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Abstract. We consider an integrated complex-object dataflow database
in which multiple dataflow specifications can be stored, together with
multiple executions of these dataflows, including the complex-object data
that are involved, and annotations. We focus on dataflow applications
frequently encountered in the scientific community, involving the ma-
nipulation of data with a complex-object structure combined with ser-
vice calls, which can be either internal or external. Internal services are
dataflows acting as a subprogram of an other dataflow, whereas external
services are modeled as functions with a possibly non-deterministic be-
havior. Dataflow specifications are expressed in a high-level programming
language based on the nested relational calculus, the operators of which
provide the right “glue” needed to combine different service calls into a
complex-object dataflow. All entities involved, whether complex-objects,
dataflow executions or dataflow specifications, are first-class citizens of
the integrated database: they are all data. We discuss how such dataflow
repositories can be queried in a variety of ways, including provenance
queries. We show that a modern SQL platform with support for (ex-
ternal) routines and SQL/XML suffices to support all types of dataflow
repository queries.

Dedicated to Peter Buneman.

1 Introduction

A workflow is a high-level specification of a complex and possibly long-during
task, consisting of different subtasks that must be performed in a certain order.
This order does not need to be linear: some tasks can be performed concur-
rently, or alternatively. Workflow management has its origins in business process
modeling [1], but in recent years workflows have gained importance in e-science,
in parallel with the rise of Grid Computing [2]. Scientific workflows are distin-
guished from business workflows by their placing more importance on the data
flow between the subtasks, than on the synchronization of subtasks [3]. (In e-
science, the data flow frequently involves collections of complex data objects.)
In accordance to this focus, in this paper, we use the terms “scientific workflow”
and “dataflow” interchangeably.

With the rise of scientific workflows, the need for better database support
became apparent. A nice overview of relevant topics in database support for
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scientific workflow management has been given in a special issue of SIGMOD
Record [4]. The needs in this area go well beyond what so-called workflow man-
agement systems (WFMS) provide, even if coupled to a DBMS such as Oracle
Workflow or IBM WebSphere. Such WFMSs provide support for constructing
workflow specifications and guiding and monitoring workflow executions.

In an e-science environment, however, one is confronted with multiple inter-
related research projects, where in each project a multitude of different dataflows
are in use, each of which has been executed many times, on different input data,
using different versions of external services, by different users, and so on. Stan-
dard WFMSs, although they are implemented on top of a database, lack the
support for ad-hoc querying of all this information in an integrated manner.
Such database support is important to manage computational experiments, to
allow reproducibility, and more generally, to “enforce the scientific method” [5].

In response to this problem, in an earlier paper [6], we gave the formal speci-
fication of an integrated dataflow repository. In the current paper, we show how
an implementation of this system on top of a modern but standard SQL plat-
form, enables the querying of dataflows and dataflow executions in an integrated
manner. We intensively use such features as external routines, user-defined table
functions, SQL/XML and XQuery capabilities.

Of course we are not the first to address the challenge of querying dataflow ex-
ecutions; in the scientific workflow community such queries are known as “prove-
nance queries”. The participants of the Provenance Challenges1 have already
intensively investigated this direction.

Our present approach focuses on the following aspects:

1. We explicitly represent the complex-data manipulations that are performed
in a dataflow. We do this using the nested relational calculus (NRC [9]): an
elementary functional programming language composed of all the natural
manipulation operators on collection- and record-oriented data.

2. We investigate the feasibility of a 100% database solution. Using the full
power of the modern SQL:2003 standard, we will see that all types of prove-
nance queries can be solved directly in SQL. Many present solutions of the
Provenance Challenge mentioned above involve coding of diverse programs
outside of the database. In contrast, our approach focuses on a fixed set of
user-defined functions that can then be used in SQL select statements.

3. We address querying not only of dataflow executions but also of the specifica-
tions of the dataflows. In the same vein, we address querying of executions of
dataflows, the specification of which is not determined in advance. Previous
approaches to dataflow provenance typically focus on querying executions of
a fixed dataflow specification, given outside of the query.

4. Thanks to our explicit complex-object data model, we can support a new,
finer-grained notion of provenance tracking, where we can derive connections
directly among subvalues occurring in the result and the intermediate results
of a dataflow execution.

