
Optimizing Schema Languages for XML:

Numerical Constraints and Interleaving

Wouter Gelade⋆, Wim Martens, and Frank Neven

Hasselt University and Transnational University of Limburg
School for Information Technology

{firstname.lastname}@uhasselt.be

Abstract. The presence of a schema offers many advantages in pro-
cessing, translating, querying, and storage of XML data. Basic decision
problems like equivalence, inclusion, and non-emptiness of intersection
of schemas form the basic building blocks for schema optimization and
integration, and algorithms for static analysis of transformations. It is
thereby paramount to establish the exact complexity of these problems.
Most common schema languages for XML can be adequately modeled
by some kind of grammar with regular expressions at right-hand sides.
In this paper, we observe that apart from the usual regular operators of
union, concatenation and Kleene-star, schema languages also allow nu-
merical occurrence constraints and interleaving operators. Although the
expressiveness of these operators remain within the regular languages,
their presence or absence has significant impact on the complexity of the
basic decision problems. We present a complete overview of the complex-
ity of the basic decision problems for DTDs, XSDs and Relax NG with
regular expressions incorporating numerical occurrence constraints and
interleaving. We also discuss chain regular expressions and the complex-
ity of the schema simplification problem incorporating the new operators.

1 Introduction

XML is the lingua franca for data exchange on the Internet [1]. Within appli-
cations or communities, XML data is usually not arbitrary but adheres to some
structure imposed by a schema. The presence of such a schema not only provides
users with a global view on the anatomy of the data, but far more importantly,
it enables automation and optimization of standard tasks like (i) searching, in-
tegration, and processing of XML data (cf., e.g., [11, 20, 23, 40]); and, (ii) static
analysis of transformations (cf., e.g., [2, 15, 24, 30]). Decision problems like equiv-
alence, inclusion and non-emptiness of intersection of schemas, hereafter referred
to as the basic decision problems, constitute essential building blocks in solutions
for the just mentioned optimization and static analysis problems. Additionally,
the basic decision problems are fundamental for schema minimization (cf., e.g.,

⋆ Research Assistant of the Fund for Scientific Research - Flanders (Belgium)

shop → regular∗ & discount-box∗

regular → cd

discount-box → cd[10,12] price
cd → artist & title & price

Fig. 1. A sample schema using the numerical occurrence and interleave operators. The
schema defines a shop that sells CDs and offers a special price for boxes of 10–12 CDs.

[9, 27]). Because of their widespread applicability, it is therefore important to es-
tablish the exact complexity of the basic decision problems for the various XML
schema languages.

The most common schema languages for XML are DTD, XML Schema [36],
and Relax NG [8] and can be modeled by grammar formalisms [29]. In particular,
DTDs correspond to context-free grammars with regular expressions (REs) at
right-hand sides, while Relax NG is abstracted by extended DTDs (EDTDs) [31]
or equivalently, unranked tree automata [6], defining the regular unranked tree
languages. While XML Schema is usually abstracted by unranked tree automata
as well, recent results indicate that XSDs correspond to a strict subclass of the
regular tree languages and are much closer to DTDs than to tree automata [26].
In fact, they can be abstracted by single-type EDTDs. As detailed in [25], the
relationship between schema formalisms and grammars provides direct upper
and lower bounds for the complexity of the basic decision problems.

A closer inspection of the various schema specifications reveals that the above
abstractions in terms of grammars with regular expressions is too coarse. Indeed,
in addition to the conventional regular expression operators like concatenation,
union, and Kleene-star, the XML Schema and the Relax NG specification allow
two other operators as well:

(1) Both the XML Schema and the Relax NG specification allow a certain form of
unordered concatenation: the ALL and the interleave operator, respectively.
This operator is actually the resurrection of the &-operator from SGML
DTDs that was excluded from the definition of XML DTDs. Although there
are restrictions on the use of ALL and interleave, we consider the operator
in its unrestricted form. We refer by RE(&) to such regular expressions with
the unordered concatenation operator.

(2) The XML Schema specification allows to express numerical occurrence con-
straints which define the minimal and maximal number of times a regular
construct can be repeated. We refer by RE(#) to such regular expressions
with numerical occurrence constraints.

We illustrate these additional operators in Figure 1. The formal definition is given
in Section 2. Although the new operators can be expressed by the conventional
regular operators, they cannot do so succinctly, which has severe implications
on the complexity of the basic decision problems.

The goal of this paper is to study the complexity of the basic decision prob-
lems for DTDs, XSDs, and Relax NG with regular expressions extended with

2

interleaving and numerical occurrence constraints. The latter class of regular
expressions is denoted by RE(#, &). As observed in Section 5, the complexity of
inclusion and equivalence of RE(#, &)-expressions (and subclasses thereof) car-
ries over to DTDs and single-type EDTDs. We therefore first establish the com-
plexity of the basic decision problems for RE(#, &)-expressions and frequently
occurring subclasses. These results are summarized in Table 1 and Table 2.
Of independent interest, we introduce NFA(#, &)s, an extension of NFAs with
counter and split/merge states for dealing with numerical occurrence constraints
and interleaving operators. Finally, we revisit the simplification problem intro-
duced in [26] for schemas with RE(#, &)-expressions. That is, given an extended
DTD, can it be rewritten into an equivalent DTD or a single-type EDTD?

