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Abstract

When two people interact in a relationship, the outcome of each person can

be affected by both his or her own inputs and his or her partner’s inputs. For

Gaussian dyadic outcomes, linear mixed models taking into account the corre-

lation within dyads, are frequently used to estimate actor’s and partner’s effects

based on the actor-partner interdependence model. In this paper, we explore the

potential of generalized linear mixed models (GLMMs) for the analysis of non-

Gaussian dyadic outcomes. Several approximation techniques that are available

in standard software packages for these GLMMs are investigated. Despite the

different modeling options related to these different techniques, none of these

have an overall satisfactory performance in estimating actor and partner effects

and the within-dyad correlation, especially when the latter is negative and/or

the number of dyads is small. An approach based on generalized estimating

equations for the analysis of non-Gaussian dyadic data turns out to be an in-

teresting alternative.

KEY WORDS: binary data, count data, dyadic data, generalized estimating

equations, generalized linear mixed models, multilevel analysis
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1 Introduction

Dyadic research has become immensely popular in the social and behavioral sci-

ences. When two people interact in a relationship, the outcome of each person

can be affected by both his or her own inputs and his or her partner’s inputs. The

Actor-Partner Interdependence Model (APIM) offers an appealing approach to

model such dyadic behavior (Kenny, Kashy, & Cook, 2006). Indeed, it allows to

simultaneously study the influence of a person’s own predictor variable on his or

her own outcome variable, which is called the actor effect, and on the outcome

variable of the partner, which is called the partner effect, while allowing for non-

independence in the two persons’ responses. Typically, two types of dyads are

considered. Dyads are called distinguishable when the two persons from all the

dyads can be ordered in the same way (e.g., for hetero couples, persons within

a dyad can be ordered by gender). Indistinguishable dyads occur when no or-

dering of persons exists within a dyad (like twins, for example). The left panel

of Figure 1 shows a graphical presentation of the APIM with two distinguish-

able dyad members and an X and Y variable for each. The variables X1 and

X2 represent the predictor variables of persons 1 and 2 of a dyad, respectively,

whereas Y1 and Y2 represent the outcome variables for the two members. The

model contains two actor effects a1 and a2 (represented by the horizontal ar-

rows), and two partner effects p12 and p21 (represented by the diagonal arrows).

The curved arrow on the left reflects the correlation between the predictor vari-

ables, while the one on the right represents the correlation between the error

terms. An alternative but underutilized model (Ledermann & Kenny, 2012) to

3



explore dyadic influences is the Common Fate Model (CFM). When a construct

representing a common fate variable exists at the level of the dyad rather than

at the individual level, the CFM is more appropriate (right panel of Figure 1).

In contrast, self-referential or partner-referential measures that are expected to

represent individual behaviors or attitudes are more suitable for the APIM. We

will focus here on the APIM, which has clearly dominated the dyadic literature

with more than 150 publications over the last three years (Kenny & Ledermann,

2012).

Multilevel modeling, also referred to as hierarchical modeling, has been shown

to be a useful technique for the estimation of actor and partner effects in dyadic

data (Kenny et al., 2006). In these multilevel models two different levels are

distinguished: the lower level, or level 1, refers to the case of persons nested

within a dyad. The lower-level unit is person, whereas the upper level, or level

2, is the dyad. Linear mixed models (LMM) are frequently used and well under-

stood for the analysis of such dyadic data but their use is limited to (Gaussian)

outcomes measured at the interval level. The analysis of non-Gaussian dyadic

data on the other hand has received little attention in the literature so far. The

generalized linear mixed model (GLMM), which is an extension of both the

generalized linear model (GLM) (Nelder & Wedderburn, 1972) and the LMM,

is potentially suitable for the analysis of clustered observations from the expo-

nential dispersion family distribution (Agresti, 2000). McMahon, Pouget, and

Tortu (2006) and Spain, Jackson, and Edmonds (2012) provided guidance on

fitting the GLMM for dyadic data with binary outcomes but paid little atten-
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tion to its properties.

We argue here that before proposing the GLMM as an appropriate approach

for modeling dyadic data, two important issues need to be explored in more

detail. First, while researchers in psychological or social sciences are often faced

with clustered data (in educational measurement applications for example, when

several test items are administered to students; in longitudinal studies when

psychological measurements are repeatedly assessed over time, etc.), the cluster

size of two when analyzing dyads is an important feature. Second, the possible

negative correlation between observations within a dyad also warrants further

exploration. Indeed, while in an item-response or longitudinal setting, measure-

ments are typically positively correlated, negative correlations may occur within

dyads. The strictness of parental supervision is one example of such negative

correlation within dyads, where the more extreme in strictness one parent be-

comes, the more extreme in permissiveness the other parent is likely to become

(Cook, 2001).

We therefore investigate in detail here the performance of multilevel modeling

of non-Gaussian outcomes in a dyadic setting. We first discuss the traditional

use of the GLMM and its interpretation, point to its limitations, and explore

the potential of some other rather non-standard estimation techniques for these

GLMMs. Next, we introduce the generalized estimating equations (GEE) ap-

proach (Liang and Zeger, 1986) as a viable alternative. While multilevel models

have become immensely popular for the analyses of correlated data, GEE is

relatively unused in the educational and behavioral sciences (Bauer & Sterba,
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2011). GEE accommodates correlated outcome data too; but whereas multilevel

models explicitly specify the joint distribution of the outcomes, GEE only mod-

els the univariate marginal expectations as a function of explanatory variables

and empirically accounts for the presence of correlation in the data. Simulations

for binary and count dyadic data are performed to compare, under a wide range

of within-dyad correlations and for typical APIM sample sizes, the performance

of the GEE-approach with different estimation techniques for the multilevel ap-

proach. Focus in these simulation studies lies on both the estimation of the

actor and partner effects and the estimation of the within-dyad correlation. We

end with an application of the different approaches to data from the Interdis-

ciplinary Project for the Optimization of Separation Trajectories conducted in

Flanders (IPOS) and present two illustrations. A first example illustrates the

analysis of negatively correlated binary data and investigates the effect of actor’s

and partner’s levels of feeling guilty during the break-up, on showing so-called

forcing behavior or not during the postbreak-up negotiations in 29 ex-couples.