1 http://twiki.ipaw.info/bin/view/Challenge/WebHome
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This paper is organized as follows. In Section 2 we describe related work. In
Section 3 we briefly discuss the types of queries which illustrate the need for an
integrated dataflow database. In Section 4 we use simple examples to discuss the
database representation of complex data, NRC dataflows, and the integration of
external services. In Section 4.4 we briefly describe the execution of dataflows,
taking into account such issues as binding of input data, binding of external
function calls, and binding of subdataflows. We conclude the section with the
representation of past executions in the dataflow database. In Section 4.5 we
briefly describe how the database can integrate annotations.

Finally, in Section 5, we show how the integrated complex-object dataflow
database can be queried in a variety of ways.

2 Related work

Support for the complex-object structure of data flowing in a scientific workflow
is present in various systems, e.g., Taverna [10, 11], Kepler/CoMaD [12, 13], and
Chimera [14, 15]. The operation of applying a function on all elements of a col-
lection is typically provided. However, that operation is just one of the many
possible kinds of “glue” needed to connect different subtasks in a complex data
flow together. Indeed, the NRC which we use provides exactly the natural set of
operations to deal with complex-object data. It has evolved from a long tradition
of complex-object data modeling in the database research literature.

Also a database-oriented approach has been advocated by many others [16–
20]. However, the querying of an unbounded number of dataflow executions, as
given by the database instance and not fixed in advance, as well as the querying
of dataflow specifications inside the database, has not been addressed before.
Our approach is based on our earlier experience with database meta-querying
[21, 22]. We should also mention the topic of process mining [23, 24], although
the scope of process mining is quite different from that of repository querying.

We represent a dataflow execution in the database as a “log”, i.e., a set
of triples of the form (input, function, output). This representation is natural
and common [25, 26, 19, 27, 28], and is often equivalently viewed as a causality
graph. Specific to our approach is that we can define a finer-grained tracking of
provenance not just from output to input, but also from a subvalue occurring
in the output to a subvalue occurring in the input. Note that in our previous
paper [29] we have given a conversion from our execution model to the proposed
standard Open Provenance Model [30], which uses an explicit causality graph.

We should also mention some more distantly related work. Beeri, Milo et
al. have an interesting project on querying the potential executions of a given
workflow specification [31]. That approach is mainly verification-oriented rather
than repository-oriented, although they did also consider monitoring [32]. The
NRC was used in the Kleisli system [33, 34] not as a dataflow specification lan-
guage, but as a bioinformatics data integration query language, where the entire
structure of the biological data is modeled as a complex object. We use com-
plex objects in a different way, to model the data flow in a scientific workflow.
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The NRC is also used as a framework to formalize provenance and dependency
analysis for queries over annotated databases [35, 36].

We conclude by pointing out that the need for a workflow repository is also
acknowledged in other fields, as shown by Blockeel and Vanschoren’s Experiment
Databases for Machine Learning [37, 38].

3 Motivation

The participants of the Provenance Challenges2 have already informally for-
mulated various queries, involving both a dataflow specification and its past
executions.

For example, for a specified part of a workflow output, say out , they have
formulated queries that ask (i) which workflow inputs have contributed to the
computation of out (Q1,Q5 from PC3); (ii) which part of the execution con-
tributed to the computation of out , possibly further restricted by annotations,
or only up to a specified task (Q1-Q3 from PC1, Q3 from PC3); (iii) to verify if
certain tasks were involved in the computation of out (Q2 of PC3); (iv) to look
for tasks that can be swapped during execution without affecting out (optional
Q5 from PC3).

Queries that involve many executions of the same workflow ask (i) to find
all invocations of a specified task, using a specified input, and having specified
annotations (Q4); (ii) to retrieve (intermediate) results produced by a specified
task and/or having specified annotations (Q8-Q9 from PC1), or even preceded by
another specified task (Q6 from PC1); (iii) to find all workflow outputs produced
from a specified input (Q5 from PC1); (iv) to find differences between specified
past executions (Q7 from PC1). We concur that a dataflow repository should
allow formulating such queries, and we illustrate in Section 5 how it can be done
in our model.

In general, there are various types of queries that a dataflow repository should
support, including:
– Queries involving subvalues of a (final) result. Indeed, in some dataflows,

both intermediate values and the final result value may be huge data sets,
and the user might be only interested in some part.

– Querying vast amounts of past executions, in order to identify dataflows and
their executions involving a particular external service. Indeed, if that service
produced erroneous results, or there is a better implementation available,
such queries are necessary if we want to rerun the affected dataflows with
another external service.