In this paper, we do not consider deterministic or one-unambiguous regular
expressions which form a strict subclass of the regular expressions [7]. The reason
is two-fold. First of all, one-unambiguity is a highly debatable constraint (cf., e.g.,
pg 98 of [38] and [22, 35]) which is only required for DTDs and XML Schema,
not for Relax NG. Actually, the only direct advantage of one-unambiguity is
that it gives rise to ptime algorithms for some of the basic decision problems for
standard regular expressions. The latter does not hold anymore for RE(#, &)-
expressions rendering the notion even less attractive. Indeed, already intersection
for one-unambiguous regular expressions is pspace-hard [25] and inclusion for
one-unambiguous RE(#)-expressions is conp-hard [17]. A second reason is that,
in contrast to conventional regular expressions, one-unambiguity is not yet fully
understood for regular expressions with numerical occurrence constraints and
interleaving operators. Some initial results are provided by Bruggemann-Klein,
and Kilpeläinen and Tuhkanen who give algorithms for deciding one-unambiguity
of RE(&)- and RE(#)-expressions, respectively [5, 18]. No study investigating
their properties has been undertaken. Such a study, although definitely relevant,
is outside the scope of this paper.

Outline. In Section 2, we provide the necessary definitions. In Section 3,
we define NFA(#, &). In Section 4 and Section 5, we establish the complexity
of the basic decision problems for regular expressions and schema languages,
respectively. We discuss simplification in Section 6. We conclude in Section 7. A
version of this paper containing all proofs is available from the authors’ webpages.

2 Definitions

2.1 Regular Expressions with Counting and Interleaving

For the rest of the paper, Σ always denotes a finite alphabet. A Σ-symbol (or
simply symbol) is an element of Σ, and a Σ-string (or simply string) is a finite
sequence w = a1 · · · an of Σ-symbols. We define the length of w, denoted by
|w|, to be n. We denote the empty string by ε. The set of positions of w is
{1, . . . , n} and the symbol of w at position i is ai. By w1 · w2 we denote the
concatenation of two strings w1 and w2. For readability, we usually denote the
concatenation of w1 and w2 by w1w2. The set of all strings is denoted by Σ∗. A

3

inclusion equivalence intersection

RE pspace ([37]) pspace ([37]) pspace ([21])

RE(&) expspace ([28]) expspace ([28]) PSPACE

RE(#) and RE(#, &) EXPSPACE EXPSPACE PSPACE

NFA(#), NFA(&), and NFA(#,&) EXPSPACE EXPSPACE PSPACE

DTDs with RE pspace ([37]) pspace ([37]) pspace ([21])
DTDs with
RE(#), RE(&), or RE(#, &)

EXPSPACE EXPSPACE PSPACE

single-type EDTDs with RE pspace ([25]) pspace ([25]) exptime ([25])
single-type EDTDs with
RE(#), RE(&), or RE(#, &)

EXPSPACE EXPSPACE EXPTIME

EDTD with RE exptime ([34]) exptime ([34]) exptime ([33])
EDTDs with
RE(#), RE(&), or RE(#, &)

EXPSPACE EXPSPACE EXPTIME

Table 1. Overview of new and known complexity results. All results are completeness
results. The new results are printed in bold.

string language is a subset of Σ∗. For two string languages L, L′ ⊆ Σ∗, we define
their concatenation L ·L′ to be the set {w ·w′ | w ∈ L, w′ ∈ L′}. We abbreviate
L·L · · ·L (i times) by Li. By w1&w2 we denote the set of strings that is obtained
by interleaving or shuffling w1 and w2 in every possible way. That is, for w ∈ Σ∗,
w&ε = ε&w = {w}, and a ·w1 &b ·w2 = ({a}·(w1 &b ·w2))∪({b}·(a ·w1 &w2)).
The operator & is then extended to languages in the canonical way.

The set of regular expressions over Σ, denoted by RE, is defined in the usual
way: ε, and every Σ-symbol is a regular expression; and when r and s are regular
expressions, then rs, r + s, and r∗ are also regular expressions. By RE(#, &)
we denote RE extended with two new operators: interleaving and numerical
occurrence constraints. That is, when r and s are RE(#, &)-expressions then so
are r & s and r[k,ℓ] for k, ℓ ∈ N with k ≤ ℓ and ℓ > 0. By RE(#) and RE(&), we
denote RE extended only with counting and interleaving, respectively.

The language defined by a regular expression r, denoted by L(r), is in-
ductively defined as follows: L(ε) = {ε}; L(a) = {a}; L(rs) = L(r) · L(s);

L(r + s) = L(r) ∪ L(s); L(r∗) = {ε} ∪
⋃∞

i=1 L(r)i, L(r[k,ℓ]) =
⋃ℓ

i=k L(r)i; and,
L(r&s) = L(r)&L(s). The size of a regular expression r over Σ, denoted by |r|,
is the number of Σ-symbols and operators occurring in r plus the sizes of the
binary representations of the integers. By r? and r+, we abbreviate the expres-
sion r+ε and rr∗, respectively. We assume familiarity with finite automata such
as nondeterministic finite automata (NFAs) and deterministic finite automata
(DFAs) [14].

