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Navigational queries on graph databases return binary relations over the nodes of the graph.
The calculus of relations, popularized by Tarski, serves as a natural benchmark for first-
order navigational querying. Recently, nested regular expressions (nre’s) have been proposed to
extend navigational querying to RDF graphs, i.e., ternary relations. This paper investigates the
expressiveness of nre’s and their relationship to basic SPARQL queries. An elegant proof is given
to the effect that nre queries are already expressible as basic SPARQL queries. This result takes
exception of nre’s involving Kleene star (transitive closure), but on the other hand it holds even when
extending nre’s with negation (complementation). The resulting language of “star-free nre’s with
negation (sfnre¬)” can in fact be captured by a precisely delineated fragment of SPARQL, called
Tarski-SPARQL. The resulting language is also compared with an alternative extension that adds
negation in the form of the difference operator. While sfnre¬ queries are subsumed by first-order
logic with 3 variables (FO3), it is shown that some natural FO3 queries are not expressible in nre¬,

even when allowing transitive closure.
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1. INTRODUCTION

Graph databases, as well as the design and analysis
of query languages appropriate for graph data, have a
rich history in database systems and theory research [1].
Originally investigated from the perspective of object-
oriented databases, interest in graph databases research has
been continually renewed, motivated by data on the Web
[2, 3], new applications such as dataspaces [4], and new
infrastructures such as Linked Data [5].

Information on the Semantic Web is popularly represented
in RDF [6], which is again a graph-oriented data model. The
standard language for querying RDF data is SPARQL [7].
The current version 1.1 of SPARQL extends the previous
version 1.0 with many features such as negation, property
path expressions, assignment, aggregation, subqueries,
federation, and updates. When extending an important
language, it is equally important to understand the need
for this extension, as well as the circumstances where the
extension is actually unnecessary. Such is the theme of the
present paper, where we focus on proposed extensions to
extend the navigational capabilities of SPARQL.

The navigational nature of accessing data is indeed one
of the main characteristics of graph query languages. Navi-
gation over binary relational structures, which encompasses
both trees and graphs, can be naturally formalized in terms
of expressions built up from relation names using a set of es-
sential operators on binary relations [8, 9, 10, 11, 12]. These
operators are union; difference; composition; inversion; pro-
jection (also called node test); the identity relation; and tran-
sitive closure. Interestingly, with the exception of transitive

closure, these operators can be traced way back to the calcu-
lus of relations created by Peirce and Schröder, and popular-
ized and greatly developed by Tarski and his collaborators
[13, 14, 15]. For this reason, navigational query expressions
on graph databases have also been referred to as “Tarski ex-
pressions” [16, 17].

There is a hurdle, however, to applying the calculus of
relations straight away to RDF graphs: the latter are ternary,
rather than binary, relations. This hurdle was overcome by
Pérez et al. [18] who defined the formalism of nested regular
expressions (nre’s) as an elegant adaptation of the calculus
of relations to RDF graphs. Apart from node tests, nre’s are
comprised of the operators union, composition, inversion,
transitive closure, and the identity relation. These operators
are applied starting from the three possible binary relations
(each called an axis) that are projections of the ternary
relation. Node tests, which provide explicit projection on
each of the three axes, then provide the nested aspect of
nre’s.

Pérez et al. actually proposed to extend SPARQL 1.0 to
nSPARQL by allowing nre’s in the place of triple patterns.
nSPARQL influenced the SPARQL 1.1 standard [19] in that
nre’s have been partly incorporated into SPARQL 1.1, in
the form of property path expressions. Node tests are not
supported, however, and property path expressions have not
been given the clean compositional semantics of nre’s. For
these reasons, in this paper, we continue to investigate the
original nre’s and not the SPARQL property paths. We
also cite the work by Alkhateeb et al. [20] on adding path
querying capabilities to SPARQL, noting at the same time
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that the focus of the present paper is mostly not on recursive
path querying.

In this paper we offer the following contributions.

Two forms of negation. The classical calculus of relations
includes negation in the form of the complementation
operator. Correspondingly we add complementation
to nre’s, obtaining nre’s with negation (nre¬). An
alternative way to extend nre’s with negation is to add
set difference instead of complementation, resulting in
the language nre−. We point out that nre− is, in a
sense, more desirable than nre¬, since nre− preserves a
natural connectivity property of nre’s, which is lost in
nre¬.

From star-free nre¬’s to basic SPARQL. Considering
star-free nre¬’s, we show how these can be trans-
lated into basic SPARQL queries. Star-freeness means
that the Kleene star operator (transive closure) is not
used in the expression. We thus show that nre’s, even
with negation, only add something to basic SPARQL
because of the transitive closure operator. This obser-
vation is in a sense obvious, because star-free nre¬’s
are clearly expressible in first-order logic, and it has
been known for some time [21, 22, 23] that basic
SPARQL can express first-order queries. (A similar
remark was made by Alkhateeb [24].) Nevertheless we
believe our contribution is interesting for the following
reasons.

1. We give an elegant and direct translation, without
the detour via first-order logic, based on a new
auxiliary notion of navigation pattern.

2. A translation of property paths to basic SPARQL
expressions is also described in SPARQL 1.1 [7],
but that translation leaves much to be desired. It
is awkwardly formalized, in a non-compositional
manner, is cumbersome to read, and its formal
correctness is unclear. Our translation is
compositional, encompasses a broader range of
expressions (SPARQL 1.1 property paths do not
have node tests or negation, for instance), and the
formal correctness is evident. In this way our
contribution improves the current state of the art.

