
A Domain-Specific Textual Language for Rapid Prototyping
of Multimodal Interactive Systems

Fredy Cuenca, Jan Van den Bergh, Kris Luyten, Karin Coninx
Hasselt University - tUL - iMinds

Expertise Centre for Digital Media, Diepenbeek, Belgium
{fredy.cuencalucero,jan.vandenbergh,kris.luyten,karin.coninx}@uhasselt.be

ABSTRACT
There are currently toolkits that allow the specification of
executable multimodal human-machine interaction models.
Some provide domain-specific visual languages with which a
broad range of interactions can be modeled but at the expense
of bulky diagrams. Others instead, interpret concise specifi-
cations written in existing textual languages even though their
non-specialized notations prevent the productivity improve-
ment achievable through domain-specific ones.
We propose a domain-specific textual language and its sup-
porting toolkit; they both overcome the shortcomings of the
existing approaches while retaining their strengths. The lan-
guage provides notations and constructs specially tailored to
compactly declare the event patterns raised during the exe-
cution of multimodal commands. The toolkit detects the oc-
currence of these patterns and invokes the functionality of a
back-end system in response.

Author Keywords
Multimodal systems; composite events; declarative
languages.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Multimodal systems can process commands that are con-
veyed through a wide variety of modalities (e.g. speech, ges-
tures, gaze, etc.) in a coordinated manner. They expand com-
puting to accommodate to a broader spectrum of people and
more adverse usage conditions than in the past [19]. How-
ever, their implementation comes with a cost: existing com-
mercial frameworks (.NET, Java) cannot separate the con-
cerns of event handling and event detection for multimodal
systems as well as they did for traditional WIMP systems.

Whereas traditional systems respond to simple, single action
commands (e.g. mouse clicks and keystrokes), multimodal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is pe rmitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists , requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EICS 2014, June 1720, 2014, Rome, Italy.
Copyright c© ACM 978-1-4503-2725-1/14/06...15.00.

systems must respond to a series of coordinated user actions
that are to be regarded as a single command, a multimodal
command. For those multimodal systems implemented with
commercial frameworks, the execution of multimodal com-
mands will lead to a series of event notifications that a multi-
modal system must process separately but without ever ne-
glecting their interdependence. The implementation of a
mechanism for detecting meaningful event patterns -hereafter
called composite events- greatly complicates the creation of
multimodal systems.

To ease this problem, the HCI community has proposed toolk-
its that support the specification and detection of composite
events. Some of them provide domain-specific visual lan-
guages [3, 7, 6, 17, 8] that enable modeling a wide variety
of composite events. However, these specifications easily de-
generate into complex diagrams for relatively simple com-
mands such as the put-that-there [5]. Other toolkits can inter-
pret textual specifications [1, 15, 24, 13] made in some exist-
ing languages, e.g. XML or CLIPS, not specialized for mul-
timodal systems. But the generality of these languages pre-
vents the productivity improvement associated with the use
of domain-specific ones [16].

Our research seeks to explore the potential of a distinct type
of modeling language -one that combines the distinguishing
features of mainstream approaches: the domain-specificity
and the textual notation. The former offer substantial gains
in expressiveness and ease of use, with corresponding gains
in productivity and reduced maintenance costs [16]. The lat-
ter leads to concise, easy-to-scan specifications [12].

This paper presents a language that allows defining a broad
range of composite events for its subsequent detection by a
toolkit. This can acknowledge the partial detection of com-
posite events through multimodal output, and react to their
full detection by sending requests to a back-end system. The
toolkit is ideal for rapid prototyping: the ease of editing com-
posite events that can be attached with feedback messages
allows quick iteration over different interaction techniques
while the application-specific code remains unaltered at the
back-end side.

Many of our ideas will be illustrated by the put-that-there sys-
tem because (1) it requires integrating both simultaneous and
sequential multimodal inputs, and (2) it can serve as a bench-
mark so that readers can compare different languages.

Algorithm 1 Oversimplified version of the put-that-there system

1: boolean bPut, bThat, bThere, bClick1, bClick2 . Variables capturing external information
2: datetime dPut, dThat, dThere, dClick1, dClick2
3: int x1, y1, x2, y2

4: procedure SPEECHRECOGNIZED(e) . Detection of speech inputs
5: if e.Text = ‘put’ then bPut← true, dPut← Now()

6: if e.Text = ‘that’ then bThat← true, dThat← Now()

7: if e.Text = ‘there’ then bThere← true, dThere← Now()

8: if hasPutThatThereOcurred() then putThatThere(x1, y1, x2, y2)

9: procedure MOUSECLICK(e) . Detection of mouse clicks
10: if dClick1 is null then x1← e.X, y1← e.Y, dClick1← Now()
11: else x2← e.X, y2← e.Y, dClick2← Now()

12: if hasPutThatThereOcurred() then putThatThere(x1, y1, x2, y2)

13: procedure HASPUTTHATTHEREOCURRED() . Detection of the put-that-there event
14: if bPut & bThat & bThere & bClick1 & bClick2 then
15: if (tThat− tPut).Milliseconds < 500 & (tThere− tThat).Milliseconds < 500 then
16: PUTTHATTHERE(x1, y1, x2, y2)

17: procedure PUTTHATTHERE(x1, y1, x2, y2) . Handler of the put-that-there event
18: for all o ∈ Controls do
19: if o.contains(x1, y1) then o.Location = new Point(x2, y2)

PUT-THAT-THERE: A MOTIVATING EXAMPLE
In order to highlight the difficulties encountered when devel-
oping multimodal systems with commercial frameworks, we
will discuss the implementation of the well-known put-that-
there [2] multimodal command. This allows a user to move
a virtual object from its original position to a new one by ut-
tering the sentence ‘put that there’. The user must utter the
pronouns ‘that’ and ‘there’ while simultaneously clicking on
the target object and its intended position respectively.