2.2 Schema Languages for XML

The set of unranked Σ-trees, denoted by TΣ , is the smallest set of strings over
Σ and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ (TΣ)∗,
a(w) is in TΣ . So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where

4

each ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to
the root labeled a. We write a rather than a(). Notice that there is no a priori
bound on the number of children of a node in a Σ-tree; such trees are therefore
unranked. For every t ∈ TΣ , the set of nodes of t, denoted by Dom(t), is the
set defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn),
where each ti ∈ TΣ , then Dom(t) = {ε}∪

⋃n
i=1{iu | u ∈ Dom(ti)}. In the sequel,

whenever we say tree, we always mean Σ-tree. A tree language is a set of trees.
We make use of the following definitions to abstract from the commonly used

schema languages:

Definition 1. Let M be a class of representations of regular string languages
over Σ.

1. A DTD(M) over Σ is a tuple (Σ, d, sd) where d is a function that maps Σ-
symbols to elements of M and sd ∈ Σ is the start symbol. For convenience
of notation, we denote (Σ, d, sd) by d and leave the start symbol sd implicit
whenever this cannot give rise to confusion.
A tree t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n

children, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of
trees satisfying d.

2. An extended DTD (EDTD(M)) over Σ is a 5-tuple D = (Σ, Σ′, d, s, µ),
where Σ′ is an alphabet of types, (Σ′, d, s) is a DTD(M) over Σ′, and µ is
a mapping from Σ′ to Σ.
A tree t then satisfies an extended DTD if t = µ(t′) for some t′ ∈ L(d). Here
we abuse notation and let µ also denote its extension to define a homomor-
phism on trees. Again, we denote by L(D) the set of trees satisfying D. For
ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for
some natural numbers ka, and we set µ(ai) = a.

3. A single-type EDTD (EDTDst(M)) over Σ is an EDTD(M) D = (Σ, Σ′, d,

s, µ) with the property that for every a ∈ Σ′, in the regular expression d(a)
no two types bi and bj with i 6= j occur.

We denote by EDTD, EDTD(#), EDTD(&), and EDTD(#,&), the classes
EDTD(RE), EDTD(RE(#)), EDTD(RE(&)), and EDTD(RE(#, &)), respec-
tively. The same notation is used for EDTDst and DTDs.

For clarity, we write a → r rather than d(a) = r in examples and proofs.
Following this notation, a simple example of an EDTD is the following:

shop1 → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗ title1 → ε

dvd1 → title1 price1 price1 → ε

dvd2 → title1 price1 discount1 discount1 → ε

Here, dvd1 defines ordinary DVDs, while dvd2 defines DVDs on sale. The rule
for shop1 specifies that there should be at least one DVD on sale. Note that the
above is not a single-type EDTD as dvd1 and dvd2 occur in the same rule.

As explained in [29, 26], EDTDs and single-type EDTDs correspond to Relax
NG and XML Schema, respectively.

5

2.3 Decision Problems

The following problems are fundamental to this paper.

Definition 2. Let M be a class of regular expressions, string automata, or
extended DTDs. We define the following problems:

– inclusion for M: Given two elements e, e′ ∈ M, is L(e) ⊆ L(e′)?
– equivalence for M: Given two elements e, e′ ∈ M, is L(e) = L(e′)?.
– intersection for M: Given an arbitrary number of elements e1, . . . , en ∈

M, is
⋂n

i=1 L(ei) 6= ∅?
– membership for M: Given an element e ∈ M and a string or a tree f , is

f ∈ L(e)?

We recall the known results concerning the complexity of REs and EDTDs.

Theorem 3. (1) inclusion, equivalence, and intersection for REs are
pspace-complete [21, 37].

(2) inclusion and equivalence for RE(&) are expspace-complete [28].
(3) inclusion and equivalence for EDTDst are pspace-complete [25]; in-

tersection for EDTDst is exptime-complete [25].
(4) inclusion, equivalence, and intersection for EDTDs are exptime-

complete [33, 34].
(5) membership for RE(&) is np-complete [28].

3 Automata for Occurrence Constraints and Interleaving

We introduce the automaton model NFA(#, &). In brief, an NFA(#, &) is an
NFA with two additional features: (i) split and merge transitions to handle in-
terleaving; and, (ii) counting states and transitions to deal with numerical occur-
rence constraints. The idea of split and merge transitions stems from Jȩdrzejowicz
and Szepietowski [16]. Their automata are more general as they can express
shuffle-closure which is not regular. Counting states are also used in the counter
automata of Kilpeläinen and Tuhkanen [19], and Reuter [32] although these
counter automata operate quite differently from NFA(#)s. Zilio and Lugiez [10]
also proposed an automaton model that incorporates counting and interleaving
by means of Presburger formulas. None of the cited papers consider the com-
plexity of the basic decision problems of their model. We will use NFA(#, &)s
for obtaining complexity upper bounds in Sections 4 and 5.