3. The transitive closure operator, while fundamen-
tal for graph querying, is not always indispens-
able. It is not expressible in the relational algebra,
which is the baseline level of expressiveness ef-
ficiently supported by database query processors
[25]. In natural networks, the diameter is small
[26, 27] so transitive closure could be replaced by
a fixed number of compositions. In the same vein,
the Facebook Query Language (FQL) [28] does
not include transitive closure. For all these rea-
sons it is interesting to understand the expressive-
ness of star-free navigational querying in as much
detail as possible.

4. Although star-free nre¬’s are expressible in
basic SPARQL, it is for many people much

more attractive and natural to express queries
in navigational style [11, 12, 29]. Also XPath
queries belong to this style of querying, and it
is noteworthy that Versa, one of the earliest RDF
query language proposals, was explicitly XPath-
based. By our direct translation, nre-style queries
can then be immediately supported by any basic
SPARQL query processor.

5. Finally, our translation is so transparant that
it entails a syntactically delineated fragment of
SPARQL, which we baptize “Tarski-SPARQL”,
exactly equivalent to star-free nre¬.

We note that our terminology of star-free nre is inspired
by the known notion of star-free regular expression,
similarly obtained from standard regular expressions by
disallowing Kleene star but adding in complementation
[30, 31].

Connection with FO3. In view of the classical equivalence
(for binary relation queries) between the calculus of
relations and FO3, the three-variable fragment of first-
order logic [14, 32], we look at the relationship
between nre¬ and FO3 in the RDF context. While
nre¬ is still subsumed by FO3, it turns out to be
not longer equivalent, and we give a very natural
counterexample with a simple proof of inexpressibility.
In this connection we also cite the work by Vrgoč et
al. [29] who defined an RDF query language, called
TriAL=, sitting in expressiveness between FO3 and
FO4.

We believe our work is interesting also because the
calculus of relations is part not only of graph query
languages, but also of a wide variety of logics in computer
science, such as description logics (in the form of role
expressions), dynamic logics (in the form of programs),
arrow logics, and relation algebras [33, 34, 32, 35, 36].
Hence our work explicitly connects SPARQL to these other
fields.

The further contents of this paper may be summarized as
follows. In Section 2 we recall the basic notions concerning
SPARQL patterns and queries. In Section 3 we define nre’s
and their extension with negation. Section 4 we give the
translation from star-free nre¬’s into basic SPARQL queries.
Further observations on the expressive power of nre¬’s are
offered in section 5. In particular we can express the residual
operators [15]. These operators provide the counterpart of
universal quantification [37] for graph queries, thus allowing
the expression of interesting decision support queries over
RDF graphs. We conclude in Section 6.

2. SPARQL

In this section, we recall the syntax and semantics of
SPARQL 1.0, largely following the excellent expositions
[38, 39].
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RDF graphs Let I , B, and L be infinite countable sets of
IRIs, blank nodes and literals, respectively. These three sets
are pairwise disjoint. We denote the union I ∪B ∪ L by U ,
and elements of I ∪ L will be referred to as constants. For
the purposes of this paper, the distinction between IRIs and
literals will not be important.

A triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) is called an
RDF triple. An RDF graph is a finite set of RDF triples.

Patterns Assume furthermore an infinite countable set V
of variables, disjoint from U . It is a SPARQL convention to
prefix each variable with a question mark. Patterns are now
inductively defined as follows.
• Any triple from (I ∪L∪V )× (I ∪V )× (I ∪L∪V ) is

a pattern (called a triple pattern or basic triple pattern
in SPARQL 1.1).

• If P1 and P2 are patterns, then so are the following:
P1 UNION P2, P1 AND P2, and P1 MINUS P2.

• If P is a pattern and C is a constraint (defined next),
then P FILTER C is a pattern; we call C the filter
condition.
Here, a constraint is a conjunction of atomic
constraints; an atomic constraint can have one of the
three following forms:

– bound: bound(?x) with ?x ∈ V ;
– equality: ?x =?y with ?x, ?y ∈ V ;
– constant equality: ?x = c with ?x ∈ V and
c ∈ I ∪ L.

Some clarification is in order here. Compared to the usual
presentation of SPARQL patterns [38, 39], we leave out
three features and we add one feature. On the one hand,
we leave out the OPTIONAL operator; bound constraints;
and negation in filter conditions.1 On the other hand, we
add the MINUS operator. This simplification is permitted,
since MINUS can actually be expressed in terms of AND,
OPTIONAL, and FILTER with negated bound constraints in
filter conditions [23, Proposition 3.7], [21]. Since the only
need we will have for the features we leave out is exactly
the MINUS operator, we find it cleaner to just add the latter.
Moreover, MINUS has been added to SPARQL 1.1 as well,
so our formalization matches current practice.2

Semantics The semantics of patterns is defined in terms of
sets of so-called mappings, which are simply total functions
µ : S → U on some finite set S of variables. We denote the
domain S of µ by dom(µ).

Now given an RDF graphG and a pattern P , we define the
semantics of P onG, denoted by JP KG, as a set of mappings,
in the following manner.
• If P is a triple pattern (v1, v2, v2), then

JP KG := {µ : {v1, v2, v3} ∩ V → U |
(µ(v1), µ(v2), µ(v3)) ∈ G}.

1We also leave out disjunction in filter conditions, but that can easily be
expressed in terms of UNION.

2In SPARQL 1.1, the semantics we use here for MINUS is actually
called DIFF.

Here, for any mapping µ and any constant c ∈ I ∪ L,
we agree that µ(c) equals c itself. In other words,
mappings are extended to constants according to the
identity mapping.
• If P is of the form P1 UNION P2, then JP KG :=

JP1KG ∪ JP2KG.
• If P is of the form P1ANDP2, then JP KG := JP1KG on

JP2KG, where, for any two sets of mappings Ω1 and Ω2,
we define

Ω1 on Ω = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2}.