The second example presents the analysis of positively correlated count data and

explores in 33 ex-couples the effect of the actor’s and partner’s level of anxious

attachment in their relationship with their ex-partner prior to the break-up on

the number of unwanted pursuit behavior (UPB) perpetrations after separation.
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2 Multilevel models

2.1 Linear mixed models

Let Yi denote a 2-dimensional vector of measurements available for dyad i =

1, . . . , N with components Yi1 and Yi2 (e.g., the measurement for a male and

female partner in a heterosexual couple1). Using LMMs for the APIM, two

different formulations are typically considered (Kenny et al., 2006). The first one

takes a hierarchical view (i.e., a multilevel approach) and specifies the so-called

random-intercept model, with the random intercept capturing the correlation

within a dyad:

Yij = xt
ijβ + bi + εij j = 1, 2 (1)

with bi ∼ N(0, τ) and εij ∼ N(0, σ2). In APIM (1) xij is a vector of known

covariates, typically including an actor’s predictor variable xact, a partner’s

predictor variable xpar, a distinguishing variable xdis (like gender) in case of

distinguishable dyads , and their interactions; β a vector of coefficients, called

fixed effects, and bi a random intercept. In a standard multilevel model, the

assumption is made that the variance of the random effect is positive (i.e.,

τ ≥ 0).

The second formulation of the APIM takes a marginal view, i.e. it does not

1Throughout the manuscript we will assume distinguishable dyads but all models and

estimation techniques that are presented can easily accommodate indistinguishable dyads as

well.
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incorporate random effects,

Yij = xt
ijβ + εij j = 1, 2 (2)

but simply models the variance-covariance in the data2. Model (2) assumes in

its most general form that the residuals εij are bivariate normally zero-mean

distributed with an unstructured variance-covariance

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .

Here, ρ reflects the within-dyad correlation3 and can take any value in the in-

terval [−1,+1].

It is important to note here that marginal models like (2) describe so-called

population-averaged effects that refer to an averaging over dyads particular lev-

els of predictors while dyad-specific models like (1) are conditional models that

describe effects at the dyad level. However, since the marginal and conditional

expectation of Yij are the same here (see Table 1), i.e. E(Yij) = E(Yij | bi),

the parameters β in (1) and (2) share their interpretation. In other words, if on

average within dyads, a 1-unit increase in the actor predictor xact for example

causes a shift of size β1 for the actor’s outcome Y (i.e. ‘the conditional effect’),

then this coefficient β1 can also be interpreted as the effect on the population

level, and the estimated overall sample means (i.e. ‘the marginal effect’) will

also change with the same coefficient β1 for such 1-unit increase. The marginal

2This method is sometimes referred to as the R-side covariance method.
3More precisely it measures the residual intra-cluster correlation (ICC), i.e. the correlation

between the measurement of the first person of the dyad and the measurement of the second

person of the dyad that is left after accounting for the predictor effects in model (2).
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variance-covariance matrix under model (1) has a compound symmetry struc-

ture with correlation equal to

τ/(σ2 + τ), (3)

and so in contrast to the marginal model formulation (2), the hierarchical formu-

lation with the restriction τ ≥ 0 does not allow for negative correlation within

dyads. The latter can be a serious restriction in dyadic settings where nega-

tive within-dyad correlations are not uncommon and therefore formulation (2)

is typically preferred above formulation (1). If one takes a marginal view on

model (1) though, negative values for τ are perfectly possible (Molenberghs &

Verbeke, 2011)4. We will further refer to the latter approach as the ‘uncon-

strained approach’ as opposed to the more standard ‘constrained approach’.

2.2 Generalized linear mixed models: a conditional ap-

proach

While the APIM was considered for the Gaussian outcomes in the previous

section, we now focus on modeling dyadic binary and count data. Similar to

model (1) for Gaussian outcomes, we consider the logistic-normal random inter-

cept model (Snijders & Bosker, 1999) for binary dyadic data with a logit link5

4In such approach the conceptual interpretation of the random effect is abandoned and the

hierarchical model approach merely used as a vehicle for estimation. The only restriction is

that τ ≥ −σ2/2 for the variance-covariance matrix to be positive definite.
5Other link functions like the probit or complementary log-log could be considered as well,

but we will restrict attention to the logit-link here.
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and assume no overdispersion:

logit[E(Yij | bi)] = xt
ijβ + bi with bi ∼ N(0, τ), τ > 0 (4)

Unlike for LMMs (1), the marginal effects are different from the conditional

effects here (see Table 1), unless the random intercept variance τ equals zero.

Similar to LMMs (1), the outcomes Yi1 and Yi2 from dyad i are here too con-

ditionally independent (i.e., given bi) but are marginally non-negatively corre-

lated (Table 1). The marginal correlation is not straightforward to calculate for

Bernoulli outcomes, given the dependence of the variance on the mean. Pry-

seley, Tchonlafi, Verbeke, and Molenberghs (2011) derive an easy-to-calculate

first-order approximation of the intra-cluster correlation (ICC)6,

ρ ≈ τ

τ + exp(β0)(1 + exp(−β0))2
, (5)

where β0 is the intercept of model (4) (assuming centered predictors). Observe

that ρ = 0 when τ = 0 and ρ→ 1 as τ → +∞.

Next, we consider the Poisson-normal random-intercept model for count data

(Agresti, 2000) with a log link

log [E(Yij | bi)] = xt
ijβ + bi with bi ∼ N(0, τ), τ > 0. (6)

The marginal effects of the explanatory variables are the same as the dyad-

specific effects in model (6); Yi1 and Yi2 are marginally non-negatively correlated

6When Yi is viewed as a realization of an underlying latent variable Ỹi, another expression

for the ICC - analogous to (3) - is given by τ/(τ + π2/3) with π2/3 the variance of the

standard logistic distribution. The latter expression should hence be viewed as the ICC at

the underlying latent level as opposed to the observed.
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when τ > 0 (Table 1). Here too, the variance depends on the mean, but the

ICC can be approximated (Pryseley et al., 2011) by

ρ =
exp (β0 + 1

2τ) (exp τ − 1)

1 + exp (β0 + 1
2τ) (exp τ − 1)

(7)

where β0 is the intercept of model (6) (assuming again no effect of the centered

predictors). Again, ρ = 0 when τ = 0 and ρ → 1 as τ → +∞. A limitation

of the Poisson model is that the variance must equal the mean (Loeys, Moerk-

erke, De Smet & Buysse, 2012). However, count data often show overdispersion,

with the variance exceeding the mean. As will be illustrated in a later example,

the negative binomial distribution allows for such overdispersion. Molenberghs,

Verbeke and Demétrio (2007) derive closed-form expressions for the ICC under

the latter scenario.

