f(y;θ,η) (1)

where

y = (y1, . . . , yn)T , θ = (θ(x1), . . . , θ(xn))T , η = (η(x1), . . . , η(xn))T .

Here f denotes the joint density of y (given x), θ the parameter of interest and η a nuisance parameter.

The aim is to select an optimal or a few good models amongst a set of candidate models. Several model

selection criteria have been developed, in different settings and with different types of complexities in data

and models [see 9, 10, 11, 12].

Assume we start from a collection of models, in particular we consider models of the form (1) . The well-

known AIC-criterion [9]

AIC = −2L(θ̂, η̂) + 2K (2)

with L(θ,η) denoting the loglikelihood of the model and (θ̂, η̂) the maximum likelihood (ML) estimator of

(θ,η), originates from information theory. Here K stands for the total number of estimated parameters,

nuisance parameters included. The second term in the AIC formula is often interpreted as a penalization

for complexity. The AIC was designed to be an approximately unbiased estimator of the expected Kullback-

Leibler Information (KL). In general, the KL information between model f0 (denoting the ‘true’ model) and

5
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model f (the approximating model (1)) is defined as (ignoring an ‘historical’ factor 2)

I(f0, f) = E{ log(
f0(y)

f(y;θ,η)
)} (3)

(expectation with respect to the true model) and can be interpreted as the information loss using f to

approximate f0, or as the distance from f0 to f . This KL distance is not a metric, but it has the property

that I(f0, f) ≥ 0 with equality only if f ≡ f0.

3.1 Missing Data

In case of missing data, the naive use of only complete cases in the definition of I(f0, f) can lead to serious

deficiencies in its applicability to measure the distance between models (and consequently also in the use of

its empirical version, the AIC-criterion). For simplicity, let us consider classical regression and suppose data

are generated by a true model

y ∼ Nn(µ0, σ
2
0In), (4)

where µ0 = (µ0(1), . . . , µ0(n))T , Nn denotes an n-variate normal distribution and In the n × n identity

matrix . Consider the approximating, or candidate, family of models

y ∼ Nn(µ(θ), σ2In), (5)

where µ = (µ(x1;θ), , . . . , µ(xn;θ))T .

For this setting, E{log f(y;θ,η)} can be written as (f now denoting the univariate normal density)

E{
n
∑

i=1

log f(yi;µ(xi), σ
2)} = −

n

2
log(2πσ2) − E

[

{y − µ(θ)}T {y − µ(θ)}
]

/(2σ2). (6)
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Using an analogous expression for E{log f0(y)}, it is easy to verify that

I(f0, f) =
n

2
log(σ2/σ2

0) + n{
σ2

0

σ2
− 1} + {µ0 − µ(θ)}T {µ0 − µ(θ)}/(2σ2). (7)

It follows that this measure is minimized as a function of σ2 and µ(θ) (and equals 0) by taking σ2 = σ2
0 and

µ(θ) = µ0.

Now, let us introduce the missingness process. For i = 1, . . . , n, define the indicator δi = 1 if (xi, yi) is fully

observed and 0 otherwise. In general it is possible that πi = P (δi = 1) = π(xi, yi, zi), so the probability

that the ith observation is not fully observed is allowed to depend on xi, yi or even on the value zi of an

other, completely ignored, variable. In this paper we restrict attention to the MAR setting, implying that

πi does not depend on zi, that it additionally does not depend on xi (resp. yi) in case xi (resp. yi) might

be missing.

The use of complete cases (CC) only (those for which δi = 1) (and hence ignoring the missing data mecha-

nism) is translated in a replacement of (6) by

E{
n
∑

i=1

δi log f(yi;µ(xi;θ), σ2)} = −
E{trace(D)}

2
log(2πσ2)

−E
[

{y − µ(θ)}T D{y − µ(θ)}
]

/(2σ2) (8)

where D = diag(δ1, . . . , δn). As a function of σ2 and µ(θ), and using a saturated model µ(θ) = θ =

(θ1, . . . , θn) for the mean function, this expression (8) is maximized and the corresponding CC version of the

KL distance

ICC(f0, f) = E{
n
∑

i=1

δi log[(f0(yi)/f(yi;µ(xi;θ), σ2)]}

=
E{trace(D)}

2
log(

σ2

σ2
0

) + E
[

{µ0 − µ(θ)}T D{µ0 − µ(θ)}
]

/(2σ2)

7



+E{zT Dz}
1

2

(

σ2
0

σ2
− 1

)

+ E{zT D}(µ0 − µ(θ))
(σ0

σ2

)

,

(9)

(with z = (y − µ0)/σ0) is minimized at

θ̃i =
E{yiπi}

E{πi}
= µ0(i) +

Cov(yi, πi)

E{πi}
(10)

and

σ̃2 =

n
∑

i=1

E[πi{yi − θ̃i}
2]

n
∑

i=1

E{πi}

. (11)

In the above expressions and in the what follows, moment related operators like the expectation E or the

covariance (Cov) act on the random variables yi and δi and treat xi as nonrandom.

First of all, under a MCAR (missing completely at random) mechanism, πi = π and the above solutions

simplify and are equal to the ‘true’ values, µ0(i) and σ2
0 respectively. The same holds in the MAR case that

yi is missing with probability πi = π(xi), only depending on xi. If however πi does depend on yi in a way

that Cov(yi, πi) 6= 0, ICC(f0, f) reaches a different minimum at (10) and (11). In fact, since by definition

ICC(f0, f0) = 0, this minimal value is negative (which is undesirable for a distance measure). If e.g. yi and

πi are positively correlated, then µ̃i > µ0(i). This is to be expected since observations with smaller values

of yi are discarded with higher probability. Also for nonsaturated models for µ(θ), such kind of anomalies

can be shown.