Here, two mappings µ1 and µ2 are called compatible,
denoted by µ1 ∼ µ2, if they agree on the intersection
of their domains, i.e., if for every variable ?x ∈
dom(µ1)∩ dom(µ2), we have µ1(?x) = µ2(?x). Note
that when µ1 and µ2 are compatible, their union µ1∪µ2

is a well-defined mapping; this property is used in the
formal definition above.

• If P is of the form P1 MINUS P2, then JP KG :=
JP1KG r JP2KG, where, for any two sets of mappings
Ω1 and Ω2, we define

Ω1 r Ω2 = {µ1 ∈ Ω1 | ¬∃µ2 ∈ Ω2 : µ1 ∼ µ2}.

• Finally, if P is of the form P1 FILTER C, then
JP KG := {µ ∈ JP1KG | µ(C) = true}.
Here, for any mapping µ and constraint C, the
evaluation of C on µ, denoted by µ(C), is defined by
taking the boolean conjunction of the evaluations of the
atomic constraints in C.
For a bound constraint bound(?x), we define
µ(bound(?x)) to be true if ?x ∈ dom(µ), and false
otherwise.
For an equality constraint ?x =?y, we define µ(?x =
?y) to be true if ?x, ?y ∈ dom(µ) and µ(?x) = µ(?y),
and false otherwise. Similarly, for a constant-equality
constraint ?x = c, we define µ(?x = c) to be true if
?x ∈ dom(µ) and µ(?x) = c, and false otherwise.

Queries A basic SPARQL query is an expression of the
form SELECTS P where S is a finite set of variables and P
is a pattern. Semantically, given an RDF graph G, we define
JSELECTS P KG = {µ|dom(µ)∩S | µ ∈ JP KG}, where we
use the common notation f |X for the restriction of a function
f to a subset X of its domain.

3. NESTED REGULAR EXPRESSIONS WITH
NEGATION

In this section, following the definition of nested regular
expressions (nre) given by Pérez et al. [18], we introduce
the extension of nre’s with two kinds of negation, namely,
set difference ‘−’ and complementation ‘c’.

Nested regular expressions with negation (nre¬) are
defined by the following formal syntax:

e := axis | axis :: c | axis :: [e] | e ◦ e | e ∪ e
| e∗ | e− e | ec,
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where a ∈ I ∪ L and axis ∈ {self , next , next−1, edge ,
edge−1, node , node−1}.

Given an RDF graph G, the evaluation of e on G,
denoted by JeKG, is a binary relation defined in the following
way. Below, let axis ∈ {next , edge,node} and adom(G)
denotes the active domain of G, i.e., the set of all elements
from U occurring in G. The operator ∗ denotes reflexive-
transitive closure.

Jself KG = {(s, s) | s ∈ adom(G)};
Jself :: cKG = Jself KG ∩ {(c, c)};

JnextKG = {(s, t) | ∃u : (s, u, t) ∈ G};
Jnext :: cKG = {(s, t) | (s, c, t) ∈ G};

JedgeKG = {(s, t) | ∃u : (s, t, u) ∈ G};
Jedge :: cKG = {(s, t) | (s, t, c) ∈ G};

JnodeKG = {(s, t) | ∃u : (u, s, t) ∈ G};
Jnode :: cKG = {(s, t) | (c, s, t) ∈ G};

Jaxis−1KG = {(s, t) | (t, s) ∈ JaxisKG};
Jaxis−1 :: cKG = {(s, t) | (t, s) ∈ Jaxis :: cKG};

Je1 ∪ e2KG = Je1KG ∪ Je2KG;
Je1 ◦ e2KG = {(s, t) | ∃u : (s, u) ∈ Je1KG

and (u, t) ∈ Je2KG};
Je1 − e2KG = {(s, t) ∈ Je1KG | (s, t) 6∈ Je2KG};

JecKG = {(s, t) ∈ adom(G)× adom(G) |
(s, t) 6∈ JeKG};

Je∗KG = JeKG
∗

Jself :: [e]KG = {(s, s) | ∃u : (s, u) ∈ JeKG};
Jaxis :: [e]KG = {(s, t) | ∃u, v : (s, t) ∈ Jaxis :: uKG

and (u, v) ∈ JeKG};
Jaxis−1 :: [e]KG = {(s, t) | (t, s) ∈ Jaxis :: [e]KG}.

REMARK 1. 1. Set difference ‘−’ is actually redundant
in the above since e1 − e2 can be expressed using
complementation as (ec1∪e2)c. We will see in Section 5
that the converse does not hold in general. However,
if we allow the universal expression all, defined by
JallKG = adom(G) × adom(G), then we conversely
have ec = all− e.

2. Intersection is a derived operator in the above, given
that e1 ∩ e2 can be expressed as e1 − (e1 − e2).

3. Complementation and set difference are much more
powerful than the so-called “negated property sets” in
SPARQL 1.1 property paths, which are equivalent to
nre’s of the form next − (next :: a∪ · · · ∪ next :: b) or
next−1 − (next−1 :: a∪ · · · ∪ next−1 :: b), for a finite
list a, . . . , b of constants.

Similarly to nSPARQL [18], we can consider extended
patterns, which extend the definition of patterns by also
allowing nre¬ triples: expressions of the form (?x, e, ?y)
with ?x, ?y variables and e an nre¬. Given an RDF graph G,
their semantics is defined by

J(?x, e, ?y)KG = {µ : {?x, ?y} → U |
(µ(?x), µ(?y)) ∈ JeKG}.

Extending the basic SPARQL queries defined in Sec-
tion 2, we can then define an nSPARQL¬ query as an ex-

pression of the form SELECTS P , where now P can be an
extended pattern.

