Assessing the Support Provided by a Toolkit for Rapid
Prototyping of Multimodal Systems

Fredy Cuenca, Davy Vanacken, Karin Coninx, Kris Luyten
Hasselt University - tUL - iMinds
Expertise Centre for Digital Media, Diepenbeek, Belgium
{fredy.cuencalucero,davy.vanacken,karin.coninx,kris.luyten} @uhasselt.be

ABSTRACT

Choosing an appropriate toolkit for creating a multimodal
interface is a cumbersome task. Several specialized toolk-
its include fusion and fission engines that allow developers
to combine and decompose modalities to capture multimodal
input and provide multimodal output. Unfortunately, the ex-
tent to which these toolkits can facilitate the creation of a
multimodal interface is hard or impossible to estimate, due
to the absence of a scale where the toolkit’s capabilities can
be measured on. In this paper, we propose a measurement
scale, which allows the assessment of specialized toolkits
without need for time-consuming testing or source code anal-
ysis. This scale is used to measure and compare the capabili-
ties of three toolkits: CoGenIVE, HephaisTK and ICon.

Author Keywords
Multimodal systems; User interface toolkits; Visual
languages; Domain specific languages;

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION

For a traditional WIMP system, the detection of a single user
event is enough to identify the user’s intent. For instance,
a click on a button Accept or Cancel of a GUI is enough to
realize whether a user wants to process or close a form re-
spectively. For the case of a multimodal system, its users are
allowed to dissociate a command so that it can be conveyed
through multiple modalities. For example, the users can si-
multaneously utilize speech and pointing to issue commands,
such that the action to be executed on an object is indicated
by the speech input whereas the object itself is pointed out.
Thus, the identification of the user’s intent is not that sim-
ple since it requires the evaluation of multiple events in order
to decode what the user is requesting. A multimodal system
is a computer system capable of collecting the information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EICS’13, June 24-27, 2013, London, United Kingdom.

Copyright 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

307

provided by a user through multiple input modes, integrat-
ing these inputs in order to interpret the user’s intent, and re-
sponding to him/her via multiple outputs. Some input modes
that can be used to enter information into a multimodal sys-
tem are speech, touch, hand gestures, handwriting or sketch-
ing. Output modes can include images, audio, synthesized
voice, video or haptics.

The development of a multimodal system is time-consuming,
and therefore expensive. It involves the creation and iterative
adaptation of prototypes. Therefore, the development phase
of a multimodal system can be shortened by facilitating the
creation and modification of prototypes, which is precisely
the purpose of the toolkits under study. In the remainder of
this work, these toolkits will be referred to as toolkits for rapid
prototyping of multimodal systems.

Some existing toolkits for rapid prototyping of multimodal
systems are ICon [5], Squidy [13], CoGenlIVE [4], Hep-
haisTK [6] and PetShop [9]. They are rather different one
from another, since they provide different features, target dif-
ferent domains, use different programming paradigms and/or
expect different skills from their users. Some aspects of these
toolkits have already been assessed. De Boeck et al. [3] eval-
uated the abstraction, difuseness, role-expressiveness, viscos-
ity and premature commitment of the visual languages of two
toolkits. Later, Dumas et al. [7] used the architecture traits,
reusability easiness and other characteristics as criteria for as-
sessing a set of toolkits. Even though the results of these eval-
uations deepen our understanding of rapid prototyping toolk-
its, their practical application is not always obvious.

From a pragmatic viewpoint, the evaluation of a toolkit for
rapid prototyping of multimodal systems leads us to the con-
crete question ‘To what extent is the use of this toolkit going
to facilitate the implementation of a multimodal prototype?’.
Unfortunately, the absence of a scale for measuring the func-
tionalities incorporated in a specialized toolkit prevents us
from accurate answers. Such measurement scales will be pro-
posed in this work and use to evaluate the support provided
by CoGenlVE, HephaisTK, and ICon for the implementation
of prototypes.

ARCHITECTURE OF A MULTIMODAL SYSTEM

The parts that comprise a multimodal system, and their inter-
relations are shown in Figure 1.