A simple desktop-version of the aforementioned system re-
quires a Windows form with colored buttons on it (Figure 3a),
a library for speech recognition, and the variables and subrou-
tines outlined in Algorithm 1.

Most parts of the pseudo-code shown in Algorithm 1 aim at
detecting whether the user has already issued a multimodal
command: Boolean variables (line 1) are used to check the
occurrence of relevant events; datetime variables (line 2), to
timestamp the event notifications; and a dedicated subroutine
(line 13), to combine the information carried by these vari-
ables in order to verify whether the arrival of speech inputs
and mouse clicks matches with the expected order of receipt.
Only one subroutine (line 17) implements the computation
required to move the target object; the others are in charge of
detecting the occurrence of an specific event pattern.

Variables such as those in lines 1 and 2, and subroutines such
as those in lines 4, 9 and 13 are not individual peculiarities
of the case being studied. Similar members will always be
needed to implement two inherent functions of every mul-
timodal system: the recognition and fusion of multimodal

natural input [19]. On one hand, the recognition of inputs
involves transforming the information captured by input de-
vices into variables (as in procedures SPEECHRECOGNIZED
and MOUSECLICK). On the other hand, the fusion of inputs
entails combining the information scattered among the afore-
mentioned variables, which requires at least one dedicated
subroutine (as procedure HASPUTTHATTHEREOCCURRED).

The proposed language and its supporting toolkit will al-
low programmers to dispense the majority of the pro-
gram outlined above. Since the toolkit can detect compos-
ite events, like the stream ‘put that (click) there (click)’,
the application-specific functionality encoded in the PUT-
THATTHERE method will suffice to create a running system.

WORKFLOW OVERVIEW
The presented toolkit allows defining composite events, at-
taching them with partial feedback messages, and choosing
the methods that will handle these events. Although the han-
dlers have to be coded in a back-end application, they can be
referenced from the toolkit.

Figure 1 gives an overview of the steps needed to define
a composite event. In step ¬, one specifies its constituent
events and how these are temporally related with one another,
as well as the signature of the subroutine that will be launched
upon the detection of the composite event. Once this is done,
one can check the composite event expression for correct syn-
tax. This verification causes the generation of a finite state
machine (step ­) that will be subsequently used for event
tracking, i.e. each well-defined composite event has a recip-
rocal finite state machine-based representation. Optionally,

Figure 1: Components involved in the specification of com-
posite events (CES), their handling subroutines (H), and their
feedback annotations (FB).

Figure 2: Components involved in the evaluation of compos-
ite events through interactive simulation.

one can then annotate the finite state machine with intermedi-
ate feedback mechanisms (step ®), after which the composite
event is saved (step ¯). The toolkit offers the possibility to
evaluate the adequacy of a composite event by means of inter-
active simulation. This evaluation gives one the opportunity
to experience the toolkit’s recognition speed and rate at run-
time, thus guiding modality allocation.

In simulation mode (see Figure 2), the user inputs will be per-
ceived through a set of software recognizers incorporated in
the toolkit. In the current implementation, these can sense
speech inputs, mouse gestures, mouse inputs, keystrokes, and
internally-generated timeout events. The input events are sent
to a component called fusion engine (¶). This engine is in
charge of detecting the occurrence of composite events, in
which case it will activate the functionality of a back-end ap-
plication (º). The toolkit can provide intermediate feedback
so that its user can be constantly aware of whether it is cor-
rectly detecting his/her inputs. In this case, the output synthe-
sizer is notified (·). Partial feedback is provided by different
output renderers (¹), based on the feedback annotations (¸)
that were attached to the finite state machine-based represen-
tation of the composite event.

COMPOSITE EVENT DEFINITION LANGUAGE
This section begins by explaining the underlying concept be-
hind the composite event definition language we are propos-
ing. It then shows the operators that permit constructing com-
posite events in a declarative manner. Finally, the syntax re-
quired to specify event parameters is exposed and illustrated.

Composite Events
Existing commercial frameworks (.NET, Java) can notify
about the occurrence of a large, predefined set of simple user

events e.g. mouse clicks, keyboard presses, and menu selec-
tions. These events are considered to happen in a moment of
time. Their instantaneous occurrence earned them the name
-in this article at least- of atomic events.

In contrast, composite events occur over a time interval. They
are series of related happenings with a unifying meaning, e.g.
saying ‘zoom here’ while circling on a map. A composite
event is composed of several atomic events; it occurs when-
ever its constituent events occur in a particular order. The
definition of a composite event with the proposed language
requires declaring the atomic events that comprise it and the
relations among them. These relations are specified through
predefined event operators.

Event Operators
The operators to be presented were defined after surveying
a wide assortment of graphical toolkits for prototyping mul-
timodal systems [4]. These have been widely used to spec-
ify multimodal human-machine interaction with executable
visual models. We have factored out significant features of
these visual languages into a compact textual notation. The
resulting operators resemble those successfully used in the
field of active databases [21] to specify event-patterns.

Let A and B be two events (atomic or composite). The event
operators of the proposed language, in increasing order of
precedence, are:

• FOLLOWED BY (;): This binary operator is denoted with
a semicolon. The utterance A;B indicates the toolkit to
notify the occurrence of a composite event whenever the
event B occurs after A.