EXAMPLE 1. Consider the toy example RDF graph
Gsn = {t1, . . . , t5} storing information about an academic
social network:

t1 = (C.Christian, advisee,G.Gottlob);
t2 = (G.Gottlob, advisee,T.Eiter);
t3 = (T.Eiter, advisee,A.Polleres);
t4 = (G.Gottlob, cowork,A.Polleres);
t5 = (advisee, subPropertyOf, cowork).

We give five navigational queries and for each query an nre¬

that expresses it. Each query returns all pairs (X,Y ) such
that some property holds:

Q1 Y advises X: e1 = next ::advisee. We have

Je1KGsn
= {(C.Christian,G.Gottlob),

(G.Gottlob,T.Eiter), (T.Eiter,A.Polleres)}.

Q2 Y advises someone who advises X:

e2 = (next :: advisee) ◦ (next :: advisee).

We have

Je2KGsn = {(C.Christian,T.Eiter),

(G.Gottlob,A.Polleres)}.

Q3 X works with Y , considered as a reflexive and
symmetric relation, and including properties that are
related to the cowork property (in this simple example,
the advisee property is related to the cowork property
via the subPropertyOf property): e3 = e∪ e−1 where e
is the expression

next :: cowork ∪ next :: [edge :: cowork].

Then Je3KGsn
equals

{(C.Christian,C.Christian), (G.Gottlob,G.Gottlob),

(T.Eiter,T.Eiter), (A.Polleres,A.Polleres),

(C.Christian,G.Gottlob), (G.Gottlob,T.Eiter),

(T.Eiter,A.Polleres), (G.Gottlob,A.Polleres),

(G.Gottlob,C.Christian), (T.Eiter,G.Gottlob),

(A.Polleres,T.Eiter), (A.Polleres,G.Gottlob)}.

Q4 Y does not work withX: e4 = ec3. Then Je4KGsn
equals

{(C.Christian,T.Eiter), (C.Christian,A.Polleres),

(G.Gottlob,A.Polleres), (T.Eiter,C.Christian)

(A.Polleres,C.Christian), (A.Polleres,G.Gottlob)}.

Q5 Y advises someone who advises X , but Y does not
work with X in the sense of Q3: e5 = e2 − e3. We
have Je5KGsn

= {(C.Christian,T.Eiter)}.
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Q6 Y is an advise-ancestor of X: e6 = (next :: advise)∗.
Then Je6KGsn

equals

{(C.Christian,C.Christian), (G.Gottlob,G.Gottlob),

(T.Eiter,T.Eiter), (A.Polleres,A.Polleres),

(C.Christian,G.Gottlob), (C.Christian,T.Eiter),

(C.Christian,A.Polleres), (G.Gottlob,T.Eiter),

(G.Gottlob,A.Polleres), (T.Eiter,A.Polleres)}.

4. FROM nSPARQL¬ TO BASIC SPARQL

As argued in the Introduction, a natural level of expressibil-
ity is formed by the fragment of nre¬ where the Kleene star
operator ‘∗’ is not used. We call these star-free (sfnre¬).
Accordingly, an sfnSPARQL¬ query is an nSPARQL¬ query
where the Kleene star operator is not used in extended pat-
terns.

In this section, we introduce navigation patterns and show
how sfnre¬’s can be translated into them. This provides an
elegant proof of the result that every sfnSPARQL¬ query can
already be expressed as a basic SPARQL query.

A navigation pattern is a triple (P, ?x, ?y) where P is a
pattern (a basic pattern, not an extended pattern) and ?x
and ?y are variables occurring in P . We call a navigation
pattern sound if for every RDF graph G, and every µ ∈
JP KG, we always have ?x and ?y in dom(µ). Sound
navigation patterns can be used to express binary relations
on RDF graphs, which will allow us to compare navigation
patterns with sfnre¬’s. Formally, given any RDF graph G
we define a binary relation on every RDF graphG simply by
J(P, ?x, ?y)KG = {(µ(?x), µ(?y)) | µ ∈ JP KG}.

A first question, however, is how soundness can be
syntactically guaranteed. Thereto, we will introduce safe
navigation patterns. For this, we first introduce the following
notion.

DEFINITION 4.1. The mapping schema of a pattern P
is a set MS (P ) of sets of variables, defined inductively as
follows:
• If P is a triple pattern (v1, v2, v2) then MS (P ) :=
{{v1, v2, v3} ∩ V }.

• If P is of the form P1 UNION P2, then MS (P ) :=
MS (P1) ∪MS (P2).

• If P is of the form P1 AND P2, then

MS (P ) := {S1∪S2 | S1 ∈ MS (P1), S2 ∈ MS (P2)}.

• Finally if P is of the form P1 MINUSP2 or of the form
P1 FILTER C, then MS (P ) := MS (P1).

The relevant property of mapping schemas is that they
cover all possible domains of mappings that can occur in
the result of the pattern.

PROPOSITION 4.1. For any RDF graph G, µ ∈ JP KG
implies dom(µ) ∈ MS (P ).

Proof. By induction on the structure of P . If P is a triple
pattern (v1, v2, v3) then for any graph G and for any µ ∈

JP KG, we have dom(µ) = {v1, v2, v3} ∩ V which belongs
to MS (P ) by definition.

If P is of the form P1 UNION P2, P1 MINUS P2, or
P1 FILTER C, the claim readily follows by induction.

If P is of the form P1 AND P2, let µ ∈ JP KG. There
exist µ1 ∈ JP1KG and µ2 ∈ JP2KG such that µ = µ1 ∪
µ2 and µ1 ∼ µ2. By induction, dom(µ1) ∈ MS (P1)
and dom(µ2) ∈ MS (P2). Then dom(µ) = dom(µ1) ∪
dom(µ2) ∈ MS (P1 AND P2) by definition.

Hence, we can syntactically guarantee soundness by the
following definition and proposition.