In this architecture, user inputs are recognized by a group of
specialized software components called recognizers. Each
recognizer is continuously sensing and decoding the infor-

Appl
App2
recognizers
) synthesizers
) Dialog ‘O_’
Fission
user o manager
inputs Fusion g
'—§O— GEmEEE | —)
engine \ 'system

outputs

Knowledge
sources
)

Figure 1. Architecture of a multimodal system

mation provided by the user via the modality it is intended
to sense. Some examples of these components are gesture,
handwriting and voice recognizers.

Whenever a recognizer has interpreted a stream of user in-
puts, it informs the fusion engine, which is in charge of merg-
ing the information provided by all the recognizers in order
to interpret the user’s request.

Once the dialog manager is notified of the user’s request, it
must decide how to handle it. Since the same input may result
in different responses, depending on the context, the dialog
manager must track the status of the human-machine dialog
so that user requests can be addressed correctly.

After the dialog manager has decided on the response to be
sent, it delegates this task to the fission component. This must
then choose the synthesizers (computer programs that control
rendering devices) that are best suited for the situation. The
generation and coordination of multimedia output is the re-
sponsability of the fission component.

Finally, the response to a user command may depend on the
user profile (e.g. gender, age, preferences, etc.), on the do-
main of the problem, or on the history of the human-machine
dialog. All the relevant information needed by the system is
available in data storages called knowledge sources.

When using a toolkit for rapid prototyping of multimodal
systems, its users do not have to implement all the afore-
mentioned functionalities from scratch. Rather, they can use
its visual language to invoke some functions that are pre-
programmed in its framework, as shown below.

TOOLKIT FOR RAPID PROTOTYPING OF MULTIMODAL

SYSTEMS

A toolkit for rapid prototyping of multimodal systems in-
cludes a framework and a graphical editor. It aims to enhance
an external application, herein called client application, with
multimodal capabilities. On the one hand, the client appli-
cation is developed by means of a textual programming lan-
guage and with no support from the toolkit. It must imple-
ment the particular functionalities of the intended prototype.
On the other hand, the graphical editor allows the depiction
of visual models that will be interpreted and executed by the
framework. These visual models specify the tasks the pro-
totype must perform during its interaction with the end user.
Some of these tasks are present in a wide variety of multi-
modal systems (e.g. speech recognition or tracking of sys-

Voice.Put

Voice.That
Screen TouchDown(x,y)

Highlight(x,y)

VoiceThere
Screen.TouchDown(x’,y’)

Move(x"y’)

Figure 2. Left. End user interacting with a multimodal system.
Right. Visual model used for specifying human-machine interaction.

tem state) and are already pre-programmed in the framework.
Other tasks are application-specific and have to be carried out
by the subroutines of the client application.

Consider a multimodal prototype that supports the put-that-
there interaction technique [1]. This prototype displays a se-
ries of objects on a touch-sensitive screen, and its user can
move any of these objects by using speech and pointing (Fig-
ure 2). The user must utter the sentence ‘put that there’ to
move an object from its original position to a new one. In
order for the system to correctly interpret the meanings of the
utterances ‘that’ and ‘there’, the user must point out an object
and any arbitrary position while pronouncing these words re-
spectively.

The layout of the GUI and the algorithms for highlighting
and moving an object must be implemented in a client appli-
cation. This application does not need to detect voice com-
mands or pointing events. Nor does it have to verify the tem-
poral co-occurrence of the speech input ‘that’ (or ‘there’) and
the touch on the screen. These functionalities can be del-
egated to the framework through a visual model like the one
shown on the right side of Figure 2. It specifies that the occur-
rence of the speech input ‘put’ followed by the co-occurrence
of the speech input ‘that’ and a touch on the screen will
cause the execution of the subroutine Highlight. Afterwards,
the co-ocurrence of the speech input ‘there’ and a touch on
the screen will trigger the execution of the subroutine Move,
which will have to change the position of the currently se-
lected (highlighted) object. Highlight and Move have to be
programmed in the client application.