• OR (|): This binary operator is denoted with a pipe. The
utterance A|B indicates the toolkit to notify the occurrence
of a composite event whenever either of A and B occurs.

• AND (+): This binary operator is denoted with a plus. The
utterance A + B indicates the toolkit to notify the occur-
rence of a composite event whenever A and B occur si-
multaneously –read within a short time span. We use (cus-
tomizable) time thresholds to consider the fact that even
when the end user tries to perform simultaneous actions,
there may be a short delay between them [18].

• ITERATION (∗): This unary operator is denoted with an
asterisk. The utterance B∗ makes the toolkit aware that
zero or more occurrences of the event B can be part of a
larger composite event.

Parentheses can also be used to alter the pre-established
precedence, i.e. to explicitly indicate the terms that have to
be evaluated first. For instance, the expressions A;B|C and
(A;B)|C have different meanings: the former will be trig-
gered upon the detection of event A followed by either B or
C; the latter may be trigger after the consecutive occurrence
of A and B, or alternatively upon the detection of C.

Being notified about the ocurrence of a predefined sequence
of events may not be enough to determine an appropriate sys-
tem’s response. Specific information about these events may

also be required. Such information is accumulated in the pa-
rameters of the composite events.

Composite Event Parameters
The parameters of a composite event are variables that store
the information carried by its constituent events.

In the proposed language, composite event parameters must
go accompanied by an atomic event and within angular brack-
ets (〈 , 〉). Not all atomic events need to have associated pa-
rameters, e.g. the detection of the voice command print may
be enough to produce an appropiate system response.

The semantics of the parameters depend on its associated
atomic event and are predefined, e.g. the event key down
may be defined with one associated parameter to store the
character on the key pressed if necessary. The names of the
event parameters must be character strings starting with a let-
ter; their types do not have to be explicitly declared.
To clarify matters, the composite event that will be triggered
because of the put-that-there command can be specified as
follows:

putThatThere = speech.put ;
speech.that+mouse.click〈x1, y1〉 ;
speech.there+mouse.click〈x2, y2〉

(1)

This utterance indicates the toolkit to store the position of the
first and second click in the variables x1 and y1, and x2 and
y2 respectively. These variables will be set at runtime as the
user issues the put-that-there multimodal command. They
will permit to determine the target object and its intended po-
sition respectively.

Continuing with (1), the atomic event mouse.click is prede-
fined in the grammar of the proposed language whereas the
speech inputs are dynamically incorporated. Atomic events
speech.put, speech.that, and speech.there are recognized
as such, because they belong to the alphabet of the speech
recognition grammar that the toolkit reads at startup.

The presence of parameters stems from the fact that their val-
ues may be needed by the handling subroutines. For instance,
the composite event defined in (1) makes it possible to bind
it to the PUTTHATTHERE(x1, y1, x2, y2) method of Algo-
rithm 1. Indeed, the toolkit to be presented in the next section
allows establishing this binding.

TOOLKIT USAGE
The proposed toolkit launches one subroutine every time a
composite event is detected. The handling subroutines have
to be implemented -with no support from the toolkit- in a
back-end application. This is a prerequisite to creating multi-
modal prototypes with our toolkit.

Coding the composite event handlers
The handlers to be invoked upon the detection of a composite
event must be coded in a different environment, Microsoft
Visual Studio, with a .NET programming language, e.g. C#,
Visual Basic.

For instance, to execute a system supporting the put-that-
there command, both an application containing a windows

form with colored buttons on it (Figure 3a), and the PUT-
THATTHERE method (line 17 of Algorithm 1) are needed.
Since the toolkit performs voice recognition and mouse hook-
ing, no speech recognition libraries or mouse events handlers
need to be implemented in the back-end application whose
path must be specified in the toolkit’s configuration file.

Defining and binding a composite event
Whereas a composite event has to be defined by typing in the
toolkit text editor (Figure 3a, CES), its handling subroutine
has to be selected from a list (Figure 3b, ®). The text edi-
tor offers syntax highlighting, auto completion popups, and
function call tips. These features aim at reducing typos, and
facilitating the editing and readability of the text. The list of
handlers is loaded at startup when the toolkit reads the loca-
tion of the back-end application from the configuration file.
Unlike coding the event handlers, defining composite events
requires little programming skills.

Syntax checking a composite event
The syntax of a composite event definition must be verified
(Figure 3b, ­) before registering it in the repository (Fig-
ure 3b, CER). Each well-defined composite event will be au-
tomatically transformed into a semantically equivalent finite
state machine (Figure 3b, STM) that the toolkit will use at
runtime for event tracking. For ease of exposition, we will
not directly refer to the finite state machine but to its graph-
ical form: the state diagram. The nodes of this diagram rep-
resent the states the toolkit may be in during event tracking;
its arrows indicate the state transitions to be caused upon the
detection of atomic events; and its overall topology reflects
the temporal constraints among the atomic events.

Attaching feedback to a composite event
Multimodal commands may involve long series of actions.
Thus, it may be desirable for the end user to be progressively
notified about whether his/her actions are being correctly de-
tected. This acknowledgment may prevent end users from
frustration: no one wants to realize that his/her commands
were misinterpreted after few seconds of system inaction.

Toolkit users can attach partial feedback to the nodes of the
state diagram representing a composite event. For instance,
in Figure 3b, FB, the toolkit is configured to synthesize the
utterances ‘what?’, ‘where?’ and ‘done!’ after the detection
of ‘put’, ‘that’ (click), and ‘there’(click) respectively.