DEFINITION 4.2. A navigation pattern (P, ?x, ?y) is
called safe if ?x and ?y belong to every set in MS (P ).

PROPOSITION 4.2. Every safe navigation pattern is
sound.

Proof. Let (P, ?x, ?y) be a navigation pattern. If (P, ?x, ?y)
is safe then, by definition, {?x, ?y} ⊆ S for all S ∈ MS (P ).
By Proposition 4.1, for any graph G and for any µ ∈ JP KG,
dom(µ) ∈ MS (P ). Then {?x, ?y} ⊆ dom(µ). Therefore,
(P, ?x, ?y) is sound.

The converse direction does not hold. For example, any
unsatisfiable pattern, safe or not, trivially yields a sound
navigation pattern. Satisfiability of patterns is undecidable,
and soundness can be shown to be undecidable as well. This
does not concern us here, however, since we will only work
with safe navigation patterns.

The main result of this section is that sfnre¬ expressions
can be translated into safe navigation patterns. Before giving
the formal theorem and proof, we give some illustrative
examples.

EXAMPLE 2. Recall the sfnre¬’s e1, e2, e3 and e5 from
Example 1. We can express these by the navigation patterns
(Pi, ?x, ?y) as follows:
• P1 = (?x, advisee, ?y).
• P2 = (?x, advisee, ?z) AND (?z, advisee, ?y).
• P3 = P31 UNION P32 where

P31 = (?x, cowork, ?y) UNION

((?x, ?z, ?y) AND (?z, ?y′, cowork))

and P32 is like P31 but with ?x and ?y swapped.
• P5 = P2 MINUS P3.

In the proof of the theorem below we use vars(P ) to
denote the set of variables that occur in the pattern P .

THEOREM 4.1. For every sfnre¬ e there exists a safe
navigation pattern (P, ?x, ?y) such that for every RDF
graph G, we have JeKG = J(P, ?x, ?y)KG.

Proof. By induction on the structure of e. If e is self we set
P = (adom?x AND adom?y) FILTER ?x =?y, where we
use the shorthand adomv , for any variable v, to denote

(v, v′, v′′) UNION (v′, v, v′′) UNION (v′, v′′, v)
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with v′ and v′′ fresh auxiliary variables. As a variant, if e is
self :: c then we use P ′ = P FILTER ?x = c with P as
above.

If e is next , edge, or node , we set P = (?x, ?z, ?y),
(?x, ?y, ?z), or (?z, ?x, ?y) respectively, where ?z is a fresh
auxiliary variable. Similarly, if e is next :: c, edge :: c, or
node :: c, we set P = (?x, c, ?y), (?x, ?y, c), or (c, ?x, ?y)
respectively. When e is of the form axis−1 or axis−1 :: c,
with axis ∈ {next , edge,node}, we swap ?x and ?y in the
above.

If e is of the form e1 ∪ e2 then by induction we have a
navigation pattern (P1, ?x1, ?y1) and (P2, ?x2, ?y2) for e1
and e2 respectively. Let P ′1 and P ′2 be obtained from P1 and
P2 by renaming the variables so that
• ?x1 and ?x2 are renamed to ?x;
• ?y1 and ?y2 are renamed to ?y; and
• P ′1 and P ′2 have no common variables other than ?x and

?y.
Then (P ′1 UNION P ′2, ?x, ?y) is a navigation pattern for e.

The case where e is of the form e1 − e2 is similar, using
MINUS instead of UNION.

If e is of the form ec then by induction, we have
navigation patterns (P, ?x, ?y) for e. Then ((adom?x AND
adom?y) MINUS P, ?x, ?y) is a navigation pattern for ec.

If e is of the form e1 ◦ e2, again let (Pi, ?xi, ?yi) be a
navigation pattern for ei, for i = 1, 2. Now let P ′1 and P ′2 be
obtained from P1 and P2 by renaming the variables so that
• ?x1 is renamed to ?x;
• ?y1 is renamed to ?z, with ?z distinct from both ?x and

?y;
• ?x2 is renamed to the same ?z;
• ?y2 is renamed to ?y; and
• P ′1 and P ′2 have no common variables other than ?x, ?y

and ?z.
Then (P ′1 AND P ′2, ?x, ?y) is a navigation pattern for e.

If e is of the form axis :: [e′], with axis ∈
{next , edge,node}, by induction we have a navigation
pattern (P ′, ?x′, ?y′) for e′. We also have a navigation
pattern (P, ?x, ?y) for axis as described above. Recall that
P involves an auxiliary variable ?z. We obtain P ′′ by
renaming variables in P ′ so that ?x′ is renamed to ?z, and
so that P and P ′′ have no common variables other than
?z. We can then use (P AND P ′′, ?x, ?y) as a navigation
pattern for e. When e is of the axis−1 :: [e′], with axis ∈
{next , edge,node}, we swap ?x and ?y.

Finally, if e is of the form self :: [e′], by induction
we have a navigation pattern (P ′, ?x′, ?y′) for e′. We
can use (((adom?x AND adom?y) FILTER ?x =?y) AND
P ′′, ?x, ?y) as a navigation pattern for self :: [e] where P ′′

is obtained from P ′ by renaming the variables so that
• ?x′ is renamed to ?x;
• ?y does not occur in P ′′.

As a corollary to the above theorem we obtain:

COROLLARY 4.1. Every sfnSPARQL¬ query is already
expressible as a basic SPARQL query.

Proof. An sfnre¬ triple pattern (?x, e, ?y) is replaced by the
navigation pattern for e given by Theorem 4.1. This pattern
uses a lot of auxiliary variables; these are chosen freshly
for each occurrence of an sfnre¬ triple pattern, so that the
auxiliary variables do not interact in applications of AND,
UNION, and MINUS occurring in the query. In the final
projection performed by the SELECT query, all auxiliary
variables are projected away.