MEASURING THE SUPPORT OF A TOOLKIT TO THE IM-

PLEMENTATION OF MULTIMODAL PROTOTYPES
Through a visual model, users can delegate some tasks to the
framework of a toolkit, as illustrated in the previous section.
We now want to identify and classify these tasks in accor-
dance to the software components (recognizers, fusion en-
gine, etc.) that are in charge of their execution.

The study of several toolkits shows that they all incorporate
software for detecting the inputs coming from a myriad of

hardware devices. Since this is the responsability of the rec-
ognizers, it can be claimed that the use of a toolkit can release
its users from implementing the recognizers of a multimodal
prototype. Another point in common is that none of the stud-
ied toolkits supports the implementation of synthesizers or
knowledge sources. Thus, their users have to include soft-
ware for synthesis of modalities in their client applications,
and to create and fill the data storages containing the informa-
tion needed by the prototype. However, the support offered
for the implementation of the fusion engine, dialog manager
and fission component varies with each toolkit.

Scale for measuring toolkit’s support

We propose to map the support provided by a toolkit to the
set of components whose implementation can be facilitated
through its use. For instance, the support of a toolkit 7" will be
{recognizers, fusion engine} if the functionality in charge
of both components can be delegated to the framework of T’
through the use of its visual language. Then, the set of all the
possible combinations of components is the scale of measure-
ment we are proposing. For the sake of formality, let C be the
set of components shown in Figure 1, the scale on which the
support of a toolkit will be measured on is the power set 2¢.
Even though the nature of this scale is qualitative, it will still
lead to more precise assessments of a toolkit’s capabilities,
which is of interest for its potential users.

The use of the proposed measurement scale requires finding
out whether some functionalities of the fusion engine, dialog
manager or fission component are incorporated in a toolkit,
and available to be invoked by its users through the depiction
of visual models. Indications to create such awareness are
given below.

The detection of a user’s request, which is a task of the fu-
sion engine, can be delegated to the framework of a toolkit
if its visual language allows the specification of composite
events. A composite event is a set of events and the temporal
constraints among them. It occurs whenever its constituent
events are detected in a predefined order. By including com-
posite events in the specification of a human-machine dialog,
the user exploits the framework’s capacity to evaluate streams
of events, seeking for those meaningful patterns that are of in-
terest for the client application to handle.

Managing context-dependent human-machine dialogs entails
identifying the current state of the prototype throughout its
interaction with the end user. The management of context-
dependent human-machine dialogs, which is the responsabil-
ity of the dialog manager, can be supported by the frame-
work of a toolkit if its visual language allows representing the
states the prototype may ever be in. Without using a toolkit,
tracking the state of a multimodal prototype would imply the
maintenance of global variables across different event han-
dlers. Furthermore, choosing the subroutines that will han-
dle a user’s request would imply the implementation of com-
plex convoluted logic, i.e. sets of nested if-else statements,
involving the aforementioned global variables. By using an
appropiate toolkit, users can release their client applications
from this spaghetti code, entailing the creation of easy-to-
maintain client applications.

The generation and coordination of multiple outputs, which

309

is a task of the fission component, can be delegated to the
framework of a toolkit if its visual language offers constructs
for concurrency and synchronization. Concurrency is re-
quired to convey the returning message through multiple out-
puts, and synchronization is required to keep these outputs
coordinated at every moment. For instance, a multimodal sys-
tem displaying an animated character capable of talking must
concurrently activate a display manager and a speech synthe-
sizer. Additionally, in order to display the lips of the animated
character such that they can always be in accordance with its
speech [12], both outputs have to be constantly synchronized.