– Queries that allow modifying of dataflow specifications and immediate exe-
cution of the modified dataflows.

We show in Section 5 how such queries can be constructed for our integrated
dataflow repository, after a description of a possible implementation in the fol-
lowing section.
2 http://twiki.ipaw.info/bin/view/Challenge/WebHome, we refer to the first chal-

lenge as PC1, and to the third as PC3.
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4 Complex-object dataflow database

In an earlier paper [6], we gave the formal specification of a dataflow repository.
In this section we show how we can represent all aspects of that formal model
on top of a modern SQL platform.

4.1 Complex data

Data objects flowing in a scientific workflow can either be atomic for the work-
flow, or can have a structure that is important for the workflow. The two basic
data structures in databases are the set, e.g., {sequence1, . . . , sequence76}, and
the tuple, e.g., 〈organism : mouse, . . . ,filename : GPZ158〉. These structures can
be arbitrarily nested: we use the complex-object data model [39]. For more de-
tails on the theory, including the type system, we refer to our previous paper
[6], as here we are focusing more on the implementation and use of the system.

It is important to note that an “atomic” object can be quite complex, e.g., it
can be a file, it can be an XML document. However, for a dataflow that has only
actions that operate on the file as a whole, it is not relevant to model the file
as a set of records. On the other hand, if the structure of the file as a collection
is important, because we want to apply some operation to each of its elements,
then we model the file as a complex object.

We represent atomic objects as strings. For small types of atomic objects,
such as numbers, strings or dates, the string can hold the entire value of the
object. For large atomic objects such as files, we could still represent them as a
string by means of a path name of the file.

In many cases, however, it is more desirable to store the large atomic object
in the database as a BLOB (which can contain a text file or an XML document
as well as a binary file). In that case, the string representing the object is an iden-
tifier that can be used as a foreign key to the object in table Pool(ID, object).

As to storing complex objects, we discuss two basic ways: decomposition and
XML representation.

Decomposition of complex objects. A complex object, together with its nested
subobjects, can be naturally viewed as a tree. We generate a string ID for each
tuple and set node; the atomic objects, which occur as leaves in the tree, al-
ready have their string representation. We then store the tree in two tables:
Sets(ID, eID) and Tuples(ID, att, fID). Here, eID stands for element ID,
att stands for attribute, and fID for field ID. Figure 1 shows an illustration for
the following complex object:

{〈exp: P2T42, targets : {human, mouse}, result : report123〉,
〈exp: P42T3, targets : {human, chimp}, result : report456〉}
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Sets

ID eID

1 2
1 4
3 chimp
3 human
5 human
5 mouse

Tuples

ID att fID

2 exp P42T3
2 result report456
2 targets 3
4 result report123
4 exp P2T42
4 targets 5

Fig. 1. Tree representation and decomposition of a complex object.

XML representation of complex objects. We can also take advantage of the XML
data type supported by modern database systems, and store the complex-object
tree directly as an XML value. This is illustrated in Figure 2. There is an addi-
tional choice when the complex object contains XML documents as large atomic
objects at the leaves: we can just have the IDs of these objects at the leaves
of the XML tree, or we can include their full XML content. For example, in
Figure 2, the results are represented by IDs report123 and report456 referring
to the Pool table, but alternatively we could have replaced these IDs inside the
XML tree by the corresponding full XML reports.

The best choice among decomposition, intermediate XML, and full XML for
complex objects depends on the application. We can provide library routines
to move between the three representations; these routines can then be called in
SQL statements.

4.2 NRC dataflows

In its most simple form, a dataflow is a pipeline of function applications, as
illustrated in Figure 4, or expressed in the dataflow language we use in Figure 5.
The function names analyze, compare and annotate represent the basic actions
or tasks of which the dataflow is composed. In e-science and e-commerce settings,
these tasks are often called services, so we refer to the function names in a
dataflow as abstract service names. They are abstract in the sense that they serve
only as placeholders for actions: only when the dataflow is actually executed, the
abstract service names are bound to concrete actions.