The AIC-criterion (2) based on the complete cases is given by

AICCC = −2

n
∑

i=1

δi log[f(yi;µ(xi; θ̂CC), σ̂2
CC)] + 2K, (12)

where θ̂CC and σ̂2
CC are the ML estimators, maximizing the CC-loglikelihood (as described by the first term

8



in (12)). For classical regression and ignoring constants, this can be simplified to

AICCC =

(

n
∑

i=1

δi

)

log(σ̂2
CC) + 2K. (13)

In case of MCAR, criterion (12) (or 13) is an approximately unbiased estimate of ICC(f0, f) and is expected

to behave more appropriately (the missingness just results in an implicit sample size reduction). But for the

MAR setting with missingness probabilities depending on the response, nothing guarantees that the above

AIC criteria will serve any longer as useful model selection criteria.

The shortcomings of a CC approach, as described above, can be circumvented by a simple modification of the

KL distance ICC(f0, f) and corresponding AICCC -criterion. This modification is inspired by the technique of

weighted estimation. Assuming a correct model is used, Flanders and Greenland [13], Zhao and Lipsitz [14]

showed that the use of weighted estimators, solving the weighted estimating equations (WEE)

n
∑

i=1

wiΨ(yi;θ,η) = 0, (14)

with Ψ the derivative of the log(quasi)likelihood and with weights wi inversely proportional to the missingness

probabilities, are consistent and asymptotically unbiased. The idea of WEE was inspired by the Horvitz-

Thompson estimator in the closely related setting of design-based samples with unequal selection probabilities

[see 3]. In Section 3.2, we further exploit this setting and its similarity with missing data for model selection.

Analogous to (14), a weighted KL distance can be defined as

I(f0, f ;w) = E{
n
∑

i=1

wi log[(f0(yi)/f(yi;µ(xi;θ), σ2)]}. (15)

Taking the weights

wi = δi/πi, (16)

9
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the deficient distance ICC(f0, f) is rectified and turned into the original data KL distance (‘original’ referring

to the ‘full’ data, before introducing missingness). Indeed,

E{
n
∑

i=1

δi

πi

log[(f0(yi)/f(yi;µ(xi;θ), σ2)]} =
n
∑

i=1

E{log[(f0(yi)/f(yi;µ(xi;θ), σ2)]}.

In a similar way, the weighted AIC-criterion

AICW = −2

n
∑

i=1

wi log[f(yi;µ(xi; θ̂W ), σ̂2
W )] + 2K, (17)

with wi as in (16) and with θ̂W and σ̂2
W the weighted ML estimators (maximizing the weighted maximum

likelihood), is expected to behave appropriately, i.e. to correct for the missing data. Indeed, denote θ̂o and

σ̂2
o the ML estimators based on the original data, and consider the Taylor expansion (linear terms canceling

out)

−2
n
∑

i=1

wi log[f(yi;µ(xi; θ̂o), σ̂2
o)] (18)

≈ AICW − 2
(

(θ̂o − θ̂W ) (σ̂2
o − σ̂2

W )
)

In(θ̂W , σ̂2
W )
(

(θ̂o − θ̂W ) (σ̂2
o − σ̂2

W )
)T

,

where the matrix In is the matrix of second derivatives of the weighted log-likelihood, evaluated at (θ̂W , σ̂2
W ).

The expected value of the left-hand side equals the expected value of the AIC-criterion based on the original

data. Since both estimates, the ‘original’ (θ̂o, σ̂2
o) and the ‘weighted’ (θ̂W , σ̂2

W ), are estimating the same

parameter (being the true value (θ0, σ
2
0) in case the model under consideration is a correct model), the

second term in the right hand side is negligible, at least in a first order approximation.

For a normal regression model with µ(xi,θ) = xiθ, i = 1, . . . , n, where xi = (1 xi1 . . . nip) and θ =

(θ0 θ1 . . . θp)
T , the weighted AIC-criterion can be rewritten in terms of squared residuals

AICW = (

n
∑

i=1

wi) log

(∑n

i=1 wie
2
i

∑n

i=1 wi

)

+ 2(p + 2), (19)
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where ei are the residuals from the fitted model, using weighted ML. In the context of robust model selection

procedures, Agostinelli [15] introduced a robust modification of the AIC-Criterion, based on the weighted

likelihood methodology. He proposed a similar weighted AICW -criterion, but with weights downplaying the

contribution of highly influential outliers.

Of course, typically the missing probabilities are unknown and have to be estimated, introducing essentially

two further complications: i) finding appropriate estimates π̂i which is again a model selection problem and

ii) the effect on the characteristics of AICW when using weights

ŵi = δi/π̂i. (20)

Regarding the first complication, we suggest the use of a nonparametric or flexible semiparametric estimator

(generalized additive models (gam) or e.g. regression trees for more complicated data structures, as illustrated

in Section 4 and Section 5). This avoids the need for another model selection step. It is also important to

note that, since the estimation of the missingness probabilities is a step prior to the envisaged model selection

exercise, and hence is common to all candidate models under consideration, it has no effect on the penalization

term in the expression of AICW . Concerning the second complication: rather than focusing on a theoretical

study of the effect of estimating πi on the expected value of AICW (a Taylor expansion immediately shows

highly ‘untractable’ bias expressions), we opted for examining the finite sample performance of AICW with

estimated weights by a simulation study (see Section 5).

In analogy to its expression based on the original data [16], we define a bias-corrected weighted AIC as

AICcor
W = AICW +

2K(K + 1)
∑n

i=1 wi − K − 1
. (21)
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This small-sample correction (second-order bias adjustment) has been especially recommended in a setting

where there are many parameters in relation to the size of the sample n (for more details see [17]). Its

performance in some simulations is briefly discussed in Section 5.1.3.