For readability, we denote Σ ∪ {ε} by Σε. We then define an NFA(#, &) as
follows.

Definition 4. An NFA(#, &) is a 5-tuple A = (Q, Σ, s, f, δ) where

– Q is a finite set of states. To every q ∈ Q, we associate a lower bound
min(q) ∈ N and an upper bound max(q) ∈ N.

– s, f ∈ Q is the start and final state, respectively.

6

– δ is the transition relation and is a subset of the union of the following sets:

(1) Q × Σε × Q ordinary transition (resets the counter)
(2) Q × {store} × Q transition that does not reset the counter
(3) Q × {split} × Q × Q split transition
(4) Q × Q × {merge} × Q merge transition

Let max(A) = max{max(q) | q ∈ Q} be the largest upper bound occurring
in A. A configuration γ is a pair (P, α) where, P ⊆ Q is a set of states and
α : Q → {0, . . . , max(A)} is the value function mapping states to the value of
their counter. For a state q ∈ Q, we denote by αq the value function mapping
q to 1 and every other state to 0. The initial configuration γs is ({s}, αs). The
final configuration γf is ({f}, αf). When α is a value function then α[q = 0]
and α[q++] denote the functions obtained from α by setting the value of q to 0
and incrementing the value of q by 1, respectively, while leaving all other values
unchanged.

We now define the transition relation between configurations. Intuitively, the
value of the state at which the automaton arrives is always incremented by one.
When exiting a state, the state’s counter is always reset to zero, except when we
exit through a counting transition, in which case the counter remains the same.
In addition, exiting a state through a non-counting transition is only allowed
when the value of the counter lies between the allowed minimum and maximum.
The latter, hence, ensures that the occurrence constraints are satisfied. Split and
merge transitions start and close a parallel composition.

A configuration γ′ = (P ′, α′) immediately follows a configuration γ = (P, α)
by reading σ ∈ Σε, denoted γ →A,σ γ′, when one of the following conditions
hold:

1. (ordinary transition) there is a q ∈ P and (q, σ, q′) ∈ δ such that min(q) ≤
α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q = 0][q′++]. That is, A

is in state q and moves to state q′ by reading σ (note that σ can be ε). The
latter is only allowed when the counter value of q is between the lower and
upper bound. The state q is replaced in P by q′. The counter of q is reset to
zero and the counter of q′ is incremented by one.

2. (counting transition) there is a q ∈ P and (q, store, q′) ∈ δ such that
α(q) < max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q′++]. That is, A is in
state q and moves to state q′ by reading ε when the counter of q has not
reached its maximal value yet. The state q is replaced in P by q′. The counter
of q is not reset but remains the same. The counter of q′ is incremented by
one.

3. (split transition) there is a q ∈ P and (q, split, q′1, q
′
2) ∈ δ such that

min(q) ≤ α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q′1, q
′
2}, and α′ = α[q =

0][q′1
++][q′2

++]. That is, A is in state q and splits into states q′1 and q′2 by
reading ε when the counter value of q is between the lower and upper bound.
The state q in P is replaced by (split into) q′1 and q′2. The counter of q is
reset to zero, and the counters of q′1 and q′2 are incremented by one.

7

4. (merge transition) there are q1, q2 ∈ P and (q1, q2, merge, q′) ∈ δ such
that, for each j = 1, 2, min(qj) ≤ α(qj) ≤ max(qj), P ′ = (P−{q1, q2})∪{q′},
and α′ = α[q1 = 0][q2 = 0][q′++]. That is, A is in states q1 and q2 and moves
to state q′ by reading ε when the respective counter values of q1 and q2 are
between the lower and upper bounds. The states q1 and q2 in P are replaced
by (merged into) q′, the counters of q1 and q2 are reset to zero, and the
counter of q′ is incremented by one.

For a string w and two configurations γ, γ′, we denote by γ ⇒A,w γ′ when
there is a sequence of configurations γ →A,σ1

· · · →A,σn
γ′ such that w =

σ1 · · ·σn. The latter sequence is called a run when γ is the initial configuration
γs. A string w is accepted by A iff γs ⇒A,w γf with γf the final configuration.
We usually denote ⇒A,w simply by ⇒w when A is clear from the context. We
denote by L(A) the set of strings accepted by A. The size of A, denoted by |A|,
is |Q| + |δ| + Σq∈Q log(max(q)). So, each max(q) is represented in binary.

An NFA(#) is an NFA(#, &) without split and merge transitions. An NFA(&)
is an NFA(#, &) without counting transitions. An NFA is an NFA(#) without
counting transitions. NFA(#, &) therefore accept all regular languages.

The next theorem shows the complexity of translating between RE(#, &)
and NFA(#, &), and NFA(#, &) and NFA. In brief, the proof of part (1) is
by induction on the structure of RE(#, &)-expressions. Figure 2 illustrates the

inductive steps for expressions r
[k,ℓ]
1 and r1&r2, employing counter, and split and

merge states, respectively. For part (2), we define an NFA from an NFA(#, &)
that keeps in its state the current configuration of the latter: i.e., a set of states
and a value function.