In summary, we have illustrated that, similar to the LMM with random inter-

cept, the GLMM with random intercept, leads to non-negative marginal cor-

relations too when τ > 0 is restricted to be positive. The similarity between

marginal and conditional interpretation of the fixed effect parameters in the

GLMM on the other hand depends on the link-function7. So far, we have only

7It can be shown in general that when the conditional mean is additive in a random effect

on the log scale, the marginal mean equals the conditional mean plus a constant, such that

slope parameters have the same interpretation in both formulations. No further distributional

assumptions are needed in this case (Griswold & Zeger, 2004). When a logit or probit link

is used with a normal random effect, the marginal mean parameters become attenuated by a

factor which depends on parameters of the distribution of the covariates. For example for the

binary case the marginal effect can be approximated by β/
√
c2τ + 1 with β the conditional

effect from the logistic-normal model and c = 16
√

3/(15π) (Heagerty, 1999).
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discussed the counterpart of model (1) for non-Gaussian outcomes. In the next

paragraph, we will see how we can get to a marginal formulation similar to (2)

in the GLMM-framework.

2.3 Generalized linear mixed models: a marginal approach

Fitting GLMMs like models (4) and (6) proceeds by integrating over the random

effects. Broadly speaking three different strategies have historically been consid-

ered to overcome the integration over the (normally) distributed random effects:

(i) approximation of the integral using Gaussian quadrature, (ii) approximation

of the integrand using Laplace’s method, and (iii) a quasi-likelihood approach

based on a linearized approximation. We refer the interested reader to Tuer-

linckx, Rijmen, Verbeke, and De Boeck (2006) for an in-depth review and dis-

cussion of these different approximation methods. These three approximation

techniques are available in standard software packages like SAS for example. We

omit the technical details of (i) and (ii) here, but elaborate a bit further on (iii)

as it will allow us to specify a marginalized GLMM. To explain the linearized

approximation method, we can rewrite models (4) and (6) as

Yij = h(xt
ijβ + bi) + εij ,

with h the inverse of the logit and log function, respectively. A first-order Taylor

expansion around the estimated fixed effect and posterior mode of the random

effect and further re-arrangement (Tuerlinck et al., 2006) lead to

Yij ≈ µ̂ij + v(µ̂ij)x
t
ij(β − β̂) + v(µ̂ij)(bi − b̂i) + εij , (8)
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with v(µ̂ij) the approximate variance of the error term. It can be shown that (8)

can be rewritten as a linear mixed model for pseudo data Y∗
i with fixed effects β,

random effects bi and error terms ε∗i . Therefore, estimation of β, the fixed effect

parameters, and the variance of bi, can be obtained by iterating between updat-

ing the pseudo response and fitting the linear mixed model to the pseudo-data.

This approach is referred to as penalized quasi-likelihood (PQL). The advan-

tage of using such pseudo-likelihood approach is that it becomes possible to fit

GLMMs without random effects and to take a marginal view with only residual

association effects. We will further label this model as the marginalized GLMM.

In contrast to the constrained random intercept models (4) and (6) for example,

this marginalized GLMM allows - similar to model (2) for Gaussian outcomes -

to model negatively correlated non-Gaussian outcomes. Alternatively, one may

take a marginal view on the random intercept models (4) and (6) and give up

the constraint τ > 0 (‘the unconstrained’ random intercept approach). By do-

ing so, one can allow for negatively correlated outcomes as well. In practice, it

turns out that this is possible when the Laplace-approximation is used, but not

under the Gaussian quadrature approximation (Pryseley et al., 2011).

3 Generalized Estimating Equations

Generalized estimating equations, as introduced by Liang and Zeger (1986),

can be considered as an extension of the GLM that accommodates correlated

outcome data too. It provides a general framework for the analysis of corre-
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lated continuous, ordinal, dichotomous, or count dependent data. GEE is often

referred to as a marginal (or population-averaged) approach as opposed to the

conditional approach exploited by multilevel models (Diggle, Heagerty, Liang, &

Zeger, 2002). Whereas multilevel models explicitly specify the joint distribution

of the outcomes, focus on modeling the dyad-specific expectation as a function

of explanatory values, and allow one to disentangle the variability at the dif-

ferent levels, GEE is a moment-based method and only models the marginal

expectations as a function of explanatory variables.

The GEE fitting algorithm can be described in four different steps that are

repeated until convergence (Ghisletta & Spini, 2004).

1. A GLM is fitted assuming independence between observations. This GLM

requires the specification of a link function that describes the linear rela-

tionship between the expected outcome and its predictors (e.g., the iden-

tity link for Gaussian data, the logit link for dichotomous or ordinal data

and the log link for count data) and of the relationship between the mean

µ and the variance, denoted v(µ).

2. Standardized residuals, contrasting the observed and expected (model-

based) outcome, are calculated. Based on an assumed structure of the

correlation matrix (such as independence or unstructured), a working cor-

relation matrix C that characterizes the correlations among observations

within dyads is computed using these standardized residuals. We suggest

to use the unstructured working correlation structure here8.

8An unstructured covariance matrix is no guarantee for a correct specification since the
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3. An estimate of the covariance parameters is obtained from the assumed

mean-variance association v(µ) and the working correlation matrix C.

4. Given the covariance estimate obtained in step 3, a set of estimating equa-

tions for the regression coefficients is solved9.

5. The steps 2 to 4 result in an iterative scheme that switches between es-

timating the regression coefficients for fixed values of the covariance pa-

rameters, and estimating the covariance given the regression coefficients,

and is continued until convergence occurs.

This scheme yields consistent estimators for the regression coefficients even if

the correlational structure in step 2 was misspecified (but provided the linear

relationship is correctly specified). These estimators are asymptotically multi-

variate normally distributed with a covariance matrix that can be consistently

estimated (also in case the correlational structure was misspecified) by a so-

called sandwich estimate (resulting in the robust standard errors).

Like the GLMM, the GEE-approach can easily deal with a wide range of out-

come types such as binary, categorical, count, or interval data. Unlike the

constrained GLMM with a random intercept though, the correlation of out-

covariance structure may further depend, for example, on certain covariates. Assuming inde-

pendent observations within dyads on the other hand, and hence the choice for an indepen-

dence working correlation matrix, may lead to some small gain in efficiency in estimating the

actor- and partner-effects provided the independence assumption truly holds.
9The ith dyad contributes a three-way product involving the partial derivative of µi with

respect to the regression parameter, times the inverse of the dyad’s variance-covariance, times

the difference between the dyad’s responses and their mean (see details in Appendix A1).
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comes within a dyad is not restricted to be positive. The GEE-approach does

not make full distributional assumptions (only the mean-variance relationship),

and no likelihood-based methods as in the GLMM can be used for testing ac-

tor and partner effects for example. Instead, parameter testing can be based

on Wald statistics constructed with the asymptotic normality of the estimators

together with their estimated covariance matrix. A criticism often made is that

the sandwich variance estimate of GEE may underestimate the variability in

the parameter estimates when the number of clusters (dyads in this particular

case) is small (McCaffrey & Bell, 2006), resulting in tests that have greater

than nominal type 1 error rates (i.e., too liberal tests). Rotnitzky and Jewell

(1990) describe an alternative procedure for testing effects of predictors, the

so-called score test. The test statistic for this score test is based on the gener-

alized estimating ‘score-like’ equations10 that are solved to produce parameter

estimates for the GEE model. Finally we note here that, while GLMMs explic-

itly specify the correlation, the unstructured working correlation (as suggested

in step 2) in the GEE-approach is only a device to support estimation of the

regression parameters, and no standard errors are given along these working

correlations. The resulting correlations should therefore only be interpreted

informally (Molenberghs & Verbeke, 2005)11.