Since the data objects flowing in the pipeline can have complex structure,
a language with just variable definitions (the let-construct) and function ap-
plication, as used in the above example, is not sufficient. For example, if x is
a set, we want to apply analyze to every element of x and collect the results.
We can accommodate this by adding a mapping construct {analyze(u) | u ∈ x}
to the language, in the form of for u ∈ x return analyze(u). In order to be
able to organize the data flow, we also want the basic operations on tuples and
sets: tuple formation, tuple projection, singleton set formation, set union, and
big union, also known as “flatten”.3 Finally, we need an if-then-else construct.
This rounds up the operations of a natural language for complex objects known
as the nested relational calculus or NRC.
3 The flattening

S
s of a set of sets s = {s1, . . . , sn} equals s1 ∪ · · · ∪ sn.
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<set>
<tuple>
<att> exp </att>
<atom> P2T42 </atom>
<att> targets </att>
<set>
<atom> human </atom>
<atom> mouse </atom>

</set>
<att> result </att>
<atom> report123 </atom>

</tuple>
<tuple>
<att> exp </att>
<atom> P42T3 </atom>
<att> targets </att>
<set>
<atom> human </atom>
<atom> chimp </atom>

</set>
<att> result </att>
<atom> report456 </atom>

</tuple>
</set>

Fig. 2. XML representation of a
complex object.

<expr ID="0">
<let ID="1">

<var ID="2"> z </var>
<for ID="3">

<var ID="4"> u </var>
<var ID="5"> x </var>
<tuple ID="6">

<att> a </att>
<project ID="7">

<att> a </att>
<var ID="8"> u </var>

</project>
<att> b </att>
<call ID="9">

<name> extract </name>
<project ID="10">

<att> c </att>
<var ID="11"> u </var>

</project>
</call>

</tuple>
</for>
<call ID="12">

<name> validate </name>
<call ID="13">

<name> search1 </name>
<var ID="14"> z </var>
<var ID="15"> y </var>

</call>
<call ID="16">

<name> search2 </name>
<var ID="17"> z </var>
<var ID="18"> y </var>

</call>
</call>

</let>
</expr>

Fig. 3. XML representation of the
NRC expression of Figure 6.

So, as already seen in Figure 5, a dataflow consists of a name, a specification
of its input parameters, and a specification of its behavior in the form of an
NRC expression. Another example is shown in Figure 6. Actually, our system is
typed [6], so input and return types, as well as service signatures should also be
specified. For simplicity of presentation, however, we omit the typing system.

Storing dataflow specifications in the repository. Dataflow specifications are
stored in a table Dataflows with attributes ID and expr in which the name
and the NRC expression are stored. (There are also attributes to store type in-
formation.) Here, attribute expr is of type XML: we store the expressions by
their syntax tree in XML format, as illustrated in Figure 3.

Note that the element nodes in the XML syntax tree have unique ID at-
tributes. This allows us to create an index on XML column expr based on the
XPath pattern //*[@ID]. This is useful to support efficient querying of stored
expressions using SQL/XML. Indeed, as we will see later, some other tables in
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analyze resultannotate

compare

data1

data2

Fig. 4. A dataflow.

dataflow AFlow(x, y) returns
let z := analyze(x)
in annotate(compare(z, analyze(y)), z)

Fig. 5. Specification of AFlow.

dataflow BFlow(x, y) returns
let z := for u in x return

<a: u.a, b: extract(u.c)>
in validate(search1(z,y),

search2(z,y))

Fig. 6. Specification of BFlow.

<btree>
<entry>

<aname>extract</aname><ename>EXTR</ename>
</entry>
<entry>

<aname>validate</aname><ename>VAL</ename>
</entry>
<entry>

<aname>search1</aname><sub>CFlow</sub>
<btree>
<entry>

<aname>dbsearch</aname><ename>SQST</ename>
</entry>

</btree>
</entry>
<entry>

<aname>search2</aname><sub>CFlow</sub>
<btree>
<entry>

<aname>dbsearch</aname><ename>MSCT</ename>
</entry>

</btree>
</entry>

</btree>

Fig. 7. Binding tree.

the repository database contain references to these IDs, so many queries use
conditions involving the above XPath pattern. We show examples in Section 5.

4.3 External services and subdataflows

The functions we want to call in a dataflow execution are called external ser-
vices, because they represent a computation that is external to the dataflow
specification, i.e., not further modeled within the dataflow specification. In e-
science, services can be local programs, remote programs, Grid service calls or
Web service calls, and so on.