Scale for measuring toolkit’s fusion, dialog management

and fission capabilities

The preceding subsection proposed measuring the support
provided by a toolkit in terms of the components of a mul-
timodal system. In addition, it gave us indications to realize
whether the fusion of inputs, the human-machine dialog man-
agement or the fission of a returning message can be handled
by the framework of a toolkit. This subsection proposes addi-
tional metrics to increase the precision of toolkit assessment.
For a toolkit supporting the implementation of a fusion en-
gine, we can identify the type of fusion it can support. Ac-
cording to the CASE classification space [10], a system can
fuse data that is conveyed sequentially or simultaneously. The
fusion of sequential (simultaneous) data allows identifying
multimodal commands issued through consecutive (parallel)
user actions. The CASE space can also be used to obtain a
more precise gauge of the toolkit’s fission capabilities. In-
deed, the fission ability of a toolkit can be measured in terms
of whether the toolkit can render a returning message through
consecutive and/or parallel outputs.

For a toolkit capable of handling context-dependent human-
machine dialogs, it is pertinent to detail whether these dialogs
can involve complementary, assigned, redundant or equiva-
lent modalities. Formally speaking, we can use the CARE
properties [2] for providing more precise assessments of the
toolkit’s dialog management capabilities.

Unlike the previous subsection, we cannot give generic indi-
cations about how to infer the CASE and CARE properties
of a toolkit from its visual language. The reason is that the
language constructs required to exploit these properties vary
from toolkit to toolkit. The identification of the type of fusion,
dialog management and fission provided by a toolkit has to be
done on an ad hoc basis.

ASSESSING COGENIVE, HEPHAISTK AND ICON

The diagrams depicted with the graphical editor of a toolkit
for rapid prototyping of multimodal systems are variations
of some well-known model. For the studied toolkits, these
models are state diagrams and block diagrams.

State diagrams

State diagrams are graphs that can be utilized to model the
interaction between a system and its end user. In this case,
the nodes represent the states the system may ever be in, and
the arcs represent its state transitions. Every arc of a state dia-
gram can hold two annotations. One annotation is intended to
indicate the event that makes the system changes its state, and

the other to specify the subroutine(s) the system must execute
during this transition. The models created with the editors of
CoGenlVE and HephaisTK are variants of state diagrams.

CoGenlVE

The model shown on the left side of Figure 3 was depicted
with the graphical editor of CoGenIVE [11, 4]. It specifies
the behavior of a prototype implementing the put-that-there
interaction technique described above.

This model shows that the prototype can be in four states,
which are depicted as circles and labeled Start, Put, Put-That
and Put-That-There. Once up and running, the prototype
is in the state Start. Thereupon, the user commands will
make it change its state. For instance, when the prototype
is in the state Put, it will ignore every command except for
the selection of the object to be moved, which is character-
ized by the co-occurrence of the speech input ‘that’ and a
mouse click, i.e. by the occurrence of the composite event
Voice.That & Mouse.ButtonPressed. As a response to this
user command, the prototype will invoke some subroutines
(represented as the rectangles labelled CollisionWithPointer
and SelectObject) that will lead to the identification of the
selected object. After performing these actions, the system
will change its state to a new one labelled Put-That.

The possibility to include composite events in a CoGenlVE
model permit us to delegate the fusion of inputs to the
CoGenlVE’s framework. In CoGenlIVE, a composite event
is a label annotated in an arrow of a visual model. It specifies
those events whose co-occurrence must be detected by
CoGenlVE’s framework. This detection indicates that the
end user has requested a service to the prototype.
CoGenlVE’s editor allows us to place circles to represent
each potential state of the prototype. Thus, the management
of context-dependent human-machine dialogs is more
easily implemented when using CoGenlIVE. Its users must
only program those subroutines implementing the particular
functionalities of the intended prototype. Then, the Co-
GenlVE’s framework will decide which of these subroutines
must be executed and when this is the case.

As to the fission component, its functionality cannot be
delegated to CoGenIVE’s framework. This is due to the im-
possibility of specifying concurrency with the CoGenIVE’s
visual language, i.e. CoGenlIVE’s framework can only
execute one subroutine per time. This limitation stems from
the fact that state diagrams only experience one transition at a
time and thus, only one subroutine can be executed in a given
moment. Of course, one subroutine can be programmed so
that it can handle concurrent computation but this would
put all the burden on the programmer instead of on the
framework.