Transforming user-defined text messages into synthesized
voice is not the only way to provide feedback. The toolkit
can also be configured to play audio files, to show mouse ges-
ture trails, and/or to display the progression of a timeout event
through a progress bar.

Evaluating a composite event
In simulation mode, the toolkit user can convey a myriad of
inputs in order to evaluate the adequacy (e.g. to test recogni-
tion speed) of a composite event. The progressive recognition
of a composite event will be reflected in its reciprocal state
diagram-based representation.

(a) Back-end application (b) Toolkit

Figure 3: The application that handles the composite events (a) and the current version of the toolkit (b) during a simulation of
the put-that-there composite event. The toolkit in (b) is annotated with some of the labels from Figure 1 and Figure 2.

Simulations start with the toolkit in the initial state, labeled as
1, meaning that it is ready to sense the external environment.
Subsequently, it will change its state as atomic events occur.
The new state after a transition is determined by the arrow
indicating the name of the triggering event. Eventually, the
toolkit will reach its final state, depicted as a double circle,
meaning that it has detected the occurrence of the composite
event under evaluation. In that moment, a handling subrou-
tine will be launched and the toolkit will go back to the initial
state waiting for the next composite event. All toolkit state
transitions are graphically reflected in the state diagram, i.e.
the current toolkit state is always highlighted (Figure 3b, ¹).

The animated state diagram leads to a quick identification of
input recognition problems (when the toolkit becomes stag-
nant in a particular state). There are also other debugging
tools enabling more precise analyses. The variable browser
(Figure 3b, ¶) is a window showing the event parameters
values; it is updated in each state transition. The interactive
debugger (Figure 3b, D) is a scratchpad window in which
C# statements involving the event parameters can be evalu-
ated on the fly. The event viewer (Figure 3b, V) shows the
happenings detected during the simulation along with their
timestamps. Through these tools, for instance, we observed
that after 35 executions of the put-that-there command, this
was detected without fail 68.5% of the times. Mouse clicks,
and inputs ‘that’ and ‘there’ were missed in 2, 6, and 3 oc-
casions respectively. When receiveing partial feedback as in
Figure 3b, the recognition rate increased to 94.2%.

Based on the simulation and up to the toolkit user’s criteria,
the evaluated composite event may be discarded, modified for
re-evaluation, or registered into the toolkit. Then, he/she can
repeat the process for other composite events. A dedicated
window will show all those composite events registered in
the toolkit (Figure 3b, CER).

Testing the final prototype
Once the toolkit user has registered all the composite events
the intended prototype has to handle, this is ready for end user
testing. In this phase, the end user will freely interact with the
prototype, i.e. composite events will be triggered in arbitrary
order. Unlike simulations, the animated state diagram will
not be shown to the end user.

In the final prototype, every multimodal command starts with
a pre-defined reset action (like Google Glass [9] commands
are activated by first saying ‘O.K. Glass’). In this way, we
guarantee that multimodal commands will be issued one at a
time. The reset action also allows users to cancel their mul-
timodal command executions at any time. This design deci-
sion, however, comes with a cost: the toolkit cannot support
the prototyping of multi-user applications since these must
handle several commands simultaneously.

EXPLOITING ADVANCED LANGUAGE FEATURES
This section shows how to use the toolkit to exploit language
features that were not required by the put-that-there example.

Aside from the put-that-there, the studied application (Fig-
ure 3a) also supports other multimodal commands that allow
the creation and deletion of arbitrary sets of objects. The
simplicity of this application should not mislead the reader’s
judgement to underestimate the applicability of the proposed
toolkit. Clearly, the same multimodal commands that can be
detected during the manipulation of this simple application
can also be detected for a more sophisticated one. We ex-
pect the reader to focus on the toolkit’s functionalities, and
distinguish them from the application’s functionalities. The
implementation of the latter is independent of our tools.

Variable events
End users can remove all the objects of a specific color by
uttering a sentence like ‘take the green out’. This required
implementing a subroutine removeAllColor(string color)

-with the obvious functionality- in the back-end application,
and using the toolkit to define it as the handler of the event:

removeColor = speech.take;
speech.any〈color〉;
speech.out

The keyword any causes the toolkit to consume an input
event that is not accurately declared. In the example, unlike
‘take’ and ‘out’, the declaration of the second speech input is
rather flexible: it can be any word. Its textual form will be
used to set the variable color.

The speech recognition grammar includes the words ‘take’,
‘out’, and several color names, but not the article ‘the’, which
it is ignored by the toolkit.

Equivalent events
End users can create, from one to nine, objects on the canvas
of the application. The number of objects to be created can
be specified by means of speech or mouse gesture. This was
done by implementing the said functionality into a subrou-
tine, createNObjects(int N), and binding it to the compos-
ite event:

createObjects = speech.create;
speech.any〈N〉 | gesture.any〈N〉;
speech.objects

The operator ‘|’allows end users the possibility to pronounce
the number of objects to be created (e.g. by saying ‘three’),
or to write it down with a mouse gesture (e.g. by drawing the
symbol ‘3’). In any case the result will be the same: the ex-
ecution of createNObjects(N) with N = 3. Thus, the dis-
junctive operator allows the definition of robust multimodal
commands.

The matching templates of the digits one to nine are stored
in xml files in a specific directory. For commands involving
mouse gestures, the toolkit can be conveniently configured
to show the mouse trail; this is possible through the controls
shown in Figure 3b, FB.