3.2 Design-Based Samples

Assume a finite population consisting of N units with measurements M = {y1, . . . , , yN}. A particular

sampling plan leads to the random variable δi = 1 if the ith unit is included in the sample (and 0 otherwise)

with n =
∑N

i=1 δi the total sample size. The selection probabilities are defined as πi = P (δi = 1), for

i = 1, . . . , N . The choice πi = n/N corresponds to a simple random sample. In this finite population setting,

only the δi are to be considered as random; the set M is to be considered as unknown but fixed.

Supposing that the population y = (y1, . . . , yN )T is a single realization of a true ‘superpopulation’ model

f0(·), using the approximating model f(·;µ(xi;θ), σ2) and treating the sample indicated by the δi as a

random sample, a KL distance similar to the ICC(f0, f) measure in (9) can be defined as (with now the

expectation E with respect to the δi’s, conditional on the ‘realized’ population)

IDB(f0, f) = E{
N
∑

i=1

δi log[(f0(yi)/f(yi;µ(xi;θ), σ2)]} (22)

=
N
∑

i=1

πi log[(f0(yi)/f(yi;µ(xi;θ), σ2)]. (23)

For true and approximating models as in (4) and (5), with now µ = (µ(x1;θ), , . . . , µ(xN ;θ))T and µ0 =

(µ0(1), . . . , µ0(N))T and with z = (y − µ0)/σ0 as before, we get

IDB(f0, f) =
trace(Π)

2
log(

σ2

σ2
0

) + {µ0 − µ(θ)}T Π{µ0 − µ(θ)}/(2σ2) (24)
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+zT Πz
1

2

(

σ2
0

σ2
− 1

)

+ zT Π(µ0 − µ(θ))
(σ0

σ2

)

.

As an example, consider a simple two-valued true superpopulation model

µ0 = (µ0(1), . . . , µ0(N1), µ0(N1 + 1), . . . , µ0(N))T = (µ1, ..., µ1, µ2, ..., µ2)
T

with µ1 6= µ2, and the incorrect constant model µ(θ) = (θ, ..., θ)T . For this incorrect model, the minimal

distance IDB(f0, f) is at least as small as its value at σ̃2 = σ2
0 and

θ̃ =

∑N

i=1 πiyi

n
. (25)

Using the correct two-parameter mean model with σ2 = σ2
0 , IDB(f0, f) is minimized at

µ̃1 =

∑N1

i=1 πiyi

n1
, µ̃2 =

∑N2

i=1 πiyi

n2
, (26)

where n1 =
∑N1

i=1 δi and n2 =
∑N

i=N1+1 δi. Now, in the particular case that the selection probabilities induce

a bias resulting in µ̃1 = µ̃2, the KL distance IDB(f0, f) is exactly the same for both models and hence the

incorrect model is indistinguishable from the correct model.

Identical to the case of missing data, the weighing of the KL distance and corresponding AIC-criterion, with

weights as in (16), can be used to correct both measures. Note that in general the selection probabilities can

depend on both xi and yi. In most applications the selection probabilities πi are determined by the design

of the sample and hence are known.

3.3 Design-Based Samples with Missing Observations

In typical surveys, as in the cervix cancer screening example introduced in Section 2, both complications

occur together. In this case δi, indicating whether or not the ith unit is in the sample and is fully observed,

13



can be written as

δi = δD
i δM

i , (27)

where δD
i = 1 if the ith unit is included in the sample (as in Section 3.2) and δM

i = 1 if the ith unit is fully

observed (as in Section 3.1). The weighted AIC (17) can now be based on weights wi = δi/πi where

πi = P (δi = 1) = P (δM
i = 1|δD

i = 1)P (δD
i = 1). (28)

These latter probabilities can be estimated by the product of the (known) probabilities P (δD
i = 1) and the

(nonparametrically) estimated probabilities P (δM
i = 1|δD

i = 1).

In the next section, we show how the idea of a weighted AIC can be extended to select a smoothing parameter

for nonparametric regression.

3.4 Smoothing Parameter Selection using AICW

Assume

yi = µ0(xi) + ǫi, i, . . . , n, (29)

where µ0(·) is an unknown smooth function and ǫi, i = 1, . . . , n, are independent error terms with mean 0

and variance σ2
0 . Different linear smoothers for µ are available: orthogonal series, kernel estimators, splines,

... (see e.g. [18]). The most crucial choice for any smoother is the choice of the smoothing parameter.

Hurvich et al.[7] proposed to select this parameter α by minimizing the corrected AIC-criterion

AICcor
α = n log(σ̂2) +

n + trace(Sα)

1 − {trace(Sα) + 2}/n
, (30)

where Sα is the smoother matrix for which ŷ = Sαy.
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In case of an incomplete or design-based sample, this criterion can be turned into a weighted version

AICcor
α,W = (

n
∑

i=1

wi) log

(∑n

i=1 wie
2
i

∑n

i=1 wi

)

+

∑n

i=1 wi + trace(SW,α)

1 − {trace(SW,α) + 2}/(
∑n

i=1 wi)
. (31)

where SW,α is the smoother matrix from the weighted fit. Taking SW,α the classical regression ‘hat matrix’,

(31) reduces (up to a constant) to (21).

4 The HIS 1997 Revisited

Since the design of the Health Interview Survey follows a complex multistage probability sampling scheme,

it is necessary to incorporate this in the model selection procedure. A second complication is the substantial

amount of missing covariate data (about 30%) spread over several covariates. Let us consider the candidate

models given in Table 2. In Table 3, the models are ranked according to their AIC-criterion based on

the complete cases (second column). For all other columns, the three models with lowest AIC-values are

indicated by their ranks.