10Loosely speaking these score like equations are of similar form as the score equations

derived for GLM, and the principle of the GEE score test is the same as the likelihood-based

score test. More technical details can be found in Appendix A1.
11When the association structure is of primary interest, one should turn to some extensions

of GEE. Examples of the latter are second-order extensions of GEE (GEE2) that include the

marginal pairwise association as well, or alternating logistic regressions that use conditional
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4 Simulations

In this section, we compare the performance of five different approaches to the

estimation of actor and partner effects in the APIM and the estimation of the

within-dyad correlation for Bernoulli or Poisson dyadic outcomes, which are

either positively or negatively correlated, with GEEs or GLMMs:

(1) a GEE-approach with p-values for tests of fixed-effect parameters based on

a robust Wald test, and using an unstructured working correlation matrix;

(2) the same GEE-approach as in (1) but with p-values based on the score

test;

(3) a GLMM with a random intercept (RI), a constrained variance component

(τ > 0), and computation based on adaptive Gaussian quadrature;

(4) a GLMM with RI, an unconstrained variance component, and computa-

tion based on Laplace approximation;

(5) a marginalized GLMM and computation based on linearized approxima-

tion (pseudo-likelihood methods).

All simulations were performed in SAS version 9.2 and used the GENMOD

procedure for (1) and (2) (with TYPE3 option in the MODEL statement for

the latter), the NLMIXED procedure for (3) (with default method= adap-

tive Gaussian quadrature), and the GLIMMIX procedure for (4) and (5) (with

method=LAPLACE and option NOBOUND for (4), and method=RSPL for

probability ideas (Molenberghs & Verbeke, 2005).
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(5))12. A literature review of studies using the APIM revealed that sample sizes

typically ranged from 30 to 300 dyads (first quartile=60, median=100, and third

quartile=150)13, but even dyadic sample sizes as small as 12 were recently re-

ported (Tambling, Johnson, & Johnson, 2012). We therefore considered number

of dyads equal to 10, 30, 60, 100, 150, or 300 in the simulation study. Results

from each simulation setting are based on 2000 repetitions. It should be noted

though that in case of convergence issues for a particular estimation method,

estimates were not included for that approach. Such non-convergence occurred

in about 15% of the cases for the marginalized GLMM when the ICC was pos-

itive or negative, and for the constrained GLMM with RI when the ICC was

negative (both for small and large samples).

4.1 Correlated Bernoulli outcomes

For the simulation settings with a positive ICC, responses Yij were generated

from a Bernoulli distribution with probability pij following the APIM with fixed

effects for the actor’s and partner’s predictor and a distinguishing variable, and

a random intercept:

logit(pij | bi) = β0 + βactxact,ij + βparxpar,ij + βdisxdis,ij + bi, j = 1, 2, (9)

with xdis,ij coded as 1 if j = 1 and −1 if j = 2, actor and partner predictors

xact and xpar generated from a standard bivariate normal distribution with cor-

12One may use the GLIMMIX procedure for (3) as well using the method=QUAD option.
13Special thanks to Robert Wickham from the university of Houston for sharing his database

on the use of the APIM.
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relation 0.5014. We set β0, βact, βpar and βdis equal to zero, while values of τ

were chosen such that the ICCs were approximately equal to 0.30, 0.15, or 0.05.

For the simulation setting with a negative intra-cluster correlation, we relied

on Leisch, Weingessel, and Hornik (1988) who show how to simulate multivari-

ate binary distributions with a given correlation structure from a multivariate

normal distribution. By dichotomizing the normal variates and the appropriate

choice of the correlation between normal variates, one can obtain the required

marginal and pairwise probabilities. We generated binary dyadic data with

marginal probabilities 0.5 and 0.5 for Yi1 and Yi2 (i.e., no actor and partner

effect of the standard bivariate normal distributed xact and xpar with correla-

tion 0.50, and no effect of the distinguishing variable xdis) and joint probability

0.175, 0.2125, and 0.2375, leading to ICCs of −0.3, −0.15, and −0.05, respec-

tively.

For the GEE-approaches and marginalized GLMM-approach, the following work-

ing model is assumed:

logit(pij) = β0 + βactxact,ij + βparxpar,ij + βdisxdis,ij , j = 1, 2, (10)

while for the GLMM-approaches with RI, model (9) is assumed.

To ensure equal marginal and conditional parameter effects, data were first gen-

erated under the null hypothesis of no actor and no partner effect. By doing so,

the size of the test of βact = 0 (βpar=0, respectively) at the nominal 5% level

under each of the five approaches can easily be assessed (note that with 2000

14Smaller correlations between predictors were considered in this setting, as well as in all

settings described further, but did not reveal major differences from the results presented.
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simulations, the standard error on the estimated size is about 0.5%, and empir-

ical type 1 errors for appropriate tests are therefore expected to lie between 4%

and 6%). Empirical type 1 errors for the test of no actor effect are presented

in Figure 2 (results for the test of no partner effect were very similar). While

under the GEE-approach, the robust Wald test tends to be too liberal when the

numbers of dyads is extremely small, the performance of the score test is satis-

factory under all settings considered (slightly conservative for small number of

dyads in some cases). Both the constrained and unconstrained RI-model yield

a too conservative test under positive ICC settings when the number of dyads

is small. With increasing negative values of the ICC, the constrained RI-model

(which will then typically force the random-intercept variance to be zero) yields

a much too conservative test. The unconstrained RI-approach jumps from too

conservative tests for small samples to too liberal tests for larger samples when

the ICC is negative. The marginalized GLMM-approach performs relatively

well in terms of type 1 error, both under positive and negative ICC scenarios,

except when the number of dyads is small.

Overall, we conclude that under the null hypothesis the marginal approaches

perform better than the conditional approaches in preserving the type 1 error,

and we proceed for now with the former only to explore the performance in

estimating the residual ICC. The upper panel of Figure 3 shows the median of

the estimated ICC under both marginal approaches for the six values we con-

sidered for the ICC. Although the ‘standard’ GEE-approach does not formally

aim to estimate the ICC, its estimate obtained from the unstructured working
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correlation is very informative and recovering the ICC well. In contrast, there

is - regardless of the sample size - indication of a serious negative bias for the

ICC estimate from the marginalized GLMM for increasing absolute values of

the ICC.