Theorem 5. (1) Given an RE(#, &)-expression r, an equivalent NFA(#, &)
can be constructed in time polynomial in the size of r.

(2) Given an NFA(#, &) A, an equivalent NFA can be constructed in time ex-
ponential in the size of A.

We next turn to the complexity of the basic decision problems for NFA(#, &).

Theorem 6. (1) equivalence and inclusion for NFA(#, &) is expspace-
complete;

(2) intersection for NFA(#, &) is pspace-complete; and,
(3) membership for NFA(#) is np-hard, membership for NFA(&), and NFA(#,

&) is pspace-complete.

We only provide some intuition. For part (1), membership in expspace

follows directly from Theorem 5(2) and the fact that inclusion for NFAs is
pspace-complete [37]. expspace-hardness follows from Theorem 5(1) and The-
orem 7(3). For part (2), pspace-hardness follows from pspace-hardness of in-

tersection for REs [21]. Membership in pspace is witnessed by an in parallel
simulation of the given NFA(#, &)s on a guessed string. Finally, np-hardness of
membership for NFA(#)s is by a reduction from integer knapsack, pspace-
hardness of membership for NFA(&)s is by a reduction from corridor tiling.

8

store

sr sr1
fr1

fr
qr

ε

ε ε
k, ℓ

if k = 0

fr2

sr fr

sr1
fr1

sr2

Fig. 2. From RE(#, &) to NFA(#, &).

4 Complexity of Regular Expressions

Before we turn to schemas, we first deal with the complexity of regular expres-
sions and frequently used subclasses.

Mayer and Stockmeyer already established the expspace-completeness of
inclusion and equivalence for RE(&) [28]. From Theorem 5(1) and Theo-
rem 6(1) it then directly follows that adding numerical occurrence constraints
does not increase the complexity. It further follows from Theorem 5(1) and The-
orem 6(2), that intersection for RE(#, &) is in pspace. We stress that the
latter results could also have been obtained without making use of NFA(#, &)
but by translating RE(#, &)s directly to NFAs. However, in the case of inter-

section such a construction should be done in an on-the-fly fashion in order
not to go beyond pspace. Although such an approach is possible, we prefer the
shorter and more elegant construction using NFA(#, &)s. Finally, we show that
inclusion and equivalence of RE(#) is also expspace-hard. While Mayer
and Stockmeyer reduce from REs with intersection [12], we employ a reduction
from exp-corridor tiling.

Theorem 7. 1. equivalence and inclusion for RE(#, &) is in expspace;
2. intersection for RE(#, &) is pspace-complete; and,
3. equivalence and inclusion for RE(#) is expspace-hard.

Proof. We prove (3). It suffices to show that it is expspace-hard to decide
whether a given RE(#) defines Σ∗. The proof is a reduction from exp-corridor

tiling. A tiling instance is a tuple T = (X, H, V, x⊥, x⊤, n) where X is a finite
set of tiles, H, V ⊆ X×X are the horizontal and vertical constraints, x⊥, x⊤ ∈ X ,
and n is a natural number in unary notation. A correct exponential corridor tiling
for T is a mapping λ : {1, . . . , m} × {1, . . . , 2n} → X for some m ∈ N such that
the following constraints are satisfied:

– the first tile of the first row is x⊥: λ(1, 1) = x⊥;

9

– the first tile of the m-th row is x⊤: λ(m, 1) = x⊤;
– all vertical constraints are satisfied: ∀i < m, ∀j ≤ 2n, (λ(i, j), λ(i+1, j)) ∈ V ;

and,
– all horizontal constraints are satisfied: ∀i ≤ m, ∀j < 2n, (λ(i, j), λ(i, j+1)) ∈

H .

The exp-corridor tiling problem asks, given a tiling instance, whether there
exists a correct exponential corridor tiling. The latter problem is easily shown
to be expspace-complete [39].

We proceed with the reduction from exp-corridor tiling. Thereto, let
T = (X, H, V, x⊥, x⊤, n) be a tiling instance. We construct an RE(#)-expression
r which defines the set of all strings iff there is no correct tiling for T . As
expspace is closed under complement, the expspace-hardness of equivalence

and inclusion for RE(#) follows.
Let Σ = X ∪ {△}. For a set S = {s1, . . . , sk} ⊆ Σ, we abuse notation

and abbreviate (s1 + · · · + sk) simply by S. We represent a candidate tiling
consisting of m rows ρ1, . . . , ρm by the string △ρ1△· · ·△ρm△. Here, every two
successive rows are delimited by the symbol △. We now define r as a disjunction
of RE(#)-expressions where every disjunct catches an error in the candidate
tiling. Therefore, when r is equivalent to Σ∗ there can be no correct tiling for
T . It remains to define the disjuncts constituting r:

1. The string does not start or end with △: XΣ∗ + Σ∗X .
2. There are no 2n tiles between two successive delimiters:

Σ∗△(X [0,2n−1] + X [2n+1,2n+1]X∗)△Σ∗.
3. The first tile is not x⊥: △xΣ∗ for every x 6= x⊥.
4. The first tile of the last row is not x⊤: Σ∗△xX∗△ for every x 6= x⊤.
5. Horizontal constraint violation: Σ∗x1x2Σ

∗ for every (x1, x2) 6∈ H .
6. Vertical constraint violation: Σ∗x1Σ

[2n,2n]x2Σ
∗ for every (x1, x2) 6∈ V .