Arbitrarily long events
End users can remove an arbitrary number of objects from the
canvas of the application. The objects to be removed must
be pointed with the mouse. The input stream ‘remove this
(click) and this (click) now’ is an example of how the said
functionality can be activated.
This interaction technique was implemented by coding the
method removeThisAndThis(int xs[], int ys[]) -with the
obvious functionality- and defining it as the handler of the
composite event:

removeMany = speech.remove;
speech.this+mouse.click〈x[], y[]〉;
(speech.and;
speech.this+mouse.click〈x[], y[]〉)∗;
speech.now

The toolkit will treat variables x and y, included in the defini-
tion of removeMany, as arrays because of the brackets that
come upon. At runtime, every time a click is detected, the
mouse coordinates are inserted at the end of the arrays x[]
and y[] that will eventually be passed as parameters to the
removeThisAndThis method.

Timeout events
The toolkit can be configured to detect single, double, and
triple clicks that can lead to a different computation in the
back-end application. To this end, the following composite
event must be defined:

manyClicks = mouse.click〈xs[], ys[]〉;
(mouse.click〈xs[], ys[]〉;
mouse.click〈xs[], ys[]〉 | delay-250
) | delay-250

The keyword delay serves to define a timeout event. The
number that comes upon the hyphen (‘-’) indicates the num-
ber of milliseconds after which the timeout event is thrown.
In the previous expression, no more than 250 milliseconds
can elapse between two consecutive clicks when issuing dou-
ble or triple clicks.

A subroutine nClicks(int xs[], int ys[]) implements differ-
ent responses to the single, double, and triple click detection.
The number of clicks is disclosed from the size of the arrays
xs[] and ys[] passed as parameters.

TOOLKIT IMPLEMENTATION
This section will describe the main libraries and algorithms
used to implement the proposed toolkit. This was developed
in C# the same as the back-end application described in the
previous sections.

Third-party software components
The toolkit text editor is the control ScintillaNET [22]. Its
API makes it simple to benefit from advanced text editing
and syntax highlighting. Both the grammar specification of
our language and the parsing of its utterances were imple-
mented by invoking the Irony library [14]. The state diagrams
used during the simulations are controlled through MSAGL
[10]. Reflection libraries are used to inspect the methods of
the back-end application and to invoke them upon the detec-
tion of composite events.

Voice recognition is implemented through the System.Speech
namespaces in the Microsoft .NET Framework; mouse ges-
tures are identified by the 1$ recognizer [25]; and mouse
actions and keystrokes are intercepted through hook proce-
dures. As to the synthesizers, speech generation is imple-
mented by the System.Speech namespaces; and the visibility
of the mouse trails is controlled through the Windows API.

Verifying the validity of composite events
The grammar defining the proposed composite event defini-
tion language can be seen in (2).

The nonterminal symbols, 〈compEvt〉 and 〈atomEvt〉, refer
to composite and atomic events respectively; 〈pName〉 de-
fines the syntax of the event parameter names and is expressed
as a regular expression. As to the terminal symbols, some of
them, e.g. mouse.click, are predefined by the toolkit; others,
e.g. speech.put, are incorporated at startup while the toolkit
reads the speech recognition grammar file.

〈compEvt〉 → 〈atomEvt〉
〈compEvt〉 → 〈compEvt〉 ∗

〈compEvt〉 → 〈compEvt〉 ; 〈compEvt〉
〈compEvt〉 → 〈compEvt〉 | 〈compEvt〉
〈compEvt〉 → 〈compEvt〉 + 〈compEvt〉
〈atomEvt〉 → mouse.click

| mouse.click〈pName, pName〉
| mouse.move〈pName, pName〉
| speech.any〈pName〉
| speech.put
| . . .
| (〈compEvt〉)

〈pName〉 → [a-zA-Z][a-zA-Z0-9]*

(2)

The correct syntax of each string specifying a composite
event is verified against this grammar. Such syntactic anal-
ysis may have two results: the string does not belong to the
language in which case an error message is thrown, or it is
well formed in which case a parse tree is returned.

Transforming composite events into finite state machines
The parse tree of a well-defined composite event will
be transformed into an state diagram by the function
createStateDiagram (Algorithm 2). This transforms the
tree whose root node is passed as an argument into an state
diagram, which is then returned as output. Hence, the state
diagram representing a composite event E can be obtained
by invoking createStateDiagram(rt) -where rt is the root
node of the tree obtained from parsing E.

The base case of the recursive Algorithm 2 occurs when its
argument is a node with a single child. Such nodes repre-
sent atomic events and have trivial transformations, e.g. the
smallest graph of Figure 4a represents the atomic event e3.
The recursive cases involve intermixing small state diagrams
obtained from transforming fragments of the parse tree. Each
operator defines a different way to intermix state diagrams.

When two composite events are linked by a ‘FOLLOWED
BY’ operator, the toolkit concatenates its reciprocal state di-
agrams (Figure 4b). When two composite events are con-
nected by the disjunctive operator ‘OR’, the toolkit creates a
new state diagram by overlaying the initial and final states of
its graphical counterparts (Figure 4c). Two composite events
connected by the conjunctive operator ‘AND’ causes the cre-
ation of a state diagram whose paths between its initial and
final nodes are the permutations of all the events contained
in their reciprocal state diagrams (Figure 4d). Finally, a sin-
gle composite event followed by the ‘ITERATION’ operator
causes the alteration of its parallel state diagram: the ingo-
ing arcs of its final state will be redirected to its initial state
(Figure 4e).