In the third column, a first weighted version, AICW1
, takes into account the complex design. Individual

weights, W1, reflecting the stratification at provincial level and the differential selection probabilities within

households were available. This results in a somewhat different ordering of the models. The best model now

is the model with original rank 8.

Similarly, the fourth column shows the modified AIC-value, AICW2
, incorporating missing covariate data

(assuming MAR). Because of the high dimensional covariate space, a classification tree with surrogate split-

ting was used to obtain estimates of the missingness probabilities and thus the weights W2. This leads to
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only minor changes, as compared to the second column. The best model now is model 2.

In the fifth column both complications have been taken into account by multiplying both weights in

AICW1,W2
. Model 8 showing up again, now having the lowest AIC-value, while model 10 is the second

best model.

Although essentially the same set of models reappears as the set of best models, this example illustrates that

differently weighted AIC criteria can select different models as best ones. Since the choice of the final model

or the set of final models used for e.g. model averaging is affected by missing data and by the design, we

recommend in general the use of the weighted criteria (at least as a sensitivity tool).

Table 2 about here.

Table 3 about here.

To study the effects of weighing more closely, a simulation study in a variety of settings was conducted. The

next section summarizes our main findings. All computations were conducted in R 2.0 [19].

5 Simulations

In the first two scenarios, we consider a setting with missing covariate data. The third scenario focuses on

design-based samples and the last scenario on the selection of the smoothing parameter in nonparametric
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regression.

5.1 Scenario 1: Parametric Model Selection for Incomplete Data

In the initial setting, the set of candidate models contains the true model.

5.1.1 Initial Setting

In this first scenario, uniform[0, 10] x-values were generated, together with (independently) Bernoulli(0.5)

z-values. Given x and z, response y-values were generated from a normal distribution with mean µ0(x, z) =

−3+3x+5x2 and variance σ2
0 = exp(5). x-observations were then turned missing with conditional probability

(see middle panel in Figure 1),

π(y, z) = 1 − [1 + exp{1 − 0.009(y − 300)}]−1. (32)

Not depending on unobserved x-values, the missingness process is MAR. Let n denote the total sample size

and nc the number of complete observations. We generated 1000 different samples {(xi, zi, yi), i = 1, . . . , n},

with fixed design {xi, zi, i = 1 . . . , n}. For each sample, 8 different regression models were fit, all submodels

of µ(x, z) = β0 + β1x1 + β2x
2 + β3z + β4xz.

Four different ‘strategies’ are compared: i) AIC on the original data, before introducing missingness (what we

would get if no values were missing), ii) (unweighted) AIC on the complete cases only (ignoring missingness),

iii) weighted AIC using the true weights (16) and iv) weighted AIC, using the estimated weights (20). The

probabilities (32) are estimated by gam estimates π̂(y, z) (using the R package ”mgcv 1.1-8” [20]). On
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average 35% of the x-values were missing. In Figure 1, a typical dataset for scenario 1 is shown together

with the missingness probabilities and the estimated weights. This latter figure shows a double curve, as a

consequence of the additive model in x and z (being binary).

Figure 1 about here.

The upper part of Table 4 displays the results for n = 50. Each column (from 2 to 9) corresponds to a

particular model and the numbers show how often the respective model has been selected by AIC under

the four strategies mentioned above. Models more complex than the true quadratic model {x, x2} can be

considered as correct models, the others as incorrect models. The last rightmost column shows the total

number of times a correct model was chosen. The table shows that for the initial setting, the unweighted

AIC applied on the complete cases, very often selects the incorrect simpler model {x}. This is to be expected

since the missingness is mainly located at the larger y-values (which of all response values mostly represent

the quadratic effect). The weighted versions correct for that, especially the one with true weights which

selects about 10% more often a correct model.

Table 4 about here.

The other parts of Table 4 show similar results for variations on scenario 1: a larger error variance, less

missingness, a smaller quadratic effect and a larger sample size. Figure 2 up to Figure 5 display the number

of correct models as a function of error variance σ2
0 , missingness percentage (by changing the coefficient of y

in equation (32)), quadratic effect of x in µ0(x, z) and sample size n. All curves show the decrease in selecting
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a correct model when using the unweighted AIC on the complete cases. The difference gets more pronounced

for increasing error variance, increasing missingness and increasing quadratic effect of x in µ0(x, z). Note

that this latter increasing effect implicitly generates more missingness via, on average, increasing response

values y (see equation (32)).

Figures 2, 3, 4 and 5 about here.

The use of the weighted version improves the performance of the AIC and the version with known weights

is consistently choosing more correct models than with estimated weights. On the other hand the version

with estimated weights constantly performs better than with true weights in selecting the only true model.

One might argue that the gain by using the weighted AIC is not so spectacular but rather moderate, that

it tends to select more complicated models and that, thinking critically further along these lines, always

taking the “most complex model” (including x, x2, z and xz) is actually the best criterion (since it leads to a

100% correct classification according to our definition of a correct model). But first of all, we have to realize

that correcting for missing information is often a hard exercise, since information in available data might

be very scarce. Next, the selection of somewhat more complicated models might be justified in this setting

and not just arbitrary. Moreover a needless complex model will be accompanied with larger variability in its

estimates. To show that the weighted AIC does not just select more complex models in an arbitrary way,

but leads to models with an improved accuracy, Table 5 shows, for the initial setting, mean averaged squared

errors (together with squared bias and variance decomposition)

MASE =
1

1000

1000
∑

r=1

{

1

n

n
∑

i=1

(µ̂(r)(xi, zi) − µ0(xi, zi))
2

}

(33)

for the different AIC selected models together with that of the “most complex model”. Here, µ̂(r)(xi, zi)
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denotes the fitted value within simulation run r. This table shows that choosing the most complex model is

not a sensible strategy (as expected) and more importantly that the weighted AIC does lead to a considerable

improvement. Just using complete cases has a disastrous effect on the quality of the selected fits (particularly

on the bias), whereas the use of the estimated weighted AIC leads to the best results in terms of MASE.