4.1. Tarski-SPARQL

To conclude this section, we note that the translation
provided in the proof of Theorem 4.1 is effective (in
fact, linear), and moreover, the image of the translation
can be captured syntactically. In this way we obtain a
syntactic fragment of the navigation patterns that has exactly
the same expressive power as sfnre¬’s. In the spirit of
the Introduction, we will call these the Tarski-navigation
patterns.

Formally, the Tarski-navigation patterns (Tnp’s) are
inductively defined as follows:

1. For any variables ?x and ?y, the triple (P, ?x, ?y)
is a Tnp, where P equals (adom?x AND
adom?y) FILTER ?x =?y.

2. For any three distinct variables ?x, ?y and ?z, and
constant c, the triple (P, ?x, ?y) is a Tnp for all the
following possibilities for P : (?x, ?z, ?y); (?x, ?y, ?z);
(?z, ?x, ?y); (?x, c, ?y); (?x, ?y, c); and (c, ?x, ?y).

3. If (P1, ?x, ?y) and (P2, ?x, ?y) are Tnp’s so that P1

and P2 have no common variables other than ?x and
?y, then also (P1 UNION P2, ?x, ?y) and (P1 MINUS
P2, ?x, ?y) are Tnp’s.

4. If (P1, ?x, ?z) and (P2, ?z, ?y) are Tnp’s so that P1 and
P2 have no common variables other than ?x, ?y and ?z,
then also (P1 AND P2, ?x, ?y) is a Tnp.

5. If (P ′, ?z, ?u) is a Tnp, then also (P AND P ′, ?x, ?y)
is a Tnp for all the following possibilities for P :
(?x, ?z, ?y); (?x, ?y, ?z); and (?z, ?x, ?y).

6. If (P, ?x, ?y) is a Tnp and ?z is not a variable of P .
then also (((adom?x AND adom?z) FILTER ?x =
?z) AND P, ?x, ?z) is a Tnp.

7. If (P, ?x, ?y) is a Tnp, then also (adom?x AND
adom?y) MINUS P, ?x, ?y) is a Tnp.

8. If (P, ?x, ?y) is a Tnp, then so is (P, ?y, ?x).
The language of Tnp’s is equivalent to that of sfnre¬’s

in the following sense. A binary-relation query is a
mapping from RDF graphs to binary relations. Note that
the semantics of an sfnre¬, as well as the semantics of a
navigation pattern, is a binary-relation query.

THEOREM 4.2. A binary-relation query is expressible as
an sfnre¬ if and only if it is expressible as a Tnp.

Proof. The only-if direction can be verified by observing
that the proof of Theorem 4.1 uses only Tnp’s. It remains
to show that for every Tnp (P, ?x, ?y), there exists some
sfnr¬ e such that for any graph G, J(P, ?x, ?y)KG = JeKG
by induction on the structure of P .

We follow the syntactic cases in the above definition of
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Tnp’s.
1. If P is of the form (adom?x AND

adom?y) FILTER ?x =?y then J(P, ?x, ?y)KG =
Jself KG.

2. If P is of the form (?x, ?z, ?y), (?x, ?y, ?z),
(?z, ?x, ?y), (?x, c, ?y), (?x, ?y, c), or (c, ?x, ?y),
respectively, then J(P, ?x, ?y)KG equals JnextKG,
JedgeKG, JnodeKG, Jnext :: cKG, Jedge :: cKG, and
Jnode :: cKG, respectively.

3. If P is of the form P1 UNION P2, we have sfnre¬’s
e1 and e2 for (P1, ?x, ?y) and (P2, ?x, ?y) respectively.
We then take e1 ∪ e2 for (P, ?x, ?y). If P is of the form
P1 MINUS P2 we take e1 − e2.

4. If P is of the form P1 AND P2, for Tnp’s (P1, ?x, ?z)
and (P2, ?z, ?y) are Tnp’s, we let e = e1 ◦ e2.

5. If P is of the form (?x, ?z, ?y) AND P ′, for Tnp
(P ′, ?z, ?w), we let e = next :: [e′] where
J(P ′, ?z, ?w)KG = Je′KG. Analogously, if P is of
the form (?x, ?y, ?z) ANDP ′ or (?z, ?x, ?y) ANDP ′,
respectively, we take e = edge :: [e′] or e = node ::
[e′] respectively.

6. If P is of the form ((adom?x AND
adom?y) FILTER ?x =?y) AND P ′, for Tnp
(P ′, ?y, ?z), we let let e = self :: [e′].

7. If P is of the form (adom?xANDadom?y)MINUSP ′,
for Tnp (P ′, ?x, ?y), we let e = (e′)c.

8. Finally, if e is an sfnre¬ for the Tnp (P, ?x, ?y), then
e−1 is an sfnre¬ for the Tnp (P, ?y, ?x), where e−1 is
defined as follows:
• self −1 = self ;
• (self :: c)−1 = self :: c;
• (self :: [e])−1 = self :: [e];
• (e1 ∪ e2)−1 = e−11 ∪ e

−1
2 ;

• (e1 − e2)−1 = e−11 − e
−1
2 ;

• (e1 ◦ e2)−1 = e−12 ◦ e
−1
1 ;

• (ec)−1 = (e−1)c;
• (e∗)−1 = (e−1)∗;
• (axis)−1 = axis−1;
• (axis :: c)−1 = axis−1 :: c.
• (axis :: [e])−1 = axis−1 :: [e];

with axis ∈ {next , edge,node}.

We thus obtain a clean syntactic fragment of basic
SPARQL queries, which may be called Tarski-SPARQL,
that precisely delineates the sfnre¬’s. The Tarski-SPARQL
queries are precisely all queries of the form SELECT?x,?y P
where (P, ?x, ?y) is a Tarski-navigation pattern.