Events consumption policy
When entering simulation mode, the input recognizers are ac-
tivated so that the toolkit can embark on event tracking. Ev-
ery time an event occurs, the toolkit checks whether it was
expected, i.e. whether its name is annotated in some outgo-
ing arc of the node representing the current toolkit state. In
the affirmative case, the toolkit moves to another state and
sets the event parameters values associated with this transi-
tion. Otherwise, the toolkit state remains the same. In both

cases, the triggering event will be consumed and no longer
available for processing.

End user testing adds a layer of complexity. Here, the toolkit
must handle several composite events occurring in arbitrary
order. However, since our approach requires multimodal
commands to be executed one at a time, identifying the mul-
timodal command under execution will reduce the problem to
the simulation case. This identification is achieved from the
first event detected after the reset action.

Handling parallel inputs
When a composite event is transformed into its reciprocal
state diagram, its nodes are automatically classified into: sta-
ble/unstable. The toolkit uses these unstable nodes to handle
parallel input. Visits to unstable nodes cannot last longer than
a threshold time set in the toolkit’s configuration file.

For instance, during the detection of the put-that-there com-
mand, the toolkit entrance to states 3 or 4 (Figure 3b) will
cause the activation of a timer ensuring fast transitions to state
5. If the timer expires the toolkit will go back to state 2, the
last visited stable state. This prevents long delays between
speech inputs and mouse clicks, i.e. end users are enforced to
issue them simultaneously.

Unstable states appear when events are connected by the
‘AND’ operator. All the intermediate nodes of the graph re-
turned by PERMUTE(sd1, sd2) will be classified as unstable
states, e.g. all nodes except for 1 and B in Figure 4d. When
the toolkit steps back from an unstable to the last visited sta-
ble state, the variables set during this interim are rolled back.

RELATED WORK
There are currently toolkits that allow specifying the compos-
ite events characterizing multimodal human-machine interac-
tion. These can be classified into two groups:

Toolkits providing domain-specific visual languages
MEngine [3] offers a graphical editor that allows users to de-
pict composite events as state diagrams. It can combine ges-
tures and speech inputs but its models grow too quickly when
dealing with simultaneity. To correctly model simultaneous
events, many possibilities must be considered, e.g. deictic
terms can precede pointing or vice versa during speak-and-
point selection. Our toolkit protects its users from this state
explosion through the automatic generation of state diagrams.

NiMMiT [6] was a visual language used to specify multi-
modal interactions in the context of virtual environments. Its
notation allows grouping sets of simultaneous events but not
successions of related events. Another NiMMiT issue is that
the parameter values of a triggering event, e.g. mouse cursor
position, have to be captured by the back-end system. Thus,
sequentally multimodal interactions lead to bulky diagrams.
In our language, large series of sequential events can be re-
garded as a single composite event through the FOLLOWED
BY operator. Moreover, the parameter values are captured
and stored by our toolkit until the back-end system is invoked.

ICO [17] allows formal descriptions of multimodal interac-
tive systems. It has been successfully applied in the field

Algorithm 2 Transforms (a fragment of) a parse tree into a state diagram

procedure CREATESTATEDIAGRAM(node) . node is the root of the (sub)tree to be transformed

if isAtomic(node.children[1]) then
return TRIVIALSD(node.children[1])

else if isComposite(node.children[1]) & node.children[2] =‘∗’ then
sd1← createStateDiagram(node.children[1])
return LOOP(sd1)

else if isComposite(node.children[1]) & node.children[2] =‘;’ & isComposite(node.children[3]) then
sd1← createStateDiagram(node.children[1])
sd2← createStateDiagram(node.children[3])
return CONCATENATE(sd1, sd2)

else if isComposite(node.children[1]) & node.children[2] =‘|’ & isComposite(node.children[3]) then
sd1← createStateDiagram(node.children[1])
sd2← createStateDiagram(node.children[3])
return OVERLAY(sd1, sd2)

else if isComposite(node.children[1]) & node.children[2] =‘+’ & isComposite(node.children[3]) then
sd1← createStateDiagram(node.children[1])
sd2← createStateDiagram(node.children[3])
return PERMUTE(sd1, sd2)

1

2

4

3

e1 e2

e2 e1

1 2
e3

(a) sd1 (top) and sd2 (bottom)

4 51

2

3

e3e1

e2

e2

e1

(b) sd1 ; sd2

41

2

3

e1

e2

e2

e1
e3

(c) sd1 | sd2

1

2

3

4

5

6

7

8

9

A

B
e1

e2

e3

e2

e3

e3

e2
e1

e3

e2

e3
e1
e1
e2

e1

(d) sd1 + sd2

1

2

3

e1

e2

e2

e1

(e) sd1∗

Figure 4: The effect of the operators as applied on two state machines specified in (a): (b) CONCATENATE(sd1, sd2). (c)
OVERLAY(sd1, sd2). (d) PERMUTE(sd1, sd2) and (e) LOOP(sd1).

of safety-critical systems. Both simultaneous and sequential
user actions can be specified through the depiction of Petri
nets-based models. But the correct understanding of these
models is not a simple task: it requires a solid command of
the transition rule of Petri nets. In contrast, our notation maps
directly to the problem domain without need of specialized
knowledge beyond multimodal interaction.

The visual models of HephaisTK [8] include symbols to
group simultaneous and successive events. However, it can
only group fixed-length sequences of events. Besides that,
event parameters have to be specified in a separate file. In our
language instead, an arbitrarily long sequence of events can
be regarded as one composite event through the ITERATION
operator. Our specifications also include event parameters.

Additional graphical toolkits were described in [4].