Indeed, the latter reduces bias spectacularly, at the cost of a moderate increase in variance. That the use of

estimated rather than true weights lead to the smallest MASE-values is in accordance with known results in

related settings (see e.g. [21]).

Table 5 about here.

Table 6 about here.

5.1.2 Nonparametric Weighting Methods

Different smoothers can be used to estimate the missingness probabilities π(y, z). In scenario 1, equation

(32) shows that these probabilities only depend on y. In Section 5.1.1, these probabilities were estimated

with a gam model, as a function of both y and z. In this section we illustrate how results differ when using

different smoothers: gam using y only, Nadaraya-Watson (NW) kernel estimate using both y and z or y only,

with fixed or with data-driven bandwidth (cross-validation).

The results in Table 6 show that the best results are obtained when using a gam model. The other numbers

are more or less similar. The fixed bandwidth h = 150 for the NW-estimator was chosen by visual inspection

of some of the generated samples. Main conclusion is that the choice of smoother and smoothing parameter
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is not unimportant. It is also recommendable to examine the missingness process carefully, so that accurate

estimation of the probabilities is possible.

5.1.3 Corrected AIC

For small sample sizes, the use of the corrected AIC-criterion (21) is recommended. The results in Table 7 are

based on the corrected AIC-criterion for the initial setting of Scenario 1 but with n = 30. The improvement

is considerable. The true model is chosen most often using the weighted AIC, especially when the weights

are estimated (this latter phenomenon was also noticeable in Table 4).

Table 7 about here.

5.2 Scenario 2: Generating Model Not Included

We now consider the (more realistic) setting that the set of candidate models does not contain the true model.

The response y is generated as in scenario 1, but now with mean function µ0(x, z) = −3− 3 log(x+1)+5x2.

The same set of candidate models is considered. Since now direct comparison with the true model, nor a

categorization in correct or incorrect models is possible anymore, we computed the average of the fitted values

based on the selected model, together with 95% pointwise confidence intervals, using AIC on the original

data, (unweighted) AIC on the complete cases, and weighted AIC on the complete cases. The resulting

curves are shown in Figure 6 together with the true underlying function µ0(x, z) (solid curve). Again, as

before, gam was used to estimate the weights. The middle figure clearly shows the bias when using the
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unweighted AIC on the complete cases. The use of the weighted AIC nicely corrects the average best model

in the direction of the true underlying curve.

Figure 6 about here.

Table 8 about here.

Similar to Scenario 1, Table 8 shows simulated MASE-values for the different methods. The benefit in using

the AICW -criteria is again clearly reflected in the behavior of the (squared) bias and variance components,

very similar to the results in Table 5.

5.3 Scenario 3: Model Selection for Design-Based Samples

To illustrate the use of the weighted AIC for design-based samples, a population {y1, . . . , yN} of size N = 1500

was generated, as a single realization from the superpopulation model f0, being a normal distribution with

variance σ2
0 and mean µ0(i) = µ1 for i = 1, . . . , 500 (group 1), µ0(i) = µ2 for i = 501, . . . , 1000 (group 2),

µ0(i) = µ3 for i = 1001, . . . , 1500 (group 3).

In a first setting 1000 samples were taken by dividing this population into three strata based on the ordered

population y values: the 200 smallest y-values, the middle 900 y-values and the 400 largest y-values. The

sample was then taken as follows: a population unit i (yi) is selected for the sample with probability p1f

when it belongs to the first or third stratum and with probability p2f when it belongs to the second stratum.

When p1 < p2, this results in an oversampling of the second stratum.
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The (single) population was generated with µ2 = µ3 = κ = −µ1 with κ > 0. The simulation parameters

κ, σ0, f, p1 and p2 were set to different values as shown in Table 9. For each of the samples, 5 different models

were fit: (1) µi = µ, i = 1, . . . , 3, (2) µ1 = µ2 6= µ3, (3) µ1 6= µ2 = µ3, (4) µ1 = µ3 6= µ2, and (5) µi 6= µj for

i 6= j. Model (3) is the true model, model (5) is another correct model. The other models assume µ1 = µ2

or µ1 = µ3 and are incorrect (for κ 6= 0).

In a first setting, where {κ, σ0, f} = {0.5, 3, 0.5}, sampling was done according to different choices of (p1, p2),

ranging from simple random sampling p2/p1 = 1 to highly unequal stratified sampling p2/p1 = 11. The

results in Table 9 show an improved selection for the AICW -criterion compared to the AIC-criterion. Models

(3) and (5) are chosen more frequently by the AICW -criterion.

Increasing σ0 (more noise) results in model (1) to be chosen more frequently. Also to be expected, a larger

choice of κ (group 1 more different) leads more often to correct model choices. The fraction parameter f

was initially chosen 0.5, resulting in a sample of size 225. To reflect the behavior for a smaller sample, f

was set to 0.2, resulting in a larger variability due to the smaller sample size (= 90). For all variations of

the basic setting, AICW improves the selection from slightly to substantially (according to the ratio p2/p1),

except for κ = 1.

Table 9 about here.

In a second setting, the same population was taken but now design-based sampling was based on two strata,

the 300 largest y-values of the third group and the remaining 1200 y-values. Sampling was done as follows:

a population unit i is selected with probability p1f when it belongs to the first stratum and with probability
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p2f when it belongs to the second stratum. If p1 < p2 this results in an undersampling of units in the third

group with the larger y values. The results for 1000 such samples are shown in Table 10, again for the same

basic setting and variations thereof. One can see that the AIC-criterion very often chooses the incorrect

model (4) µ1 = µ3 6= µ2 and the AICW -criterion corrects this choice to model (3) µ1 6= µ2 = µ3, which is

the true model. For all variations of this setting, the AICW outperforms AIC in all cases. The differences

are much more pronounced as in previous setting. One can also observe that the number of times a correct

model is selected by the AICW -criterion is more or less the same for all different choices of (p1, p2). When

sampling probabilities are equal and thus a simple random sample is taken, the choices made using AIC and

AICW are essentially the same.