In order to integrate external services in the dataflow database, we assume
Java wrappers for them, which are registered as external routines (user-defined
Java functions). These functions take XML representations of complex objects
as input and output. In this way, external services can be called directly in
SQL statements, but also, dataflow executions can be initiated from inside the
database server.

So, before we start the execution of a dataflow, we bind some of the abstract
service names occurring in the body to names of external routines. Other ab-
stract service names, however, may be bound to names of other dataflows in the
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the repository database contain references to these IDs, so many queries use
conditions involving the above XPath pattern. We show examples in Section 5.

4.3 External services and subdataflows

The functions we want to call in a dataflow execution are called external ser-
vices, because they represent a computation that is external to the dataflow
specification, i.e., not further modeled within the dataflow specification. In e-
science, services can be local programs, remote programs, Grid service calls or
Web service calls, and so on.

In order to integrate external services in the dataflow database, we assume
Java wrappers for them, which are registered as external routines (user-defined
Java functions). These functions take XML representations of complex objects
as input and output. In this way, external services can be called directly in
SQL statements, but also, dataflow executions can be initiated from inside the
database server.

So, before we start the execution of a dataflow, we bind some of the abstract
service names occurring in the body to names of external routines. Other ab-
stract service names, however, may be bound to names of other dataflows in the



Querying an integrated complex-object dataflow database 9

repository. Indeed, in order to support modular programming of workflows, we
want to be able to let one dataflow call another one as a subdataflow.

The specification of binding of abstract service names to external routines
or subdataflows, together with the further binding of abstract service names
occurring in those subdataflows, is called a binding tree and can be naturally
represented in XML. Recall, for example, dataflow BFlow from Figure 6. To
execute BFlow we might want to bind extract and validate to external routine
names EXTR and VAL, and both search1 and search2 to another dataflow CFlow.
Assume that CFlow calls just one abstract service name dbsearch. In the CFlow
executions within BFlow that are called as search1, we want to bind dbsearch
to external routine SQST, but in the subdataflow executions called as search2,
we want to bind dbsearch to MSCT. The binding tree that specifies all this is
shown in XML in Figure 7.

4.4 Executions

To execute a dataflow known to the repository, the system offers, as a library
routine, the stored procedure Execute(flowID , vassign, btree), where flowID des-
ignates a dataflow from the Dataflows table, btree is a binding tree for the
dataflow, and vassign is an assignment of input values to the input parameters
of the dataflow.

This value assignment is given in XML in the following format:

<vassign>
<entry> <name> x </name> <val> v </val> </entry>
. . .

</vassign>

Here, x stands for an input parameter and v for the input value for x. When
using the decomposed representation of complex objects, we can give v as an
identifier to be found in the Sets and Tuples tables. When using XML represen-
tation, v is itself a further XML subtree. So, formally, we have different variants
of Execute, but we omit this here from our notation.

The behavior of Execute is such that a log of the execution is stored in
the repository. We call such a log a “run”. Runs are stored in tables Runs(ID,
flowID, vassign, btree) and Triples(ID, caller, cassign, subexpr,
vassign, value). Here, the ID of the run is newly generated. With this ID,
a number of tuples, called “tagged triples”, are inserted in the Triples table:
one holding the final result value, and one for each service call that has been
made. This is necessary because external services need to be considered as non-
deterministic functions. For example, in Bioinformatics, public search services
(for genes, proteins, etc) are heavily used and called through Web interfaces, but
the underlying contents change daily. So, in order to allow for querying of past
executions of dataflows in the repository, it is crucial that the results returned
by the service calls are stored, because we cannot simply rerun the dataflow later
on the same inputs and still be certain to get the same results.
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The columns of the Triples table have the following meaning. Let us first
consider the service calls made in the main dataflow execution, so not in sub-
dataflows. Column subexpr holds the ID of the place of the call in the syntax
tree of the dataflow expression. Column vassign holds the values of the dataflow
parameters at the time of the call. Column value holds the return value of the
call. For the tuple holding the final result value, subexpr is simply the identi-
fier of the root element of the syntax tree, and vassign is the original input
assignment.

dataflow mapF(input) returns
for x in input return f(x)

Fig. 8. A simple flow.

dataflow myFlow(input) returns
<c: f(g(input.a)), d: f(g(input.b))>

Fig. 9. Another simple flow.