Toolkits exploiting ready-made textual languages
Mudra [13] interprets CLIPS-based specifications. Compos-
ite events are defined by declaring a set of rules that will be
verified against a fact base. Facts are inserted as user events
are detected. The satisfaction of a rule indicates the occur-
rence of a composite event. Unlike our toolkit, Mudra offers
multi-user support.

MIML [1], XISL [15], and UsiXML [24] are XML-based lan-
guages aimed at describing multimodal interfaces. MIML de-
scribes interfaces in three layers: interaction, tasks and plat-
form. XISL allows describing the user operations and system
actions separated from XML contents. It offers constructs
to describe sequential, parallel, alternative, and coordinated
use of modalities. UsiXML can shape the user interface of
any interactive application including multimodal ones. With
UsiXML, the user interfaces can be described in a way that
preserves the design independently from peculiar characteris-
tics of physical computing platform. The proponents of these
languages also offer toolkits that transform their specifica-
tions into concrete interfaces.

For each of these toolkits, its users must pay for the ver-
boseness of its underlying language. Both CLIPS and XML
programs contain a high number of pair-delimiter symbols.
The commands, facts, and arguments, which are essential el-
ements in CLIPS programs, must be enclosed between paren-
theses. This leads to expressions with excessive pairings as
the comparison between our specification, shown in (1), and
the one in [13, p. 5] attests. Likewise, the editing of XML
documents is riddled with tag pairs. The use of pair-delimiter
symbols is not only tedious, but also a potent source of slips
since it is not uncommon for the pairing to go wrong [11].

DISCUSSION
As mentioned above, previous research has focused on two
classes of executable multimodal human-machine interaction
models. In this paper, we elaborate on a new approach to mul-
timodal interaction modeling through the use of a domain-
specific textual language. We decided to implement an spe-
cialized language because domain-specificity can lead to sub-
stantial gains in expressiveness and ease of use [16]. With the
textual notation, we looked for compact specifications.

Our language certainly leads to compact specifications as the
comparison of our put-that-there definition (1) against the six
models shown in [5, p. 5], [13, p. 5], [3, p. 2], and [20, p .4]
suggests. More precisely, the physical space occupied by the
enclosing boxes of the aforementioned models ranges from
22.8 (HephaisTK) to 60.8 cm2 (NiMMiT) whereas our spec-
ification only requires 9.0 cm2. If we consider that the visual
specification of HephaisTK is incomplete (parameters are set
in another file), the second briefer specification would be the
one of Mudra (25.4 cm2). In this comparison, all models
were printed to have similar readability. Although these re-
sults cannot be generalized, they serve as an indicator of the
conciseness of our language. The benefits of a concise no-
tation should not be underestimated: the less material to be
scanned, the higher the proportion of it that can be held in
working memory, and the lower the disruption caused by fre-
quent searches through the model [11].

The expected gains in expressiveness were also observed.
When counting the mininal number of subroutines required
to implement the examples previously described, we found
that this can be reduced by a range of 33% to 60% when
using the toolkit. For instance, without using the toolkit,
we needed five procedures to create a standalone C# put-
that-there application: the four shown in Algorithm 1 plus
the InitializeComponent method required when building
windows forms. When using the toolkit, we only needed a
back-end C# system with two methods: PUTTHATTHERE and
InitializeComponent.

It must be emphasized that our approach does not rely on the
low frequency at which the speech inputs or mouse clicks,
used in the examples, are normally generated. The toolkit can
also handle high throughput of events. For instance, mouse
movements, which may be raised around 100 times per sec-
ond, can be processed by using the mouse.move〈x[], y[]〉∗
pattern in unimodal commands such as the drag and drop.
Then, extending the toolkit so that it can support other devices
generating high throughput data streams, e.g. laser pointers
or accelerometers, would not challenge our approach.

FUTURE WORK
We will investigate the usability of our toolkit via user studies.
This includes measuring the time and programming workload
required to define multimodal interfaces in both our toolkit
and a commercial framework.

A manageable issue that we will address in future work is
that the toolkit only invokes the external back-end appli-
cation upon the full detection of a composite event. This
can be a problem when specifying interactions that require
application-dependent intermediate feedback, e.g. when the
selected object in the put-that-there has to be highlighted. To
redress this problem, we plan to modify the system structure
so that the handling subroutines can be bound not to the state
diagrams but to their nodes.

At this point, our toolkit can only handle one multimodal
command execution at a time, which precludes multi-user ap-
plications. We will evaluate the feasibility of using UML
state machines [23, Chapter 15]. In theory, treating com-

posite events as the orthogonal regions of a UML state ma-
chine would permit modeling simultaneous execution of mul-
timodal commands.

CONCLUSION
The detection of multimodal commands requires a supervi-
sory mechanism for detecting event patterns. In order to free
programmers from implementing such mechanism, the HCI
community has proposed many toolkits seeking to ease this
problem. Some toolkits provide domain-specific visual lan-
guages in which the composite events to be detected must be
specified. Other toolkits interpret specifications performed in
a ready-made textual language like XML or CLIPS.
We have proposed a composite event definition language that
combines the distinguishing features of these dominant ap-
proaches: the domain-specificity and the textual notation.
The former offers gains in expressiveness and ease of use; the
latter leads to compact specifications. The language allows
defining composite events for their subsequent detection by
a toolkit. This transforms user-defined composite events into
finite state machines enhanced with parameterized events and
unstable nodes. The partial detection of a composite event
can be acknowledged through multimodal output; its full de-
tection causes the invocation of handles in a back-end system.