Next, data were generated following model (9) assuming an effect of xact and

xpar (β1 = log 1.5 ≈ 0.405 and β2 = log 0.75 ≈ −0.287, respectively). Note

that the marginal effects of xact and xpar have no longer the same value as the

conditional effects, but can be approximated by β1/
√
c2τ + 1 and β2/

√
c2τ + 1

respectively, with c = 16
√

3/(15π) (Molenberghs & Verbeke, 2005). Because of

the approximation techniques that are used for GLMMs, estimates of non-zero

fixed effect in the GLMMs are known to be frequently biased15. The upper left

panel of Figure 4 presents the mean of the estimated actor and partner effects

for the scenario where the ICC equals 0.15. We found no evidence of severe bias

for either the marginal or conditional effects using the five approaches, except

when the sample size is extremely small. The upper middle panel of Figure 4

shows the power to detect the actor effect at the nominal 5% significance level.

Not surpisingly, we find the GEE-Wald test to have highest power at lower sam-

ple sizes (as the test was seen to be too liberal). The robust score test from

the GEE-approach is performing well as compared to the multilevel approaches.

Finally, to shed some light on the performance of the approximation formula (5)

15Breslow and Lin (1995) studied the ‘worst case’ scenario of binary responses in a matched-

pairs design and found the asymptotic bias in the pseudo-likelihood estimator of β to be of

the order of | τ |. The bias for the Laplace estimator is of smaller order, while adaptive

quadrature leads to nearly unbiased estimated (Pinheiro & Chao, 2006).
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for the ICC in the RI-model, the estimated within-dyad correlations under the 5

approaches are presented in the upper right panel of Figure 4, illustrating once

more the excellent performance of the GEE-approach in recovering the ICC.

4.2 Correlated Poisson outcomes

For the simulation settings with a positive ICC, responses Yij were generated

from a Poisson distribution with mean µij following the APIM with RI

log(µij | bi) = β0 + βactxact,ij + βparxpar,ij + βdisxdis,ij + bi, j = 1, 2 (11)

with β0 = βact = βpar = βdis = 0 , bi ∼ N(0, τ) and xact, xpar and xdis as

before. The number of dyads i considered was again 10, 30, 60, 100, 150, or

300. Values of τ were chosen such that ICCs approximately equal to 0.30, 0.15,

or 0.05 were obtained.

For the simulation setting with a negative ICC, we extend the approach of Leisch

et al. (1988) and show how to simulate multivariate Poisson distributions with a

given correlation structure. We first generate samples from a bivariate standard

normal distribution with correlation ρN . Whereas before the Gaussian random

variables where dichotomized to yield binary events of 0 or 1, they will now be

discretized into M different states to yield counts of 0, 1, 2, . . . ,M . Precisely, we

want to generate counts Yij that have count probabilities Pr(Yij = k) = pijk.

Samples are generated by discretizing a 2-dimensional normal random variable

U by setting Yij = k if γij,k < Uij ≤ γij,k+1, with γij,k = Φ−1(Pr(Yij < k))

for each k = 1, 2, . . . ,M . It can be shown that the value of ρN is uniquely

determined by the value of the desired correlation between Poisson outcomes.
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We generated bivariate Poisson outcomes with marginal means equal to 2 for

Yi1 and Yi2 (i.e., no effect of xact, xpar and xdis) and pairwise correlation equal

to −0.30, −0.15, and −0.05, respectively.

For the GEE-approaches and marginalized GLMM-approach, the following work-

ing model was assumed

log(µij) = β0 + βactxact,ij + βparxpar,ij + βdisxdis,ij , j = 1, 2, (12)

while for the GLMM-approaches with RI, model (11) was assumed.

As data were generated first under the null hypothesis of no effect of X here

too, we can again assess the size of the test of βact = 0 (βpar = 0, respectively)

at the nominal 5% level. The empirical sizes for the test of no actor effect are

presented in Figure 5. While under the GEE-approach, the robust Wald test

is far too liberal when the numbers of dyads is small - even more pronounced

than in the Bernoulli setting - the performance of the score test is satisfactory

under all settings considered, except for some conservatism in very small sam-

ples. The constrained RI-model yield a too conservative test under positive ICC

settings when the number of dyads is small. With increasing negative values of

the ICC, the constrained RI-model yields a way too liberal test. The uncon-

strained RI-approach again jumps from too conservative tests for small samples

to too liberal tests for larger samples when the ICC is negative. The marginal-

ized GLMM-approach tends to perform well in all settings (except for extremely

small sample sizes). Interestingly when comparing the marginal approaches in

their performance to estimate the ICC, we observe similar findings as for the

Bernoulli outcomes (lower panel of Figure 3).
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Next, data were generated following model (11) assuming an effect of xact and

xpar (β1 = log 1.25 ≈ 0.223 and β2 = log 0.85 ≈ −0.163, respectively). As

shown before, the marginal effect of xact and xpar are the same as the condi-

tional effects for this setting. The lower left panel of Figure 4 presents the mean

of the estimated actor and partner effects for the scenario where the ICC equals

0.30. We found no evidence of any bias for any of the 5 approaches, except

when the sample size is extremely small. The lower middle panel of Figure 4

shows the power to detect the actor effect at the nominal 5% significance level.

Not surpisingly, we find again the GEE-Wald test to have highest power at

lower sample sizes (as the test was seen to be too liberal). In contrast to the

setting with Bernoulli outcomes, the robust score test from the GEE-approach

is performing slightly worse now in terms of power as compared to the multi-

level approaches. The ICC is again well recovered from the working correlation

in the GEE-approach (the lower right panel of Figure 4), better than by the

approximation (7) for the GLMMs with RI and than the marginalized GLMM.

5 Examples

The two studies presented below are subsamples of the Interdisciplinary Project

for the Optimization of Separation Trajectories conducted in Flanders (IPOS;

www.scheidingsonderzoek.be), which is a cooperation of psychologists, lawyers,

and economists from Ghent University and the University of Leuven. This re-

search project carried out a large-scale recruitment of formerly married partners.
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All couples who divorced between March 2008 and March 2009 in four major

courts in Flanders were systematically approached in the waiting room to par-

ticipate in a study on divorce (N = 8896). The individual respondents (i.e., not

both ex-partners) willing to participate (N = 3921; response rate = 44.1%) were

subsequently contacted for an interview in view of a computerized survey. To

reduce the survey’s length and lessen the burden on the respondents, the survey

was divided into a basic intake assessment assigned to each respondent, and

three different questionnaire packages (measuring emotions, parent-child rela-

tionships, or ex-partner relationships) which were randomly distributed among

the participants. As the recruitment strategy did not directly target the ex-

partners simultaneously, only dyadic data from about 30 ex-couples were part

of the same sample for each of the questionnaire packages. Therefore results

presented below should merely be seen as an illustration of the different ap-

proaches.