Let us illustrate the Triples table on the simple dataflow of Figure 8. Assume
the node ID of the call f(x) in the syntax tree is 4, and that of the entire
expression equals 1. Assume the input value equals the set S = {a, b, c}; then a
possible run could generate the following triples: (we write the value assignments
in an abbreviated form, and abbreviate input by i)

(1, [i = S], {55, 66});
(4, [i = S, x = a], 55); (4, [i = S, x = b], 55); (4, [i = S, x = c], 66).

So we see that f(a) and f(b) both returned 55, and f(c) returned 66.
So far we have ignored the columns caller and cassign. In the triples

corresponding to the execution of the main dataflow, these columns are NULL.
In triples corresponding to subdataflow executions, these columns hold the ID of
the call subexpression and the values of the dataflow parameters at the moment
of the call.

Implementation. Execute can be implemented quite straightforwardly by com-
piling NRC into SQL/XML. Indeed, under the decomposed representation of
complex objects, NRC operations can be quite simply programmed in SQL. We
have already seen that external services can be called in SQL as external rou-
tines. Under the XML representation of complex objects, either decomposition
can be applied first (this is the approach we take in our prototype), or a direct
compilation of the NRC operations into XQuery may be performed.

4.5 Annotations

The basic set of tables Dataflows, Runs, and Triples that constitute the dataflow
repository can, of course, be supplemented with extra tables in which extra in-
formation, known as annotations or meta-data, can be stored. These tables are
application-dependent, and can refer to the IDs of the elements stored in the
basic tables. Examples of meta-data can be authorship, dates and times, version
information, categories of dataflows according to projects, and so on.
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Annotation hooks. There is one kind of annotation that must be performed by
the execution system. This is when we want to record the start or end date&time
of runs, or properties of external service calls, such as date&time again, but
also possible error codes and so on. In order to provide applications with a
flexible annotation recording of runs, the procedure Execute can provide a hook
that is called before and after each service call. The application developer can
instantiate this hook with the code necessary to record the meta-data required
by the application.

Note that for dataflows with known specification, no date&time information
is necessary to determine the order of execution of (external) services. If the
execution of a service depends on the result of another service, the order of
execution of services can be determined from the subexpression identifiers stored
in the Triples table and the dataflow specification in the Dataflows table.

5 Querying the repository

In this section we show that our approach facilitates querying in various ways:

(i) Queries involving subvalues
Apart from the obvious provenance queries, i.e., asking for the part of
the run that has contributed to a certain subvalue, we can use information
stored in the Triples table, e.g., to query the runs of relevant subdataflows
if the subvalue is an element of a collection. Table Triples can also be
used for querying multiple executions of different dataflows, even without
knowing their specifications, to determine, e.g., executions that involved
calls to a certain internal service. We note that with the addition of dataflow
specifications stored as XML, more sophisticated queries can be formulated,
to determine, e.g., executions involving certain subexpressions as well as the
order in which the subexpressions were executed. For provenance queries
involving dataflows which specifications are unknown, we provide function
Prov .

(ii) Queries involving (external) services.
Table Triples in combination with the binding trees stored as XML in
table Runs can be used for querying multiple executions of dataflows, to
determine, e.g., executions that involved calls to a certain external service,
or which external services have produced a certain subvalue.

(iii) Queries executing modified dataflow specifications.
We provide function Eval for the on-the-fly execution of dataflows with
modified specification, with modifications in the subexpressions, as well as
in binding to external services.

Queries involving subvalues. Some of the sample queries of the Provenance Chal-
lenge [7] are of the following kind. We are given a dataflow, for example, myFlow
shown in Figure 9. Suppose we have run this flow, with run-ID myRun, and we
observe the output value <c: 55, d: 66>. Consider now the query “What is
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the process that produced the value 55 in the output?” From the dataflow spec-
ification we see that 55 is the output of f applied to the output of g applied to
input.a. We can thus retrieve the two relevant triples as follows:

select ’input.a’, R.value
from Triples R, Dataflows D
where R.ID=’myRun’ and D.ID=’myFlow’
and xmlexists(’$e//*[@ID=$s][name()="project"][att="a"]’

passing D.expr as "e", R.subexpr as "s")
union
select ’g’, R.value
from Triples R, Dataflows D
where R.ID=’myRun’ and D.ID=’myFlow’
and xmlexists(’$e//*[@ID=$s][name()="call"][name="g"][project/att="a"]’

passing D.expr as "e", R.subexpr as "s")

Note the use of the SQL/XML predicate XMLEXISTS [40, 41] to retrieve
the IDs of the nodes in the syntax tree of the dataflow’s NRC expression.