At a more detailed level, we observe that CoGenIVE can fuse
information coming from modalities used in parallel as seen
in Figure 3. A sequence of events can also be interpreted as a
multimodal command [4]. Finally, CoGenIVE’s framework
can handle human-machine dialogs exhibiting the four
CARE properties. In view of space limitation, we cannot
elaborate upon this point, but interested readers can refer to
[11].

310

HephaisTK

The concise model of the right side of Figure 3, depicted with
the editor of HephaisTK [6], specifies the behavior of a pro-
totype implementing the put-that-there interaction technique.
The prototype will initially be at state Start awaiting for the
sequence of events whose detection will cause the movement
of an object. This movement is executed by the subroutine
put_that_there_action whereas the stream of events that will
cause the execution of this subprogram is represented as a set
of nested rectangles.

HephaisTK’s notation allow four different types of rectan-
gles to declare composite events [6]. Each type of rectan-
gle indicates the temporal constraints among the events an-
notated within it. Thus, a wide variety of composite events
can be defined by nesting these four types of containers.
For instance, the yellow rectangles shown in the aforemen-
tioned figure mean simultaneous complementarity whereas
the white one means sequential complementarity. Therefore,
the model specifies that the sequential detection of the voice
command ‘put’ followed by the co-occurrence of the voice
command ‘that’ and a mouse click, and by the co-occurrence
of the voice command ‘there’ and a mouse click will cause
the execution of the subroutine put_that_there_action (im-
plemented at the client side).

As mentioned above, the HephaisTK’s editor allows repre-
senting composite events by nesting different types of rect-
angles. Thus, some functionalities of the fusion engine can
be delegated to the HephaisTK’s framework in benefit of its
users. More specifically, users release their client applications
from examining streams of events. Rather, it is the respons-
ability of HephaisTK’s framework to seek for those meaning-
ful patterns of events specified as composite events.
Implementing the management of context-dependent
human-machine dialogs can be facilitated when using Hep-
haisTK. The states and subroutines to be called by Hep-
haisTK’s framework can be specified by means of a visual
model. Each state is depicted as a circle, and the subroutines
are annotated next to a zigzagged arrow. Models like the one
shown in Figure 3, contain enough information so that Hep-
haisTK’s framework can always choose the subroutine that
will correctly handle a multimodal command.

As regards the fission component, it has to be implemented
at the client side with no support from HephaisTK. As men-
tioned in the previous subsection, this is due to the limitation
of state diagrams to model concurrency.

At a more detailed level, HephaisTK can fuse information
conveyed through sequential or simultaneous user actions. Fi-
nally, the appropiate use of the HephaisTK’s visual language
leads to the creation of prototypes supporting the four CARE
properties[6].

Block diagrams

A block diagram is a set of blocks connected by directed
arcs. It represents the transformations suffered by the data
that flows within a system. Whereas the arcs can be seen as
the channels through which the data flows, the blocks can be
thought of as entities performing operations on the data that
flows through them. The data enters into a multimodal pro-
totype whenever its user issues some recognizable command.
ICon models resemble block diagrams.

VOICE.PUT

v L
—

3DMOUSE

BUTTON_PRESSED.1

}g put_trigger ,@

}\ that_trigger la” -

VOICE.THAT

Move

object_pointed_event

3DMOUSE .BUTTON_PRESSED.1

}\ there_trigger

Select Object

/[VOICE.THERE ﬁ
'-‘§—u—u—u—»—n—n—u—«—u—u—

£ §5

2E

% weedt o‘ggﬁgg

4U

Put That zag’,_y___'
i g3 ’
588

object_pointed_event

iy put_that_there_action

I~

x seled | x
.

[1500

Figure 3. Specification of the put-that-there interaction technique in CoGenIVE (left) and HephaisTK (right) [8].

commands

puk
that

E MyClientApp

there p

sendUnrecognized [l

speechCmd

speec1
cmd
index
string

Figure 4. Specification of the put-that-there interaction technique in
ICon.