5.1 Correlated binary data: forcing behavior or not dur-

ing negotiations in ex-couples

The first example explores the effect of feeling guilty on negotiation behavior.

Negotiation behavior was assessed with the Dutch Test for Conflict Handling

(DUTCH, De Dreu, Evers, Beersma, Kluwer, & Nauta, 2001). One of the subs-

scales of the DUTCH measures forcing behavior (e.g., “I fight for a good outcome

for myself.”), measured with four items to be answered on a 5-point Likert

scale from 1 (totally disagree) to 5 (totally agree). For illustration purposes,
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participants with an average score higher than three were artificially classified

here as showing forcing behavior (denoted as Y = 1). Out of the 29 ex-couples

in total, there was one couple where both ex-partners showed forcing behavior,

six cases where only the male partner showed forcing behavior, nine cases where

only the female partner showed forcing behavior and 13 couples were none of

the partners showed forcing behavior. Guilt was assessed with the Guilt in

Separation Scale (Wietzker, Buysse, Loeys, & Brondeel, 2012) and is computed

as the mean of 10 items (e.g. “I am responsible for his/her misery.”), measured

on a 7-point Likert scale from 1 (never) to 7 (always). Throughout the analysis

we will use the mean values of guilt, with the person’s own score denoted as

GUILTA and his or her partner’s score as GUILTP. In addition, we use gender

as the distinguishing variable in the couple, denoted as SEX and effect coded

as 1 for men and -1 for women.

We used both marginal approaches and conditional approaches to explore the

impact of feeling guilty on forcing behavior. For the GEE-approach and the

marginalized multilevel approach, we specified the following linear relation on

the logit scale between showing forcing behavior and feeling guilty (as there was

no evidence of gender-specific actor or partner effects no additional interactions

were considered):

logit[E(Yij)] = β0 + β1 ∗GUILTAij + β2 ∗GUILTPij + β3 ∗ SEXij . (13)

For the conditional multilevel approach, we considered the following RI-model

logit[E(Yij | bi)] = β0+β1∗GUILTAij+β2∗GUILTPij+β3∗SEXij+bi, (14)
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with bi ∼ N(0, τ) and τ either constrained (using adaptive Gaussian quadra-

ture for optimization) or not (using Laplace approximation for optimization).

Results are presented in Table 2 (corresponding SAS-code can be found in Ap-

pendix A2). The following trends are observed: Feeling guilty is associated with

a decrease of the forcing behavior, while guilt emotions of the partner show a

reverse effect. Overall, men show less forcing behavior than women. We repeat

the different interpretation of the conditional and marginal models here. For

example, from the constrained RI-approach, we estimate that within a dyad, a

one-unit increase in the guilty score of the partner, corresponds to an increase of

exp(0.69) of the odds of showing forcing behavior. Marginally, we estimate with

the GEE-approach that such increase is associated with an increase of exp(0.58)

of that odds in the sample of ex-couples. It’s worth noting here that the esti-

mated actor and partner effects under the marginalized multilevel approach are

substantially different from the marginal effects under the GEE-approach, as

are the significance of the effects. This might be attributed to poor convergence

of the GLMM for these particular data. The estimated intra-dyad correlation

from the working GEE-correlation matrix equals -0.18. Given this indication

of negative correlation in forcing behavior between ex-partners, it is therefore

not surprising that the constrained RI-model (14) resulted in an estimated zero

random effect variance, and some conservatism in the estimated standard errors

of the predictors.
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5.2 Correlated count data: the number of unwanted pur-

suit behaviors in ex-couples

In the second example, we focus on a sample of 33 ex-couples who responded

to an adapted version of the Relational Pursuit-Pursuer Short Form (RP-PSF;

Cupach & Spitzberg, 2004) used to assess the extent of UPB-perpetrations the

participant showed towards the ex-partner since the break-up. The total of 28

RP-PSF items (ranging from ‘leaving unwanted gifts’ to ‘threatening to hurt

yourself’), each measured on a 5-point Likert scale from 0 (never) to 4 (over

5 times), was used as an overall index of perpetration (with higher scores in-

dicating higher levels of perpetrations). A participant who answered never to

all these 28 UPB-items will have an UPB-outcome equal to 0; a participant

who answered over 5 times to ‘leaving unwanted gifts’ and never to all other

items will have an UPB-total equal to 4 for example; while a participant who

answered over 5 times to all items will have the maximum score of 112. While

many predictors for the UPB-outcome were measured, we limit our attention

here to the impact of the actor’s and partner’s level of anxious attachment in

their relationship with their ex-partner before the break-up, which was mea-

sured using a total of five anxious attachment items (e.g., ‘My desire to be very

close sometimes scared my ex-partner away’) from an adapted Experience in

Close Relationships Scale-Short form (ECR-S; Wei, Russell, Mallinckrodt, &

Vogel, 2007). Throughout the analysis we will use the mean-centered values of

anxious attachment, with the person’s own score denoted as ANXA and his or

her partner’s score as ANXP.
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Figure 6 shows the right-skewed distribution of the observed number of UPB-

perpetrations. Such count data are frequently modeled using the Poisson dis-

tribution, but the corresponding predicted frequencies in Figure 6 clearly re-

veal lack-of-fit here. The negative binomial distribution, relaxing the Poisson-

assumption of equality of the mean and the variance, yields a much better fit

and will further be assumed.

As in Example 1, we used both marginal and conditional approaches to explore

the impact of anxious attachment on the number of UPBs. For the GEE-

approach and the marginalized multilevel-approach, we specified the following

linear relation on the logarithmic scale between the expected number of UPBs

and its predictors:

log[E(UPBij)] = β0 + β1 ∗ANXAij + β2 ∗ANXPij + β3 ∗ SEXij

+β4 ∗ANXPij ∗ SEXij + β5 ∗ANXPij ∗ SEXij ,(15)

while for the conditional multilevel-approach, we considered the following a RI-

model

log[E(UPBij | bi)] = β0 + β1 ∗ANXAij + β2 ∗ANXPij + β3 ∗ SEXij (16)

+β4 ∗ANXPij ∗ SEXij + β5 ∗ANXPij ∗ SEXij + bi,

with bi ∼ N(0, τ). Estimated parameters under different estimation methods

are presented in Table 3 (the corresponding SAS code can be found in Appendix

A3). The estimated ICC from the working correlation in GEE equals 0.07.