Things get a bit more subtle when working with collections. Recall dataflow
mapF from Figure 8.

Suppose the run of mapF with ID myRun2 yields a final result value {55,66},
and we again want to know the process that produced the subvalue 55. From
the dataflow specification we see that 55 is the result of f applied to at least one
element of the input collection. We thus want to retrieve all elements x in input
for which f(x) resulted in 55:

select xmlquery(’$a/var[name="x"]/val’
passing R.vassign as "a")

from Triples R, Dataflows D
where R.ID=’myRun2’ and D.ID=’mapF’
and xmlexists(’$e//*[@ID=$s][name()=call]’

passing D.expr as "e", R.subexpr as "s")
and xmlexists(’$v[.="55"]’ passing R.value as "v")

Note the use of the SQL/XML function XMLQUERY to extract the value
of variable x from the value assignment of the triple.

So far we have been querying one execution of a given dataflow. However,
we can as well pose queries across all dataflows, and all their executions, in the
database instance. For example, queries like “List all bioinformatics dataflows
in which a function named f is called with parameter p equal to 5, and the
value ‘GPZ158’ appears in the result of the call.” can be expressed using sim-
ilar techniques as above (assuming an annotation table that lists the IDs of
bioinformatics dataflows).

The two earlier example queries over the executions myRun and myRun2 are
simple but typical examples of provenance queries, where we ask for the process
that lead to a given value occurring as a subvalue of the output. When the
dataflow specification is known in advance (in the examples, myFlow and mapF),
we have seen that provenance can be directly expressed in SQL. This is no
longer straightforward, however, when the dataflow specification is unknown.
Our solution is to provide a generic provenance computation as a library routine,
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which can be implemented in a programming language like Java, or even as an
SQL/PSM routine. Concretely, we provide a user-defined table function Prov
with the following signature:

function Prov(runID integer, subval integer)
returns table (caller_expr XML, caller_vassign XML,

subexpr XML, vassign XML, subval2 integer)

Here, subval is the ID of an occurrence of a subvalue in the output of run
runID . The returned set of tagged triples is much like the set of tagged triples
representing a run, but there are three important differences:

1. In the set of triples representing a run, there is one triple for each service
call. We have seen that this is sufficient to reconstruct all the intermediate
results of NRC operators in between the calls, but that is true only if the
dataflow specification is given. Since this is not the case here, the function
Prov returns triples for NRC operators as well as for service calls.

2. Moreover, Prov returns triples only for those operators and service calls that
played a role in the generation of subval .

3. Indeed, normal run-triples contain the result values of the intermediate steps
of the run. However, here we are asking for the process that lead to a subvalue
of the final output. Accordingly, the function Prov returns all subvalues
(column subval2) of intermediate results of the dataflow execution that
lead to subval .

For example, the earlier query about myRun2 can now be expressed using
Prov without any reference to mapF, so that it can be applied to, say, all dataflow
executions done on a given date:

select P.subval2
from Runs R, RunDates D,

lateral (values xmlcast(xmlquery(’$r//*[.="55"]/@ID’
passing R.result as "r")

as integer)) as I(thesubvalue),
table(Prov(R.ID, I.thesubvalue)) as P

where D.runID=R.ID and D.when=’2009-02-24’

For a formal specification of Prov we refer to our previous paper [6].

Queries involving (external) services. Consider an external service that is reg-
istered in the database as the external function BLAST2008. The database may
contain many dataflow executions that have called this service. To retrieve them,
it suffices to look in the binding tree of each execution, which is stored together
with the run-ID in the Runs table. The following query also retrieves the abstract
service name that is bound to BLAST2008.

create view B2008calls as
select U.ID, Tree.aname
from Runs U, xmltable(’$tr/tree/entry’

passing U.btree as "tr"
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columns aname varchar(30),
ename varchar(30)) as Tree

where Tree.ename=’BLAST2008’