REFERENCES
1. Araki, M., and Tachibana, K. Multimodal dialog

description language for rapid system development. In
Proceedings of the 7th SIGdial Workshop on Discourse
and Dialogue (2006), 109–116.

2. Bolt, R. Put-that-there: Voice and gesture at the graphics
interface. In Proceedings of the 7th annual conference
on computer graphics and interactive techniques
(SIGGRAPH’ 80), ACM (1980).

3. Bourguet, M. A toolkit for creating and testing
multimodal interface designs. In Proceedings of
UIST’02 (2002), 29–30.

4. Cuenca, F., Coninx, K., Luyten, K., and Vanacken, D.
Graphical Toolkits for Rapid Prototyping of Multimodal
Systems: A Survey. Interacting with Computers (2014).

5. Cuenca, F., Vanacken, D., Coninx, K., and Luyten, K.
Assessing the support provided by a toolkit for rapid
prototyping of multimodal systems. In Proceedings of
the 5th ACM SIGCHI symposium on Engineering
interactive computing systems (EICS’13), ACM (2013),
307–312.

6. De Boeck, J., Vanacken, D., Raymaekers, C., and
Coninx, K. High level modeling of multimodal
interaction techniques using NiMMiT. Journal of
Virtual Reality and Broadcasting 4, 2 (2007).

7. Dragicevic, P., and Fekete, J. Support for input
adaptability in the icon toolkit. In Proceedings of the 6th
International Conference on Multimodal Interfaces
(ICMI’04), ACM (2004), 212–219.

8. Dumas, B., Lalanne, D., and Ingold, R. Description
Languages for Multimodal Interaction: A Set of
Guidelines and its Illustration with SMUIML. Journal of
multimodal user interfaces 3, 3 (2010), 237–247.

9. Google Glass. http://www.google.com/glass/start/.

10. Microsoft Glee. http:
//research.microsoft.com/en-us/projects/msagl/.

11. Green, T., and Petre, M. Usability analysis of visual
programming environments: a cognitive dimensions
framework. Journal of Visual Languages & Computing
7, 2 (1996), 131–174.

12. Green, T. R., and Petre, M. When visual programs are
harder to read than textual programs. In In
Human-Computer Interaction: Tasks and Organisation,
Proceedings of ECCE-6 (6th European Conference on
Cognitive Ergonomics), ACM (1992).

13. Hoste, L., Dumas, B., and Signer, B. Mudra: a unified
multimodal interaction framework. In Proceedings of
the 13th international conference on multimodal
interfaces (ICMI’11), ACM (2011), 97–104.

14. Irony. http://irony.codeplex.com/.

15. Katsurada, K., Nakamura, Y., Yamada, H., and Nitta, T.
Xisl: A language for describing multimodal interaction
scenarios. In Proceedings of the 5th International
Conference on Multimodal Interfaces (ICMI 2003)
(2003), 281–284.

16. Mernik, M., Heering, J., and Sloane, A. When and how
to develop domain-specific languages. ACM Computing
Surveys (CSUR) 37, 4 (2005), 316–344.

17. Navarre, D., Palanque, P., Ladry, J., and Barboni, E.
ICOs: A Model-Based User Interface Description
Technique dedicated to Interactive Systems Addressing
Usability, Reliability and Scalability. ACM Transactions
on Computer-Human Interaction 16, 4 (2009).

18. Oviatt, S. Ten myths of multimodal interaction.
Communications of the ACM 42, 11 (1999), 74–81.

19. Oviatt, S. Multimodal interfaces. In The Human
Computer Interaction Handbook: Fundamentals,
Evolving technologies and Emerging Applications
(2003).

20. Palanque, P., and Schyn, A. A model-based approach for
engineering multimodal interactive systems. In
INTERACT (2003).

21. Paton, N., and Daz, O. Active database systems. ACM
Computing Surveys 31, 1 (1999), 63–103.

22. ScintillaNET. http://scintillanet.codeplex.com/.

23. UML State Machines. http:
//www.omg.org/spec/UML/2.4.1/Superstructure/.

24. UsiXML. http://www.usixml.org/.

25. Wobbrock, J., Wilson, A., and Li, Y. Gestures without
libraries, toolkits or training: a $1 recognizer for user
interface prototypes. In Proceedings of the 20th annual
ACM symposium on User interface software and
technology (UIST’07), ACM (2007), 159–168.

http://www.google.com/glass/start/
http://research.microsoft.com/en-us/projects/msagl/
http://research.microsoft.com/en-us/projects/msagl/
http://irony.codeplex.com/
http://scintillanet.codeplex.com/
http://www.omg.org/spec/UML/2.4.1/Superstructure/
http://www.omg.org/spec/UML/2.4.1/Superstructure/
http://www.usixml.org/

	Introduction
	Put-that-there: A Motivating Example
	Workflow Overview
	Composite Event Definition Language
	Composite Events
	Event Operators
	Composite Event Parameters

	Toolkit usage
	Coding the composite event handlers
	Defining and binding a composite event
	Syntax checking a composite event
	Attaching feedback to a composite event
	Evaluating a composite event
	Testing the final prototype

	Exploiting Advanced Language Features
	Variable events
	Equivalent events
	Arbitrarily long events
	Timeout events

	Toolkit Implementation
	Third-party software components
	Verifying the validity of composite events
	Transforming composite events into finite state machines
	Events consumption policy
	Handling parallel inputs

	Related Work
	Toolkits providing domain-specific visual languages
	Toolkits exploiting ready-made textual languages

	Discussion
	Future Work
	Conclusion
	REFERENCES