Table 10 about here.

5.4 Scenario 4: Smoothing Parameter Selection in Nonparametric Regression

for Incomplete Data

For this scenario, n = 200 x-values were generated from uniform[0, 1], and corresponding y-values from a

normal distribution with mean µ0(x) = 1 − 48x + 218x2 − 315x3 + 145x4 and variance σ2
0 = 0.4 Range(y).

This corresponds to one of the simulation settings used in [7]. Next, x observations were turned missing

with probability

π(y) = [1 + exp{2 − 0.1(y − 2)2]−1. (34)

For each of the 1000 generated samples {Yi, i = 1, . . . , n} with a fixed design {xi, i = 1 . . . , n}, a smoothing

spline was fitted (using smooth.spline in R) according to three methods, and with smoothing parameter
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selected by AIC (as introduced by Hurvich, Simonoff and Tsai [7]). The first method is based on the original

data, while the second method is based on the complete cases only and finally the third method weights the

complete cases (at the model selection stage and at the final fitting stage) with ŵi = 1/π̂i where π̂i is the

estimated probability for a complete case to be observed. The estimation of πi is also based on a smoothing

spline with smoothing parameter again determined by AIC.

The left panel in Figure 7 displays an arbitrary sample together with the fitted splines. The white dots

indicate the observed data, while the black dots show the unobserved or missing data. The spline using the

weights tends to severely undersmooth.

Figure 7 about here.

In this context, Wahba [22] uses the unbiased variance estimator

σ̂2
U =

yT (I − Sα)2y

trace(I − Sα)
, (35)

where Sα is the smoother matrix. The use of σ̂2
U instead of σ̂2

ML is equivalent to an extra penalization of

−n log(trace(I − Sα)), which corrects for undersmoothing, as can be seen for the fit of a random sample

in the right panel of Figure 7. This is also confirmed by Table 11. It shows the simulation average of the

equivalent number of parameters, selected by the three methods (rows) and for both variance estimators

(columns). The models using the unbiased estimator are generally smoother and this reduction in equivalent

number of parameters is very substantial for the weighted analysis. Other simulations confirmed this and

therefore we certainly recommend the use of the unbiased estimator σ̂2
U for the weighted method.
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Table 11 about here.

In Figure 8 the true curve (the solid line) and the simulation average of the fitted curves for all three

methods and both variance estimators, together with 95% pointwise confidence intervals, are shown. Again,

the beneficial effect on the smoothing when using the unbiased variance estimator is illustrated. The middle

panels show that there is substantial bias at both minima, when using the complete cases without weighting.

The weighted AIC does correct for bias, as shown in the right panels.

Figure 8 about here.

The simulation MASE was calculated for each method and each variance estimator. The boxplots in Figure

9 show again that the weighted AIC method is not resulting in an improvement when using σ̂2
ML, but that

it does when using σ̂2
U .

Figure 9 about here.

6 Discussion

The naive use of model selection criteria in case of incomplete and design-based samples can lead to the

selection of inappropriate or non-optimal model. In this paper we introduced a weighted Akaike informa-

tion criterion. The weights are inversely proportional to the selection probabilities and if unknown, can

be estimated nonparametrically. Simulations show that the use of this weighted AIC-criterion results in
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improved model selection for design-based samples. For incomplete data, the model-selection performance

of the weighted AIC-criterion is somewhat less pronounced. But missing data are more problematic than de-

sign related complications. Moreover, the simulated MASE results are showing the improved accuracy of the

AICW -selected models. So, in our opinion, it is a worthwhile and relatively simple exercise to complement

naive model selection (ignoring missingness or design) with a weighted one.

As mentioned before, the AICW -criterion for incomplete data can be seen as an implicit imputation approach.

An obvious alternative method is the use of an explicit imputation-based AIC-criterion. Selection is done

by first imputing the missing values and then using the classical AIC-criterion on the augmented data. Of

course the performance of this method is directly related to the quality of the imputation model. One option

here is to use a flexible nonparametric model, thus avoiding an additional model selection step.

We investigated the performance of this imputation-based approach in a small simulation study for scenario

1 and 2. Data were imputed using mean-imputation based on a generalized additive model. The imputation-

step is nonparametric in nature and takes place prior to the envisaged model selection, so it is common to

all candidate models.

For scenario 1, the imputation-based AIC-criterion selected the true model 471 times, essentially the same

as the original data does. Moreover it selects a “correct” model 744 times.

Figure 10 about here.

Figure 10 shows the average curve of fitted values and 95%- pointwise confidence intervals together with
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the true underlying function µ0(x, z) for scenario 2. Compared to using the unweighted AIC-criterion and

weighted AICW -criterion on the complete cases (see Figure 6), the bias is small but the variance is very

large. Calculating the MASE for the imputation-based AIC-criterion gives a value of 4643.93 where 151.83

is ascribed to the squared bias and 4492.10 to the variance, as compared to 3567.70, 439.66 and 3128.05

respectively for the (estimated) AICW . Similar results were found for scenario 1. So, more often the true

(and a correct) model is chosen, but the selected models appear to show highly variable fits. Moreover, in

situations where x cannot be written as a function y the imputation method suffers from structural defects.