5. THE EXPRESSIVITY OF NESTED REGULAR
EXPRESSIONS WITH NEGATION

In this section, we investigate and highlight various facets of
the expressivity of nre¬’s.

5.1. Set difference versus complementation

We first consider a fragment called nested regular expression
with set difference (nre−), that is, complement-free nested

regular expressions.
We point out that nre− are, in a sense, more intuitive than

nre¬ in the context of navigational querying. Intuitively one
expects of a navigational query to an RDF graph G to return
only pairs (a, b) of elements that are “connected” in G. We
can formalize this intuition as follows. Let G be an RDF
graph and let a, b ∈ adom(G). The relation of a and b being
connected in G is the reflexive, symmetric, and transitive
closure of the set of all pairs (a, b) that occur jointly in an
RDF triple inG. By default, for any a ∈ adom(G), a always
connects to itself.

We can confirm that nre−’s as defined in this paper are
indeed “navigational” in this sense:

PROPOSITION 5.1. For every nre− e, for every RDF
graph G, and for every (a, b) ∈ JeKG, a and b are connected
in G.

Proof. By induction on the structure of e. For any graph G,
if e is of the form self then any (a, a) ∈ Jself KG satisfies
a = b and a ∈ adom(G). By definition a connects to itself
in G. Similarly, if e is of the form self : c then the only
element of Jself :: cKG is (c, c) with c ∈ adom(G).

If e is of the form axis , or axis :: c, or axis :: [e′], where
axis may be inverted, any pair (a, b) ∈ JnextKG occurs
jointly in an RDF triple by definition of the semantics of
nre’s.

If (a, b) ∈ Je1 ◦ e2KG then there exists c such that
(a, c) ∈ Je1KG and (c, b) ∈ Je2KG. By induction, a and c
are connected, and c and b are connected, so by transitivity
a and b are connected.

If e is of the form e1 ∪ e2 the claim follows immediately
by induction.

If (a, b) ∈ Je1 − e2KG then in particular (a, b) ∈ Je1KG so
again the claim follows by induction.

Finally if (a, b) ∈ Je′∗KG then by induction (a, b) belongs
to the reflexive-transitive closure of the connectedness
relation. Since the connectedness relation is transitively
closed, a and b are themselves connected.

When adding the complement operator, this property is
evidently lost. For instance, let G = {(a, b, c), (a′, b′, c′)}
be a graph with {a, b, c} ∩ {a′, b′, c′} = ∅. Then (a, a′) ∈
J(next)cKG but a and a′ are not connected in G. This shows
that nre− is a proper fragment of nre¬.

5.2. Expressing the residuals

The above notwithstanding, star-free nre¬’s do allow the
expression of interesting derived operators, such as the
residuals.

Formally, the right residual (e1 ↙ e2) and the left
residual (e1 ↘ e2) are defined as follows:

Je1 ↙ e2KG = {(s, t) | ∀v ∈ adom(G) :
(t, v) ∈ Je2KG → (s, v) ∈ Je1KG};

Je1 ↘ e2KG = {(s, t) | ∀v ∈ adom(G) :
(v, s) ∈ Je1KG → (v, t) ∈ Je2KG}.
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FIGURE 1. RDF graph about patients, diseases, and symptoms.

A classical example is the following.

EXAMPLE 3. Consider RDF graphs about patients,
diseases, and symptoms. An example is the graph Gpd
shown in Figure 1. There are two relations: a relation
symptom (sym) connecting diseases to symptoms, and a
relation diagnosis (has) connecting patient to symptoms.
Consider the query Q asking for all pairs (p, d) so that
patient p has all the symptoms of disease d. For example,
Q(Gpd) = {(patient-1, flu-I)}. Query Q can be expressed
by next :: has↙ next :: sym.

It is well known that the residuals are expressible in the
calculus of relations [15]: we have e1 ↙ e2 ≡ (ec1 ◦ e−12 )c

and e1 ↘ e2 ≡ (e−11 ◦ec2)c. These expressions apply inverse
to entire subexpressions, but inversion can always be pushed
down so that it is only applied to atomic expressions, such
as in the way nre¬’s are defined.

5.3. Three-variable first-order logic

Another interesting question concerns the relationship to
FO3: the fragment of first-order logic using only three
distinct variables. We can use first-order logic formulas to
express binary-relation queries over RDF graphs by viewing
an RDF graph G as the interpretation of a ternary relation
symbol T . Formally, we associate toG a structure IG over T
whose domain equals adom(G). The binary-relation query
Q expressed by a formula ϕ(x, y) with two free variables
x and y is then simply defined by Q(G) = {(a, b) | a ∈
adom(G) and b ∈ adom(G) and IG |= ϕ[a, b]}.

We have:

PROPOSITION 5.2. For every sfnre¬ e, the binary-relation
query JeK is expressible in FO3.

Proof. Clear from the formal semantics of sfnre’s as given
in Section 3, except perhaps for node tests (expressions of
the form axis :: [e]). By induction, we have an FO3 formula
ϕ(x, y) expressing JeK. Formula ϕ may use a third variable
z in addition to its free variables x and y. Let ϕ′ be the
formula obtained from ϕ by replacing x by z, y by x, and z
by y. Then Jnext :: [e]K is expressed by the FO3 query

{(x, y) | ∃z(T (x, z, y) ∧ ∃x∃y ϕ′)}.

The other axes are handled similarly.

For the standard calculus of relations over binary
relations, a converse to Proposition 5.2 is known: it
can express exactly the binary-relation queries over binary
relational structures that are expressible in FO3 [14, 32].
It is natural to wonder about an analogous result for
binary-relation queries over RDF graphs. It is tempting
to conjecture that the converse to Proposition 5.2 holds,
that is, that every binary-relation query over RDF graphs
expressible in FO3 is expressible by an sfnre¬. The answer is
negative, as the following proposition shows a very intuitive
FO3-query, asking for symmetric relationships, to be not
expressible. Note that the result actually holds for nre¬, i.e.,
transitive closure is allowed.