Because of the linearity of the random effect on the log-scale, the conditional and

marginal approaches lead to the same interpretation of parameters. Differences
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between the five approaches are smaller than in Example 1 (except again for the

marginalized multilevel approach). Both for male and female actors, we observe

an increase in the expected number of UPBs for increasing levels of the anxious

attachment level of the actor. In contrast, while increasing anxious attachment

levels of the male partner before the break-up is associated with an increase in

the number of UPBs in women, the reverse trend is observed in men.

6 Discussion

While LMMs have frequently been used to model Gaussian dyadic outcomes,

we have shown in this paper that GLMMs might not always be the best op-

tion to model non-Gaussian dyadic outcomes. This becomes especially true

when the correlation between outcomes in a dyad is negative and/or the sample

size is small. We explored the performance of different estimation techniques

within the GLMM-framework, along with their potential to allow for negative

ICCs, but found none of these to be overall satisfactory. While the marginalized

GLMM performed relatively well with respect to estimating actor and partner

effects in settings with either negative or positive within-dyad correlation, the

latter is poorly estimated under such an approach. The GEE-approach, which is

relatively unused within the social sciences16, offers an interesting alternative in

16One of the reasons for being less popular might be that GEE is only valid under missing

completely at random (MCAR) and covariate-dependent missingness, while GLMM is valid

under the less restrictive missing at random (MAR) assumption. While it is common practice

to exclude couples with the outcome of one the partners missing, it is possible to opt for an

analysis where also incomplete information is used. In a likelihood context, this renders the
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this context. The robust Wald test of GEE turned out to perform well, except

for (extremely) small samples where the score test can be used instead.

Besides the LMM-framework, the structural equation modeling (SEM) frame-

work is frequently used to analyze Gaussian dyadic data too (Newsom, 2002).

In contrast to the LMM-framework, the SEM-framework easily allows for for-

mal tests of goodness of fit17, for mediational models (see Ledermann, Macho,

& Kenny, 2011 for mediation in dyadic data) and for latent variables. When

dealing with binary or ordinal response scales, SEM typically assumes that these

data represent categorizations of underlying continuous variables 18. The rela-

tionships of these underlying continuous variables are captured in a polychoric

correlation matrix, and (robust) weighted least square estimation could be used

for the parameters of the marginal model matching the GEE-model. Such an

approach will be theoretically reasonable only in some cases. While for atti-

tude items, the researcher may be more interested in the relationships among

the continuous underlying latent variables than in the relationship beween the

observed agree and strongly agree responses on the items; it may be difficult for

resulting analysis valid under the assumption that the missing data are missing at random.

However, for dyadic data analysis, missingness on both the outcome and covariates for one

member of the dyad, will not allow to estimate partner effects (for the other member of the

dyad) anyway, unless one is willing to use an imputation-based method.
17It should be noted that using SEM to estimate the APIM with distinguishable dyads

allowing for ‘gender-specific’ actor and ‘gender-specific’ partner effects is a saturated model

and so it has zero degrees of freedom and no measures of fit can be computed.
18More precisely, limited information methods make this ‘underlying continuous variable’

assumption. Full information methods alternatively model the entire multivariate categorical

distribution of the observed variables.
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other variables like current drug user (yes or no) to conceive them as realizations

of an underlying continuous variable. Moreover, for count outcomes such an ap-

proach does not work either. Interestingly, Muthén, du Toit, and Spisic (1997)

compared the performance of robust WLS and (the second order extension of)

GEE for binary outcomes in a longitudinal simulation setting, and found supe-

rior behavior of GEE in settings with 200 or 400 observation units, especially

when the prevalence of the outcome is small, but more comparable behavior in

larger samples that are less frequently seen in a dyadic context though.

On the other hand, the flexibility of SEM to deal with latent variables should

not be neglected. Within the dyadic modeling world this might not only be an

important asset for the APIM discussed here, but even more so for estimation

in the CFM (right panel of Figure 1). The latter is indeed most easily seen as a

latent variable dyadic model, and SEM the most natural framework to disentan-

gle variability at the dyadic and at the subject level. While Gonzalez and Griffin

(2002) showed how the CFM with distinguishable dyads can be casted within

the multilevel framework too with the common-fate variables conceptualized as

random intercepts, the CFM can not be tackled with the marginal approach

taken by GEE.

To conclude, this article has shown the merits of the GEE-approach for estimat-

ing actor and partner effects in the wide range of typical dyadic sample sizes.

Indeed, by expanding the types of data that can easily be analyzed with the

APIM, its straightforward allowance for both positive and negative within-dyad

correlations and its ease of implementation, GEE can add significantly to the
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toolbox of relationship researchers everywhere. As a rule thumb we suggest the

use of the GEE score test for drawing inference about the actor and partner

effects when the number of dyads is smaller than 50, while the robust Wald test

may be used for larger samples. Multilevel approaches with a random intercept

capturing the correlation within dyads are not recommended for estimating ac-

tor and partner effects from categorical dyadic data, especially when the sample

size is small or the within-dyad correlation is negative. The marginalized multi-

level approach on the other hand typically works well for estimating actor and

partner effects, but shows serious negative bias in estimating the ICC. Although

the GEE-approach treats the within-dyad correlation as nuisance, its estimate

for the ICC from the unstructured working correlation turns out to be informa-

tive here. If formal inference about the ICC is needed though, GEE-extensions

allowing for this are available (Molenberghs & Verbeke, 2005), but these are less

commonly available in standard software packages.
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Appendix A1.

Generalized Estimating Equations

Let Yi denote a 2-dimensional vector of measurements (with components Yi1

and Yi2) available for dyad i = 1, . . . , N . The marginal mean µij = E(Yij) is

related to the explanatory variables xt
ij by the following expression

g(µij) = xt
ijβ

with g a known link function. The variance Vi = Var(Yi) equals φA
1/2
i RiAi

1/2,

where the matrix Ai is a diagonal matrix containing the variance function of

the model (with the variance function v(·) describing how the variances along

the diagonal of Ai depend on the mean), φ a possibly unknown scale parameter

(equal to 1 if no overdispersion is assumed). Ri a correlation matrix whose

structure is generally unknown, but for which a working correlation matrix C(α)

is assumed under the GEE-approach. The Generalized Estimating Equation of

Liang and Zeger (1986) for estimating the vector of regression parameters β is

then given by

S(β) =

N∑
i=1

Dt
iV

−1
i (Yi − µi(β)) = 0

where Di = ∂µi/∂β.
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The robust Wald test

The model-based estimator of the covariance of β̂ is given by Σm(β̂) = I−1
0 ,

where

I0 =

N∑
i=1

∂µt
i

∂β
V−1

i

∂µi

∂β

which is the GEE equivalent of the inverse of the Fisher information matrix

that is often used in generalized linear models as an estimator for the covariance

estimate of the maximum likelihood estimator of β.