A detailed study of this imputation-based method is topic of current research. For the cervix cancer screening

data, AICW , taking into account the design, on an augmented dataset, where imputation was done using

the random forest methodology of Breiman [23] selected models (2), (3) and (11).

Other options to deal with missingness in the context of model selection are full likelihood methods, that

model both measurement and missingness part simultaneously. This is another challenging approach. Be-

cause of the similarity between incomplete and design-based samples, we focused on the weighted AIC-

criterion in this paper.

Next to the performance of imputation-based selection methods, extensions to weighted versions of model

selection criteria for generalized estimating equations in the context of clustered data as proposed in [24]

and [25], are topics of current research. Additional further research includes deriving new lack of fit tests

when dealing with incomplete and design-based data (e.g. modifications of [26]), and the use of a weighted

likelihood ratio test (see e.g. [27]) in this context.
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Table 1: HIS Example: Variables used in the candidate models.

Variable Abbreviation Coding

Screening Status SC binary

Civil Status CS nominal

Drug Consumption DR ordinal

Age Age continuous

Educational Level EL nominal

Financial Status FS nominal
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Table 2: His Example: Overview of the candidate models.

Model Structure

(1) SC∼ Age+Age2+log(DR)+CS

(2) SC∼ Age+Age2+log(DR)+EL+DR*EL

(3) SC∼ Age+Age2+DR+EL+EL*DR

(4) SC∼ Age+Age2+log(DR)

(5) SC∼ Age+Age2+log(DR)+log(Age)

(6) SC∼ Age+Age2+DR

(7) SC∼ Age+Age2+CS+CS*Age

(8) SC∼ CS+Age+EL+DR+Age*EL

(9) SC∼ Age+Age2

(10) SC∼ CS+Age+EL+DR+Age*EL+DR*EL

(11) SC∼ FS+CS+DR+Age+EL

(12) SC∼ FS+CS+DR+AGe+Age*FS
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Table 3: His Example: The different (weighted) AIC-values and, between brackets, the rank of the three

best models.

Model AIC AICW1
AICW2

AICW1,W2

(1) 1489.02(1) 975.31 2607.11(2) 1463.16

(2) 1489.81(2) 969.04 2597.22(1) 1450.75(3)

(3) 1490.70(3) 963.26(2) 2608.69(3) 1451.06

(4) 1492.39 965.66(3) 2618.32 1457.89

(5) 1494.10 967.60 2619.77 1459.82

(6) 1495.86 967.64 2624.82 1461.28

(7) 1496.19 984.37 2621.91 1474.56

(8) 1496.84 961.57(1) 2609.49 1443.00(1)

(9) 1496.97 969.54 2627.87 1463.88

(10) 1502.31 967.35 2613.19 1448.30(2)

(11) 1504.01 970.94 2624.65 1458.64

(12) 1516.75 980.92 2652.53 1476.12
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Table 4: Scenario 1. The numbers indicate how often a model has been selected, for the four strategies. The

last column shows how often a correct model has been chosen, out of 1000. This scenario is repeated for

different settings.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Scenario 1: Initial Setting

n = 50, σ2

0 = exp(5), slope = 5, %(miss) = 35

Original Data 0 272 0 467 55 40 85 81 633

Complete Cases 0 447 0 274 97 53 81 48 403

True Weighted 0 271 0 254 125 99 101 150 505

Est. Weighted 0 329 0 286 100 83 102 106 494

Scenario 1: Variance exp(5.3)

Original Data 0 396 0 374 65 47 70 48 492

Complete Cases 9 540 2 210 107 56 48 28 286

True Weighted 4 330 3 170 131 140 87 135 392

Est. Weighted 5 372 2 198 130 117 78 103 379

Scenario 1: Missingness 20%

Original Data 0 275 0 496 38 31 93 67 656

Complete Cases 0 451 0 311 90 54 49 45 405

True Weighted 1 290 0 286 80 104 93 146 525

Est. Weighted 1 355 0 308 79 70 80 109 497

Scenario 1: Smaller Quadratic Effect: slope = 3

Original Data 0 459 0 297 82 55 63 44 404

Complete Cases 6 548 1 225 87 57 47 29 301

True Weighted 5 414 0 224 107 92 87 71 382

Est. Weighted 4 450 2 245 102 75 74 58 377

Scenario 1: Sample Size 100

Original Data 0 114 0 666 31 18 106 65 837

Complete Cases 0 312 0 452 65 35 91 45 588

True Weighted 0 199 0 371 67 61 129 173 673

Est. Weighted 0 228 0 416 70 56 110 121 647
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Table 5: Scenario 1: MASE and bias-variance decomposition based for the four strategies from Table 4

together with the “most complex model strategy”.

Model Selection bias2 Var MASE

Original Data min AIC 39.26 2085.05 2124.32

most complex 2.25 2253.05 2255.30

Complete Cases min AIC 2433.37 2485.58 4918.95

most complex 1986.74 2964.73 4951.47

True Weighted min AICW 460.62 3984.71 4445.33

most complex 404.51 4289.29 4693.81

Est. Weighted min AICW 738.53 3153.06 3891.60

most complex 608.09 3595.19 4203.28

Table 6: Scenario 1, initial setting. Model selection using different smoothers to estimate the weights.

x x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Complete Cases 447 274 97 53 81 48 403

NW h=150 (y, z) 342 270 106 84 102 96 468

NW h=150 (y) 337 288 114 76 96 89 473

NW CV (y, z) 315 257 108 96 103 121 481

NW CV (y) 336 287 114 75 96 92 475

gam CV(y, z) 329 286 100 83 102 106 494

gam CV (y) 278 282 107 109 103 121 506

True Weights 271 254 125 99 101 150 505
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Table 7: Scenario 1 with sample size 30. Model selection using the corrected AIC-criterion.