Clearly, a Σ-string that does not satisfy any of the disjuncts in r is a correct
tiling for T . Hence, L(r) 6= Σ∗ iff there is a correct tiling for T . �

Bex et al. [4] established that the far majority of regular expressions occur-
ring in practical DTDs and XSDs are of a very restricted form as defined next.
The class of chain regular expressions (CHAREs) are those REs consisting of
a sequence of factors f1 · · · fn where every factor is an expression of the form
(a1+· · ·+an), (a1+· · ·+an)?, (a1+· · ·+an)+, or, (a1+· · ·+an)∗, where n ≥ 1 and
every ai is an alphabet symbol. For instance, the expression a(b + c)∗d+(e + f)?
is a CHARE, while (ab + c)∗ and (a∗ + b?)∗ are not.1

We introduce some additional notation to define subclasses and extensions
of CHAREs. By CHARE(#) we denote the class of CHAREs where also factors
of the form (a1 + · · · + an)[k,ℓ] are allowed. For the following fragments, we list
the admissible types of factors. Here, a, a?, a∗ denote the factors (a1 + · · ·+an),
(a1 + · · ·+an)?, and (a1 + · · ·+an)+, respectively, with n = 1, while a# denotes
a[k,ℓ], and a#>0 denotes a[k,ℓ] with k > 0.

1 We disregard here the additional restriction used in [3] that every symbol can occur
only once.

10

inclusion equivalence intersection

CHARE pspace [25] in pspace [37] pspace [25]

CHARE(#) EXPSPACE in EXPSPACE PSPACE

CHARE(a, a?) conp [25] in ptime [25] np [25]

CHARE(a, a
∗) conp [25] in ptime [25] np [25]

CHARE(a, a?, a#) PSPACE-hard / in EXPSPACE in PTIME NP

CHARE(a, a#>0) in PTIME in PTIME in PTIME

Table 2. Overview of new and known complexity results concerning Chain Regular
Expressions. All results are completeness results, unless otherwise mentioned. The new
results are printed in bold.

Table 2 lists the new and the relevant known results. We first show that
adding numerical occurrence constraints to CHAREs increases the complexity
of inclusion by one exponential. Again we reduce from exp-corridor tiling.

Theorem 8. inclusion for CHARE(#) is expspace-complete.

Adding numerical occurrence constraints to the fragment CHARE(a, a?)
and CHARE(a, a∗), makes inclusion pspace-hard but keeps equivalence in
ptime and intersection in np.

Theorem 9. (1) equivalence for CHARE(a, a?, a#) is in ptime.
(2) inclusion for CHARE(a, a?, a#) is pspace-hard and in expspace.
(3) intersection for CHARE(a, a?, a#) is np-complete.

Finally, we exhibit a tractable subclass with numerical occurrence constraints:

Theorem 10. inclusion, equivalence, and intersection for CHARE(a, a#>0)
are in ptime.

5 Complexity of Schemas

5.1 DTDs and Single-Type EDTDs

In [25] it was shown for any subclass of the REs that the complexity of inclusion

and equivalence is the same as the complexity of the corresponding problem
for DTDs and single-type EDTDs. We next generalize this result to RE(#, &).
As a corollary, all results of the previous section carry over to DTDs and single-
type DTDs. The same holds for intersection and DTDs.

We call a complexity class C closed under positive reductions if the following
holds for every O ∈ C. Let L′ be accepted by a deterministic polynomial-time
Turing machine M with oracle O (denoted L′ = L(MO)). Let M further have
the property that L(MA) ⊆ L(MB) whenever A ⊆ B. Then L′ is also in C.
For a more precise definition of this notion we refer the reader to [13]. For our
purposes, it is sufficient that important complexity classes like ptime, np, conp,
pspace, and expspace have this property, and that every such class contains
ptime.

11

Proposition 11. Let R be a subclass of RE(#, &) and let C be a complexity
class closed under positive reductions. Then the following are equivalent:

(a) inclusion for R expressions is in C.
(b) inclusion for DTD(R) is in C.
(c) inclusion for EDTDst(R) is in C.

The corresponding statement holds for equivalence.

The previous proposition can be generalized to intersection of DTDs as
well. The proof carries over literally from [25].

Proposition 12. Let R be a subclass of RE(#, &) and let C be a complexity
class which is closed under positive reductions. Then the following are equivalent:

(a) intersection for R expressions is in C.
(b) intersection for DTD(R) is in C.

The above proposition does not hold for single-type EDTDs. Indeed, there is
a class of regular expressions R′ for which intersection is np-complete while
intersection for EDTDst(R′) is exptime-complete [25].