The robust (or sandwich) estimator of the covariance of β̂ is given by Σr(β̂) =

I−1
0 I1I

−1
0 , with

I1 =

N∑
i=1

∂µt
i

∂β
V−1

i Cov(Yi)V
−1
i

∂µi

∂β

where Cov(Yi) is estimated by
(
Yi − µi(β̂)

)(
Yi − µi(β̂)

)t
.

The score test

Let β1 denote a subset of the parameter vector β and consider testing H0 : β1 =

0. Further, let β = (β1,β2) and β̃ = (0, β̃2) be the regression parameter vector

resulting from solving the GEE in the restricted parameter space under H0.

The score test statistic is then given by S(β̃)tΣmΣ−1
r ΣmS(β̃).
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Appendix A2.

* GEE with binary outcome FORCING2*;

proc genmod data=couple1 descending;

class GENDER ID;

model FORCING2=GUILT_A GUILT_P SEX/D=binomial link=logit type3;

repeated subject=ID/type=un withinsubject=GENDER corrw;

run;

* constrained random intercept *;

proc nlmixed data=couple1;

parms beta0=-1.01 beta1=-0.61 beta2=0.59 beta3=-0.85 s2u=1;

eta=beta0+beta1*GUILT_A+beta2*GUILT_P+beta3*SEX+u;

mu=exp(eta)/(1+exp(eta));

model FORCING2~binary(mu);

random u~normal(0,s2u) subject=ID;

run;

/* Alternatively one may use the GLIMMIX procedure

proc glimmix data=couple1 method=quad;

model FORCING2=GUILT_A GUILT_P SEX/dist=bin link=logit s;

random intercept/subject=ID;

run;

*/

* unconstrained random intercept *;

proc glimmix data=couple1 method=laplace nobound;

model FORCING2=GUILT_A GUILT_P SEX/dist=bin link=logit s;

random intercept/subject=ID;

run;

* marginalized multilevel model *;

proc glimmix data=couple1 method=RSPL;

model FORCING2=GUILT_A GUILT_P SEX/dist=bin link=logit s;

random _residual_/subject=ID type=un VCORR;

run;
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Appendix A3.

* GEE with count outcome UPB *;

proc genmod data=couple2;

class ID GENDER;

model UPB=ANX_A ANX_P SEX SEX*ANX_A SEX*ANX_P/D=nb link=log TYPE3;

REPEATED SUBJECT=ID/type=UN withinsubject=GENDER corrw;

run;

* constrained random intercept *;

proc nlmixed data=couple2;

parms b0=0, b1=0, b2=0, b3=0, b4=0, b5=0, k=4,s2u=0.1;

linp =b0+b1*ANX_A+b2*ANX_P+b3*SEX+b4*SEX*ANX_A+b5*SEX*ANX_P+u;

mu = exp(linp);

p = 1/(1+mu*k);

model UPB ~ negbin(1/k,p);

random u~normal(0,s2u) subject=ID;

run;

/* Alternatively one may use the GLIMMIX procedure

proc glimmix data=couple2 method=quad;

model UPB = ANX_A ANX_P SEX SEX*ANX_A SEX*ANX_P / dist=negbin s;

random intercept/subject=ID;

run;

*/

* unconstrained random intercept *;

proc glimmix data=couple2 method=laplace nobound;

model UPB = ANX_A ANX_P SEX SEX*ANX_A SEX*ANX_P / dist=negbin s;

random intercept/subject=ID;

run;

* marginalized multilevel model *;

proc glimmix data=couple2 method=RSPL;

model UPB = ANX_A ANX_P SEX SEX*ANX_A SEX*ANX_P / dist=negbin s;

random _residual_/subject=ID type=un VCORR;

run;
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Figure 1: Left panel: The Actor Partner Interdependence Model for distinguish-

able dyads where a is the actor effect and p is the partner effect. Right panel:

The Common Fate Model where d is direct effect.
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GEE Multilevel

WALD SCORE RI CONSTR. RI UNCONSTR. MARGINALIZED

GUIA -0.61 (0.38) -0.74 (0.38) -0.53 (0.30) -2.20 (1.02)

p=0.103 p=0.043 p=0.058 p=0.093 p=0.671

GUIP 0.58 (0.27) 0.69 (0.38) 0.73 (0.30) 0.82 (0.44)

p=0.030 p=0.032 p=0.076 p=0.022 p=0.074

SEX -0.85 (0.41) -1.11 (0.65) -0.67 (0.40) -1.65 (3.20)

p=0.039 p=0.034 p=0.100 p=0.104 p=0.609

Table 2: Example 1: the effect of feeling guilty on forcing behavior: comparison

of five estimation/modeling methods. Estimated parameters (with standard

errors) and corresponding p-values are presented.
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GEE Multilevel

WALD SCORE RI CONSTR. RI UNCONSTR. MARGINALIZED

ANXA 0.122 (0.021) 0.123 (0.042) 0.125 (0.039) 0.181 (0.032)

p ≤ 0.001 p=0.005 p=0.007 p=0.004 p ≤ 0.001

ANXP -0.035 (0.022) -0.042 (0.044) -0.039 (0.041) -0.085 (0.032)

p=0.120 p=0.298 p=0.350 p=0.343 p=0.012

SEX -0.510 (0.226) -0.540 (0.293) -0.549 (0.275) -0.706 (0.218)

p=0.024 p=0.062 p=0.075 p=0.055 p=0.003

SEX*ANXA 0.041 (0.018) 0.052 (0.043) 0.036 (0.039) 0.093 (0.033)

p=0.027 p=0.121 p=0.234 p=0.368 p=0.008

SEX*ANXP -0.074 (0.024) -0.074 (0.042) -0.075 (0.041) -0.135 (0.033)

p=0.002 p=0.048 p=0.091 p=0.076 p ≤ 0.001

Table 3: Example 2: the effect of anxious attachment on unwanted pursuit

behavior: comparison of five estimation/modeling methods. Estimated param-

eters (with standard errors) and corresponding p-values are presented.
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Figure 3: Estimation of the ICC (true ICC=solid line) in the APIM. Each of the

4 panels presents a setting with a low, medium and high ICC (0.05, 0.15 and 0.30

in absolute value, respectively). The upper panels consider positive ICCs and

the lower panels negative ICCs. The left and right panels correspond to settings

with Bernoulli and count outcomes, respectively. Estimated ICCs are based on

the working correlation under the GEE-approach (dotted line with �) and on the

correlation of the pseudo-residuals under the marginalized multilevel approach

(dashed line with ∗). Note that the GEE-Wald and GEE-score approach yield

the same ICC.
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Figure 6: The observed distribution of the number of unwanted pursuit behav-

iors in the 33 ex-couples (with the expected distribution under a Poisson and

negative binomial distribution).
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