1 x z x, x2 x, z x, z, x, x2, x, x2, correctly

xz z z, xz classified

Original Data 0 435 0 392 77 31 40 25 457

Complete Cases 16 616 3 217 80 34 26 8 251

True Weights 6 398 1 260 129 77 61 68 389

Est. Weights 8 442 0 275 122 53 56 63 394

Table 8: Scenario 2: MASE and bias-variance decomposition based for the four strategies from Table 4

together with the “most complex model strategy”.

Model Selection bias2 Var MASE

Original Data min AIC 41.58 2079.93 2121.50

most complex 2.90 2236.82 2239.72

Complete Cases min AIC 2040.05 2310.80 4350.85

most complex 1638.04 2750.06 4388.10

True Weighted min AICW 382.79 3516.66 3899.45

most complex 307.85 3802.61 4110.46

Est. Weighted min AICW 439.66 3128.05 3567.70

most complex 374.15 3447.90 3822.05
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Table 9: Scenario 3, first setting: The number of models chosen by AIC and AICW , for different variations

of the basic setting and different choices of p1 and p2.

AIC AICW

p1 p2 1 2 3 4 5 Cor 1 2 3 4 5 Cor

Basic

0.05 0.55 321 110 445 107 17 462 128 192 277 133 270 547

0.10 0.50 284 101 498 92 25 523 155 146 424 136 139 563

0.20 0.40 191 116 594 63 36 630 156 132 572 60 80 652

0.30 0.30 133 108 639 64 56 695 125 108 648 63 56 704

σ0 = 4

0.05 0.55 467 108 301 115 9 310 134 205 281 189 191 472

0.10 0.50 428 117 325 118 12 337 209 199 328 161 103 431

0.20 0.40 331 121 450 75 23 473 259 144 471 72 54 525

0.30 0.30 305 136 445 86 28 473 295 137 455 86 27 482

κ = 1

0.05 0.55 13 31 817 25 114 931 27 89 397 62 425 822

0.10 0.50 6 8 841 11 134 975 9 23 604 20 344 948

0.20 0.40 2 5 850 2 141 991 2 6 786 2 204 990

0.30 0.30 0 1 842 0 157 999 0 1 840 0 159 999

f = 0.2

0.05 0.55 494 113 249 133 11 260 116 211 240 204 229 469

0.10 0.50 481 142 241 128 8 249 227 193 280 189 111 391

0.20 0.40 440 130 304 112 14 318 351 158 321 129 41 362

0.30 0.30 364 133 360 123 20 380 368 130 364 118 20 384
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Table 10: Scenario 3, second setting: The number of models chosen by AIC and AICW , for different

variations of the basic setting and different choices of p1 and p2.

AIC AICW

p1 p2 1 2 3 4 5 Cor 1 2 3 4 5 Cor

Basic

0.05 0.55 92 120 56 596 136 192 66 175 510 52 197 707

0.10 0.50 189 19 392 381 19 411 46 171 590 12 181 771

0.20 0.40 126 131 651 31 61 712 60 197 615 7 121 736

0.30 0.30 133 108 639 64 56 695 125 108 648 63 56 704

σ0 = 4

0.05 0.55 162 266 27 389 156 183 156 307 377 56 104 481

0.10 0.50 370 59 215 349 7 222 144 276 475 28 77 552

0.20 0.40 289 168 472 44 27 499 137 283 500 14 66 566

0.30 0.30 305 136 445 86 28 473 295 137 455 86 27 482

κ = 1

0.05 0.55 0 0 316 599 85 684 0 0 613 3 384 997

0.10 0.50 0 0 757 64 179 936 0 0 709 0 291 1000

0.20 0.40 0 3 845 1 151 996 0 2 775 0 223 990

0.30 0.30 0 1 842 0 157 999 0 1 840 0 159 999

f = 0.2

0.05 0.55 336 138 108 385 33 141 243 254 356 77 70 426

0.10 0.50 439 64 219 270 8 227 263 236 395 62 44 439

0.20 0.40 359 167 381 76 17 398 250 240 439 46 25 464

0.30 0.30 364 133 360 123 20 380 368 130 364 118 20 384

39



Table 11: The average number of parameters using variance estimator σ̂2
ML or σ̂2

U .

σ̂2

ML σ̂2

U

Original Data 8.33 6.99

Complete Cases 7.55 6.31

Weighted 18.31 9.00
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Figure 1: For an arbitrary chosen sample under scenario 1: (a) original sample, complete cased (white

bullets) and unobserved data (black bullets); (b) missingness probabilities; (c) estimated weights.
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Figure 2: Sigma-values.
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Figure 3: Missingness percentages.
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Figure 4: Quadratic effect.
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Figure 5: Sample size.
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Figure 6: Average best model with 95% pointwise confidence intervals for the original data (left), the

complete cases with unweighted AIC (middle) and with weighted AIC (right). The solid curve is the true

function µ0(x, z)
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Figure 7: Simulated dataset with spline fits according to the different methods together with the true

function, using the ML variance estimator σ̂2
ML (left panel) and the unbiased variance estimator σ̂2

U (right

panel).
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Figure 8: Average of the fitted values based on the chosen models over simulation runs together with the

true function and 95% confidence intervals. From left to right: the original data, the complete cases and the

weighted complete cases, using either σ̂2
ML (upper row) or σ̂2

U (lower row).
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Figure 9: Boxplots of the simulated MASE-values for the different methods: original data, σ̂2
ML (1), complete

cases, σ̂2
ML (2), weighted complete cases, σ̂2

ML (3), original data, σ̂2
U (4), complete cases, σ̂2

U (5), weighted

complete cases, σ̂2
U (6).
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Figure 10: Average best model with 95% pointwise confidence intervals for the augmented data with classical

AIC. The solid curve is the true function µ0(x, z)
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