Now suppose we want to understand the effect of replacing the external
function BLAST2008 by another one, say, BLAST2009. We are interested, across
all executions in the database, which calls to BLAST2008 would give a different
result when replaced by a call to BLAST2009. (We assume that the data used by
all those dataflows remained unchanged.) We can find this out by the following
query:

select O.ID, O.subexpr, O.argval, O.value, N.newvalue
from
(select U.ID, D.subexpr, R1.value, R2.value as argval

from Runs U, B2008calls B, Dataflows D, Triples R1, Triples R2
where U.ID=B.ID and U.flowID=D.ID

and U.ID=R1.runID and U.ID=R2.runID and R1.vassign=R2.vassign
and xmlexists(

’$e//*[@ID=$s1][name()="call"][name=$b]/child::*[2][@ID=$s2]’
passing D.expr as "e", R1.subexpr as "s1",
B.aname as "b", R2.subexpr as "s2")

) as O,
lateral (values BLAST2009(O.argval)) as N(newvalue)

where is_different(O.value, N.newvalue)

Observe how the query directly calls BLAST2009 on the inputs of the recorded
calls to BLAST2008. We also use a Boolean user-defined function is_different
to compare the two resulting XML values, as a literal non-equality is not what
we want.

Queries executing modified dataflow specifications. What if we want to find those
dataflow executions whose final result would change if we replaced BLAST2008
by BLAST2009? Note that a difference in an individual call might not result in a
difference in the final result. To answer this query, we can no longer directly call
BLAST2009 as before, because we have to continue the process with the rest of the
dataflow, which is unknown at query time. (Of course, if we are only interested
in the executions of a dataflow whose specification is known in advance, we can
simply rerun it, either through the repository or directly in a query, and compare
the differences.)

The solution lies in the provision of dynamic dataflow execution through a li-
brary function. More specifically, we provide a user-defined table-valued function
Eval with the following signature:

function Eval(expr XML, vassign XML, btree XML)
returns table (caller XML, cassign XML, subexpr integer,

vassign XML, value XML)

This function returns the set of tagged triples representing the run of NRC
expression expr on value assignment vassign and binding tree btree. So, Eval
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is like a lightweight version of procedure Execute, where the run is not stored in
the repository but is merely made available for ad-hoc querying.

The astute reader will note that there is an issue with the subexpr column
in the table returned by Eval . In a normal execution stored in the integrated
repository, this column refers to the unique ID attribute of the nodes in the
syntax tree of the dataflow expression. However, here, the input to an Eval call
is an arbitrary expression expr, dynamically produced in XML format during
the query, where we do not want to require that every node in expr has a unique
ID attribute. This issue is solved by letting the subexpr column now refer to
the numbers of the nodes, in document order. To retrieve nodes, instead of
$e//[@ID=$s], we can use $e/descendant-or-self::*[$s].

We are now able to express our query asking for those dataflow executions
whose final result would change if we replaced BLAST2008 by BLAST2009.

select O.ID, O.result, E.value
from (select U.result, D.expr, U.vassign, U.btree

from Runs U, Dataflows D
where U.flowID=D.ID
and xmlexists(’$b//ename[.="BLAST2008"]

passing U.btree as "b") ) as O,
lateral ( values

xmlquery(’copy $newb := $b
modify for $n in $newb//entry

where $n/ename="BLAST2008"
return
replace value of node $n/ename
with "BLAST2009"

return $newb’
passing O.btree as "b" ) as N.newbtree,

table ( Eval(O.expr, O.vassign, N.newbtree ) as E
where E.subexpr=1 and is_different(O.result, E.value)

The condition E.subexpr=1 on the last line selects the top-level node so as to
retrieve the final result value of each rerun. Note also the use of XQuery Update
facilities. These are already supported in some SQL/XML implementations, for
example, DB2 v9.5.

In the above example, we only rewrite the binding trees, not the actual
NRC expressions themselves. It should be clear by now that such rewritings are
equally possible. For example, we might want to see the effect of shutting out
certain parts of certain dataflows. We can express such queries using the same
techniques.

6 Concluding remarks

We have shown how an integrated complex-object dataflow database, imple-
mented on top of a modern SQL platform, enables answering diverse provenance
queries. (We are currently developing a prototype.)
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Of course, querying such a complex database requires expression in advanced
SQL and XQuery, a skill we can expect from programmers working in an e-science
team. Nevertheless, it would be nice if a domain-specific query language could
be designed, for example, in the field of bioinformatics dataflows. Such a lan-
guage should be more intuitive, possibly graphical, and usable by the scientists
themselves, who are not trained as programmers. This is an interesting direc-
tion for further research. The challenge will be to find the right balance between
expressive power and ease of use.
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