ICon

Figure 4 shows how a client application called MyClien-
tApp can be enhanced with speech recognition by means of
a ICon’s model. Instead of listening to system events, the
client application expects to be notified, by the framework of
ICon [5], about the user activities: clicking the mouse or ut-
tering a voice command. The nodes labelled as speechCmd
and mouse represent the recognizers that sense the voice and
pointing commands issued by the end user. The data pro-
vided by these recognizers is then transformed by the nodes
switch and sum before being sent to the client application.
Nodes sum transform delta values (dz, dy) into cursor loca-
tions (x, y). The node switch activates one flag to identify the
utterance -put, that or there- issued by the end user. ICon does
not verify whether the speech and pointing inputs satisfy the
temporal constraints expected during the put-that-there inter-
action technique. Rather, the client application must be pro-
grammed to check whether the sequence of events that will
lead to the movement of an object has been detected or not.
In short, ICon does not support the implementation of fusion
of inputs [5].

311

As seen in Figure 4, ICon models do not contain symbols to
represent the state of the prototype or to specify composite
events. Moreover, the semantics of its visual language estab-
lishes that the data entering a block must be processed and
inmediately reinjected to the net, thus preventing the users to
model synchronization.

ICon successfully accomplishes its goal of providing its users
an easy way to extend their applications so that they can sup-
port a wide set of heterogeneous devices. Its work consists
of informing the client application about the events ocurring
in the environment. Later, the client application will be re-
sponsible for interpreting the user’s request from these events,
tracking the state of the dialog, and responding the user. In
other words, all the functionalities of the fusion engine, dia-
log manager and fission component have to be implemented
without support from ICon.

DISCUSSION

This work is the first stage of a research intending to advance
the state of the art of toolkits for rapid prototyping of multi-
modal systems. Such attainment would not be possible with-
out a deep understanding of toolkits, which entails their pre-
cise assessment and objective comparison. The absence of
metrics for measuring a toolkit’s functionality, and our need
for precise evaluations are the reasons that made us define the
measurement scales presented in this paper.

We proposed to measure the support provided by a toolkit in
terms of the components whose implementation it can facil-
itate. In order to foster the use of this scale, we described
a heuristic method that helps us to uncover the capabilities
of a toolkit from its visual modeling language. It consists of
evaluating the visual language of a given toolkit, seeking for
a series of features whose presence reveals the functionality
incorporated in its framework. For instance, the presence of
composite events in a visual model discloses the toolkit’s ca-
pability to fuse multimodal inputs.

The support provided by three toolkits was measured on
the aforementioned scale by using the proposed heuristics.

The results obtained (Table 1) show that the use of Co-
GenIVE and HephaisTK leads to a higher reduction of the
programming code at the client side. More precisely, Co-
GenlVE, HephaisTK and ICon all allow their users to in-
voke the recognition capabilities incorporated in their frame-
works, thus releasing them from implementing the recogniz-
ers of the intended multimodal prototype. But CoGenIVE
and HephaisTK can also detect the multimodal commands
issued by an end user (through a series of consecutive or par-
allel actions). Moreover, both also allow the specification of
context-dependent human-machine dialogs (where the mes-
sages can be conveyed through complementary, assigned, re-
dundant and equivalent modalities).

CoGenlIVE HephaisTK

Recognizers 4

y

F & 4

Fusion Engine
Dialog Manager
Fission component

Synthesizers

t B B AN
”g“"\"\"\

Knowledge Source

Table 1. Checkmarks are used to indicate the components whose imple-
mentation is supported by a toolkit.

Although the results summarized in Table 1 give us an overall
idea of what can be expected from a toolkit during the im-
plementation of multimodal prototypes, they are still coarse-
grained and call for extending our measurement scale with
additional criteria.

Finally, it seems to be a correlation between the gains pro-
vided by a toolkit and the formalism on which its visual lan-
guage is based on, i.e. CoGenIVE and HephaisTK may ex-
hibit similar functionalities because their visual models are
based on state diagrams. Indeed, in an ongoing study we are
looking into the existence of classes of toolkits. Such find-
ing will facilitate the understanding, and permit an organized
study of toolkits; both can hopefully lead to the design of
simpler visual languages and/or more efficient toolkits.