5.2 Extended EDTDs

We next consider the complexity of the basic decision problems for EDTDs
with numerical occurrence constraints and interleaving. As the basic decision
problems are exptime-complete for EDTD(RE), the straightforward approach
of translating every RE(#, &)-expression into an NFA and then applying the
standard algorithms gives rise to a double exponential time complexity. By using
NFA(#, &), we can do better: expspace for inclusion and equivalence, and,
more surprisingly, exptime for intersection.

Theorem 13. (1) equivalence and inclusion for EDTD(#,&) is in ex-

pspace;
(2) equivalence and inclusion for EDTD(#) and EDTD(&) is expspace-

hard; and,
(3) intersection for EDTD(#,&) is exptime-complete.

Proof (Sketch).
(1) Given two EDTDs D1 = (Σ, Σ′

1, d1, s1, µ1) and D2 = (Σ, Σ′
2, d2, s2, µ2),

we compute a set E of pairs (C1, C2) ∈ 2Σ′

1 × 2Σ′

2 where (C1, C2) ∈ E iff there
exists a tree t such that Cj = {τ ∈ Σ′

j | t ∈ L((Dj , τ))} for each j = 1, 2. Here,
(Dj , τ) denotes the EDTD Dj with start symbol τ . So, every Cj is the set of
types that can be assigned by Dj to the root of t. Or when viewing Dj as a tree
automaton, Cj is the set of states that can be assigned to the root in a run on t.
The tree t is called a witness tree. Then, t ∈ L(D1) (resp., t ∈ L(D2)) if s1 ∈ C1

(resp. s2 ∈ C2). Hence, L(D1) 6⊆ L(D2) iff there exists a pair (C1, C2) ∈ E with
s1 ∈ C1 and s2 6∈ C2.

12

Although each witness tree can have exponential depth and therefore double
exponential size, we do not need to compute it directly. Instead, we compute the
set E in a bottom-up fashion where we make use of an NFA(#, &)-representation
of the RE(#, &)-expressions.

(2) Is immediate from Theorem 3(2) and Theorem 7(2).
(3) In brief, given a set of EDTDs, we construct an alternating polynomial

space TM which incrementally guesses a tree defined by all schemas. To be pre-
cise, the algorithm guesses the first-child-next-sibling encoding of the unranked
tree. Again, RE(#, &)-expressions are translated into equivalent NFA(#, &)s.�

6 Simplification

The simplification problem is defined as follows: Given an EDTD, check whether
it has an equivalent EDTD of a restricted type, i.e., an equivalent DTD or
single-type EDTD. In [26], this problem was shown to be exptime-complete
for EDTDs with standard regular expressions. We revisit this problem in the
context of RE(#, &).

Theorem 14. Given an EDTD(#,&), deciding whether it is equivalent to an
EDTDst(#,&) or DTD(#,&) is expspace-complete.

Proof (Sketch). We only show that the problem is hard for expspace. We use
a reduction from universality of RE(#, &), i.e., deciding whether an RE(#, &)-
expression is equivalent to Σ∗. The proof of Theorem 7(2) shows that the latter
is expspace-hard. To this end, let r be an RE(#, &)-expression over Σ and let
b and s be two symbols not occurring in Σ. By definition, L(r) 6= ∅. Define
D = (Σ ∪ {b, s}, Σ ∪ {s, b1, b2}, d, s, µ) as the EDTD with the following rules:
s → (b1)∗b2(b1)∗, b1 → Σ∗, and b2 → r, where for every τ ∈ Σ ∪ {s}, µ(τ) = τ ,
and µ(b1) = µ(b2) = b. We claim that D is equivalent to a single-type DTD or
a DTD iff L(r) = Σ∗. Clearly, if r is equivalent to Σ∗, then D is equivalent to
the DTD (and therefore also to a single-type EDTD) with rules: s → b∗ and
b → Σ∗. Conversely, suppose that there exists an EDTDst which defines the
language L(D). Towards a contradiction, assume that r is not equivalent to Σ∗.
Let wr be a string in L(r) and let w¬r be a Σ-string not in L(r). Consider
the trees t1 = s(b(wr)b(w¬r)) and t2 = s(b(w¬r)b(wr)). Clearly, t1 and t2 are
in L(D). However, the tree t = s(b(w¬r)b(w¬r)) obtained from t1 by replacing
its left subtree by the left subtree of t2 is not in L(D). According to Theorem
7.1 in [26], every tree language defined by a single-type EDTD is closed under
such an exchange of subtrees. So, this means that L(D) cannot be defined by an
EDTDst, which leads to the desired contradiction. �

7 Conclusion

The present work gives an overview of the complexity of the basic decision prob-
lems for abstractions of several schema languages including numerical occurrence

13

constraints and interleaving. W.r.t. intersection the complexity remains the
same, while for inclusion and equivalence the complexity increases by one
exponential for DTDs and single-type EDTDs, and goes from exptime to ex-

pspace for EDTDs. The results w.r.t. CHAREs also follow this pattern. We
further showed that the complexity of simplification increases to expspace.