PROPOSITION 5.3. The binary-relation query ϕ =
{(x, y) | ∃z : (T (x, z, y) ∧ T (y, z, x))} is not expressible
by any nre¬.

Proof. Suppose, for the sake of contradiction, that ϕ would
be expressible by some nre¬ e. Let G be an RDF graph built
from four constants a, b, c, d that do not occur in e, such that
G = {t1, . . . , t12} where

t1 = (a, b, c), t2 = (b, c, a), t3 = (c, a, b),

t4 = (a, d, b), t5 = (b, a, d), t6 = (d, b, a),

t7 = (b, d, c), t8 = (c, b, d), t9 = (d, c, b),

t10 = (a, c, d), t11 = (c, d, a), t12 = (d, a, c).

Let H = G ∪ {(c, b, a)}.
On the one hand, ϕ(G) = ∅ but ϕ(H) =

{(a, c), (c, a)} 6= ∅.
On the other hand, we claim that

CLAIM 1. For every nre¬ e that does not use the constants
a, b, c, d, we have JeKG = JeKH and JeKG ∈ {∅, I,D, I∪D}
where
• I = {(a, a), (b, b), (c, c), (d, d)};
• D = {a, b, c, d} × {a, b, c, d} − I.

In view of ϕ(G) = ∅ 6= ϕ(H), this claim implies that ϕ
cannot be correctly expressed by e.

We prove the claim by induction.
If e is of the form self then JeKG = JeKH = I.
If e is of the form axis or axis−1, for axis ∈

{next , edge,node}, then one may verify that JeKG =
JeKH = D.

If e is of the form axis :: u or axis−1 :: u, with
u /∈ {a, b, c, d}, then Jaxis :: uKG = Jaxis :: uKH = ∅.

If e is of the form e1 ∪ e2, e1 − e2, e1 ◦ e2, ec1,
or e∗1, the claim follows by induction, given that the
set of the four possible relations {∅, I,D, {a, b, c, d}2} is
closed under the operations union, difference, composition,
complementation, and reflexive-transitive closure.

If e is of the form self :: [e′] then for J = G and J = H
alike, we have JeKJ = ∅ if Je′KJ = ∅, and JeKJ = I
otherwise.

Finally, if e is of the form axis :: [e′] then for J = G
and J = H alike, we can reason as follows. By induction,
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there are four possibilities for Je′KJ . If Je′KJ = ∅ then
JeKJ = ∅. If Je′KJ equals I, D, or {a, b, c, d}2, then
Jaxis :: [e′]KJ = JaxisKJ which we have already verified
above to be equal to D.

6. DISCUSSION

In connection to Proposition 5.3, we should mention the
TriAL language [29], which offers in its fragment TriAL=

a level of expressiveness between FO3 and FO4. It would be
interesting to find an nre-like language exactly equivalent to
FO3 over ternary relations.

Another question could be asked in connection to
Proposition 5.1, where we have seen that sfnre’s enjoy a
connectivity property whereas general sfnre¬ queries do not.
Hence one may ask for a natural characterization of the
sfnre¬ queries that do enjoy the connectivity property of
Proposition 5.1. A similar question could be asked for FO3

instead of sfnre¬. We are currently investing the above and
related questions. Note that for the language nre¬ (which
includes transitive closure) the question is easily answered:
the set of all expressions of the form

e ∩ (self ∪ next ∪ edge ∪ node)∗

where e ranges over arbitrary nre¬ expressions, captures
exactly all nre¬ queries that are connected. In the absence
of transitive closure, such an easy answer is less obvious,
since by the mere guarantee that an expression expresses a
connected query, one does not get an immediate bound on
the length of the involved paths. Of course, as a recourse
one may simply give a nonstandard semantics to sfnre¬

expressions to the effect of always intersecting their result
with (self ∪ next ∪ edge ∪ node)∗. But we do not find
this a natural characterization; the question is whether the
connected sfnre¬ queries can be characterized as a syntactic
fragment of the language sfnre¬ itself.

Obviously, apart from the expressivity issues that were
the focus of the present paper, one may also wonder about
issues related to satisfiability checking or other inference
problems. Unfortunately, the situation is rather bleak in this
respect. Even over structures consisting of a single binary
relation, we can show that the finite satisfiability problem for
expressions involving just the operators union, composition,
and difference, is already undecidable [40, 41]. When
removing the difference operator, satisfiability is regained,
as follows from known results on ICPDL [42]. Since these
results hold only for binary relation structures, it would be
interesting to reconsider them in the light of ternary relations
as they occur in RDF graphs. Also, the finite satisfiability
problem remains open.

We note that there is some similarity between Tarski-
SPARQL and its correspondence to sfnre¬’s, and the work
on translating full SPARQL into the relational algebra for
relational databases [43]. In this paper, we have been
focusing on a lower level of expressibility than the full
SPARQL language and have been attempting the opposite
direction, translating from the algebraic sfnre¬’s to Tarski-
SPARQL.

In conclusion, we hope our paper has helped to show
the relevance of the classical calculus of relations in
highlighting the navigational aspects of SPARQL queries. It
is worth noting that Versa, one of the earliest RDF query
language proposals, is much more explicitly navigational
than SPARQL, which evolved from an originally lightweight
language for pattern matching in graphs to a full-fledged
SQL analog for RDF.
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[18] Pérez, J., Arenas, M., and Gutierrez, C. (2010) nSPARQL: A
navigational language for RDF. Journal of Web Semantics, 8,
255–270.
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