CONCLUSIONS

The novelty of this work is the proposal of a scale for mea-
suring the support provided by a toolkit for the implementa-
tion of multimodal prototypes. Such scale is not only a use-
ful reference for the evaluation, but also for the comparison
of toolkits. Since the use of this scale requires infering the
functionalities that are pre-programmed in the framework of a
toolkit, heuristic rules were provided to accomplish this task.
We have discussed the results obtained from the evaluations
of three toolkits with the proposed scale.

ACKNOWLEDGMENTS

We want to thank the BOF financing of Hasselt University
for supporting this research, and our colleague, Jan Van den
Bergh, for his valuable feedback.

312

REFERENCES

1.

10.

11.

12.

13.

Bolt, R. Put-that-there: Voice and gesture at the graphics
interface. In SIGGRAPH’ 80 Proc. of the 7th annual
conference on computer graphics and interactive
techniques, ACM (1980).

. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J.,

and R., Y. Four easy pieces for assessing the usability of
multimodal interaction: The care properties. In Proc. of
INTERACT’95 (1995).

. De Boeck, J., Raymaekers, C., and Coninx, K.

Comparing nimmit and data-driven notations for
describing multimodal interaction. In TAMODIA’ 06
Proc. of the fifth International Conference on Task
Models and Diagrams for User Interaction Design,
Springer Verlag (2007).

. De Boeck, J., Vanacken, D., Raymaekers, C., and

Coninx, K. High level modeling of multimodal
interaction techniques using NiMMiT. Journal of
Virtual Reality and Broadcasting 4, 2 (2007).

. Dragicevic, P., and Fekete, J. Support for input

adaptability in the icon toolkit. In ICMI’04 Proc. of the
6th International Conference on Multimodal Interfaces,
ACM (2004).

. Dumas, B. Frameworks, Description Languages and

Fusion Engines for Multimodal Interactive Systems.
PhD thesis, University of Fribourg, 2010.

. Dumas, B., Lalanne, D., and Oviatt, S. Multimodal

interfaces: A survey of principles, models and
frameworks. In Human Machine Interaction, Springer
Verlag (2009).

. Dumas, B., Signer, B., and Lalanne, D. A graphical uidl

editor for multimodal interaction design based on
smuiml. In Proc. of the Workshop on Software Support
for User Interface Description Language, WISE
publication (2011).

. Navarre, D., Palanque, P., Ladry, J., and Barboni, E.

ICOs: A Model-Based User Interface Description
Technique dedicated to Interactive Systems Addressing
Usability, Reliability and Scalability. ACM Transactions
on Computer-Human Interaction 16, 4 (2009).

Nigay, L., and Coutaz, J. A design space for multimodal
systems: Concurrent processing and data fusion. In
Proc. of INTERACT 93, ACM (1993).

Vanacken, D. Touch-based interaction and collaboration
in walk-up-and-use and multi-user environments. PhD
thesis, Universiteit Hasselt, 2012.

Wabhlster, W., Reithinger, N., and Blocher, A. Smartkom:
Multimodal communication with a life-like character. In
Proc. of the 7th European Conference on Speech
Communication and Technology, DKFI (2001).

Werner, K., Raedle, R., and Harald, R. Interactive
Design of Multimodal User Interfaces - Reducing

technical and visual complexity. Journal on Multimodal
User Interfaces 3, 3 (2010).

	Introduction
	Architecture of a Multimodal System
	Toolkit for Rapid Prototyping of Multimodal Systems
	Measuring the support of a toolkit to the implementation of multimodal prototypes
	Scale for measuring toolkit's support
	Scale for measuring toolkit's fusion, dialog management and fission capabilities

	Assessing CoGenIVE, HephaisTK and ICon
	State diagrams
	CoGenIVE
	HephaisTK

	Block diagrams
	ICon

	Discussion
	Conclusions
	Acknowledgments
	REFERENCES