We emphasize that this is a theoretical study delineating the worst case
complexity boundaries for the basic decision problems. Although these complex-
ities must be studied, we note that the regular expressions used in the hardness
proofs do not correspond at all to those employed in practice. Further, w.r.t.
XSDs, our abstraction is not fully adequate as we do not consider the one-
unambiguity (or unique particle attribution) constraint. However, it is doubtful
that this constraint is the right one to get tractable complexities for the basic
decision problems. Indeed, already intersection for unambiguous regular expres-
sions is pspace-hard [25] and inclusion for one-unambiguous RE(#)-expressions
is conp-hard [17]. It would therefore be desirable to find robust subclasses for
which the basic decision problems are in ptime.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to

Semistructured Data and XML. Morgan Kaufmann, 1999.
2. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.

In PODS 2005, pages 25–36, 2005.
3. G.J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise DTDs from

XML data. In VLDB 2006, pages 115–126, 2006.
4. G.J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML schema: A

practical study. In WebDB 2004, pages 79–84, 2004.
5. A. Brüggemann-Klein. Unambiguity of extended regular expressions in SGML

document grammars. In ESA 1993, pages 73–84, 1993.
6. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge

languages over unranked alphabets: Version 1, april 3, 2001. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technology, 2001.

7. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-

mation and Computation, 142(2):182–206, 1998.
8. J. Clark and M. Murata. RELAX NG Specification. OASIS, December 2001.
9. J. Cristau, C. Löding, and W. Thomas. Deterministic automata on unranked trees.

In FCT 2005, pages 68–79. Springer, 2005.
10. S. Dal-Zilio and D. Lugiez. XML schema, tree logic and sheaves automata. In

RTA, pages 246–263, 2003.
11. Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing Semistructured Data

with STORED. In SIGMOD 1999, pages 431–442, 1999.
12. M. Fürer. The complexity of the inequivalence problem for regular expressions

with intersection. In ICALP 1980, pages 234–245. Springer, 1980.
13. L. Hemaspaandra and M. Ogihara. Complexity Theory Companion. Springer, 2002.
14. J.E. Hopcroft, R. Motwani, and J.D. Ullman and. Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley, second edition, 2001.
15. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.

ACM Trans. Inter. Tech., 3(2):117–148, 2003.

14

16. J. Jȩdrzejowicz and A. Szepietowski. Shuffle languages are in P. Theoretical Com-

puter Science, 250(1-2):31–53, 2001.
17. P. Kilpeläinen. Inclusion of unambiguous #REs is NP-hard. Unpublished note,

University of Kuopio, Finland, May 2004.
18. P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expressions with

numeric occurrence indicators. Tech. Rep. A/2006/2, Univ. Kuopio, Finland, 2006.
19. P. Kilpeläinen and R. Tuhkanen. Towards efficient implementation of XML schema

content models. In DOCENG 2004, pages 239–241. ACM, 2004.
20. C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based schedul-

ing of event processors and buffer minimization for queries on structured data
streams. In VLDB 2004, pages 228–239, 2004.

21. D. Kozen. Lower bounds for natural proof systems. In FOCS 1977, pages 254–266.
IEEE, 1977.

22. M. Mani. Keeping chess alive — Do we need 1-unambiguous content models? In
Extreme Markup Languages, Montreal, Canada, 2001.

23. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries on Hetero-
geneous Data Sources. In VLDB 2001, pages 241–250, 2001.

24. W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML
transformations. Journal of Computer and System Sciences, 2006. To Appear.

25. W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for
simple regular expressions. In MFCS 2004, pages 889–900, Berlin, 2004. Springer.

26. W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and com-
plexity of XML schema. ACM Trans. Database Systems, 31(3), 2006. To appear.

27. W. Martens and J. Niehren. Minimizing tree automata for unranked trees. In
DBPL 2005, pages 232–246, 2005.

28. A. J. Mayer and L. J. Stockmeyer. Word problems — this time with interleaving.
Information and Computation, 115(2):293–311, 1994.

29. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. ACM Trans. Inter. Tech., 5(4):1–45, 2005.

30. F. Neven and T. Schwentick. XPath containment in the presence of disjunction,
DTDs, and variables. Logical Methods in Computer Science, page To appear, 2006.

31. Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In
PODS 2000, pages 35–46, New York, 2000. ACM Press.

32. F. Reuter. An enhanced W3C XML Schema-based language binding for object
oriented programming languages. Manuscript, 2006.

33. H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Comput-

ing, 19(3):424–437, 1990.
34. H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing

Letters, 52(2):57–60, 1994.
35. C.M. Sperberg-McQueen. XML Schema 1.0: A language for document grammars.

In XML 2003, 2003.
36. C.M. Sperberg-McQueen and H. Thompson. XML Schema.

http://www.w3.org/XML/Schema, 2005.
37. L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time:

Preliminary report. In STOC 1973, pages 1–9. ACM Press, 1973.
38. E. van der Vlist. XML Schema. O’Reilly, 2002.
39. P. van Emde Boas. The convenience of tilings. In Complexity, Logic and Recursion

Theory, volume 187 of Lec. Notes in Pure and App. Math., pages 331–363. 1997.
40. G. Wang, M. Liu, J. X. Yu, B. Sun, G. Yu, J. Lv, and H. Lu. Effective schema-based

XML query optimization techniques. In IDEAS 2003, pages 230–235, 2003.

15

