
Designing Distributed User Interfaces for

Ambient Intelligent Environments using

Models and Simulations

Kris Luyten a,∗, Jan Van den Bergh a, Chris Vandervelpen a,
Karin Coninx a

aHasselt University – transnationale Universiteit Limburg,
Expertise Centre for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek (Belgium)

Abstract

There is a growing demand for design support to create interactive systems that
are deployed in ambient intelligent environments. Unlike traditional interactive sys-
tems, the wide diversity of situations these type of user interfaces need to work in
require tool-support that is close to the environment of the end-user on the one hand
and provide a smooth integration with the application logic on the other hand. This
paper shows how the Model-Based User Interface Development methodology can be
applied for ambient intelligent environments; we propose a task-centered approach
towards the design of interactive systems by means of appropriate visualizations
and simulations of different models. Besides the use of these typical user interface
models such as the task- and presentation-model to support interface design, we
focus on user interfaces supporting situated task distributions and a visualization
of context influences on deployed, possibly distributed, user interfaces. To enable
this we introduce an environment model describing the device configuration at par-
ticular moment in time. To support the user interface designer while creating these
complex interfaces for ambient intelligent environments, we discuss tool support
using a visualization of the environment together with simulations of the user in-
terface configurations. We also show how the concepts presented in the paper can
be integrated within Model-Driven Engineering, hereby narrowing the gap between
HCI design and software engineering.

Key words: Distributed user interfaces, UML, model-driven engineering, task
migration

∗ Corresponding author. Address: Hasselt University, Expertise Centre for Digital
Media, Wetenschapspark 2, 3590 Diepenbeek (Belgium)
Email addresses: kris.luyten@uhasselt.be (Kris Luyten),

Preprint submitted to Elsevier Science 22 May 2012

1 Introduction

1 Modern middleware solutions allow mobile and embedded software compo-
nents to communicate with each other while residing on heterogeneous plat-
forms. Modern middleware also offers automatic discovery mechanisms to lo-
cate necessary software and hardware available in an ubiquitous environment.
While this can be considered as a step toward the ubiquitous computing vision
Mark Weiser predicted Weiser (1991), there still exists a large gap between the
actual tasks a user should be able to perform and the user interfaces exposed
by ubiquitous systems to support those tasks. This gap is caused mainly by dif-
ferent missing pieces that are necessary to have a generic approach towards the
creation of ubiquitous user interfaces. We address some of these missing pieces
in this paper: we will employ a model-based and a model-driven approach to
enable a smooth integration between the creation of the user interface and the
development of the application logic.

Distributable user interfaces enable the user to exploit more and new possibil-
ities of an ambient computing environment by allocating tasks to interaction
resources that best support those tasks. We define an interaction resource as
an atomic I/O channel that enables communication between user and system.
Atomic indicates the I/O channel is supported in one way only (e.g. from user
to system or from system to user) and is limited to a single modality. Exam-
ples of interaction resources are keyboards, mice, all sorts of screens, speech
synthesizers, force feedback devices,. . . . Usually, an interaction resources is
advertised in an environment through the computing device it is attached
to. This computing device is called an interaction cluster and manages input
from or output to interaction resources attached to it. The aforementioned
definitions imply also a multi-modal user interface is composed of different
interaction resources, not necessarily located on the same interaction cluster.

During the last couple of years many research papers have been published dis-
cussing requirements, frameworks and models for distributed user interfaces,
e.g. Balme et al. (2004); Larsson and Berglund (2004); Savidis et al. (2002);
Vandervelpen and Coninx (2004), but there is still a lack of tools to allow
designers to create such interfaces. The design of a user interface that can
be distributed over several interaction resources in an ubiquitous computing
environment is a tedious task and has not yet been addressed extensively.
The creation for decent tools to support the design of ambient intelligent user
interfaces is essential: design tools can hide the technical details and high
complexity of the target environment for designers. For example, distributed

jan.vandenbergh@uhasselt.be (Jan Van den Bergh),
chris.vandervelpen@uhasselt.be (Chris Vandervelpen),
karin.coninx@uhasselt.be (Karin Coninx).
1 Original article available at http://dx.doi.org/10.1016/j.cag.2006.07.004.

2

interfaces are typical for supporting interaction in ambient intelligent environ-
ments but require detailed knowledge of networking and distributed systems,
something we want to hide from the designer.

In this paper we present our work on a task-centered methodology for the
design and the deployment of ambient intelligent user interfaces. For this pur-
pose we have created MoDIE (Mobile Distributable Interface Engineering),
a tool that relies on Human-Computer Interaction (HCI) models introduced
by Model-Based User Interface Design (MBUID). In addition, by integrating
support for UML 2.0 based models in MoDIE, a rigorous software engineering
process can be established. As such our approach provides the opportunities of
UML-based modeling methodologies and tools whilst bridging the gap between
traditional software engineering models and the models from model-based user
interface development. Such an integration can be a first step towards inte-
gration of model-based design within model driven engineering approaches.

MBUID has already been used extensively to develop multi-device and even
context-aware user interfaces Eisenstein et al. (2001); Clerckx et al. (2004b);
Mori et al. (2004). In MBUID, different abstract models such as the task
model and the domain model highlight different aspects of the user interface
independent of details of the target devices. Concrete models such as the
presentation model and navigation model will contribute more specific details
towards the presentation of the interface. Typically, the complexity of these
models is proportional with the complexity of the target domain. For ambient
intelligent environments, models tend to be very complex and thus require a
suitable translation into intuitive interactive tool support for the designer to
work with.

The remainder of this paper is structured as follows: section 2 gives an overview
of the related work that defines the underlying concepts for the topic of this
paper. Next, section 3 discusses the different aspects that need to be taken
into account to support a task-centered approach to design user interfaces for
ambient intelligent environments. Section 4 explains how context can have a
big influence on the task execution and what needs to be done to anticipate
this while modelling. Section 5 presents the design tool we are developing to
support the design process, followed by a discussion of the opportunities that
are available when integrating UML-based modeling. Finally, section 7 gives
a conclusion.

2 Related Work

ICrafter Ponnekanti et al. (2001) is a framework of services and their user
interfaces for use in an ubiquitous environment. Services can register their

3

user interfaces with the ICrafter Interface Manager. This way, other service
can request those interfaces through the Interface Manager for rendering pur-
poses. Once the interface is instantiated, interaction with the associated ser-
vice becomes possible. This service-oriented approach provides a uniform and
location-independent access to the functionality of the system. Dynamic com-
position or on-the-fly aggregations of user interface components are central to
this approach. However, there is no design support to constrain the dynamic
behavior so it is difficult to ensure the user interface is usable while supporting
the envisioned tasks.

Heider and Kirste Heider and Kirste (2002) propose a goal-driven approach
to decide which interaction resources to use. In their approach a planning
algorithm is used for developing strategies to reach the predefined goals. An
execution control component can execute a strategy and manages the resources
that are necessary for the selected strategy. This approach is useful to cope
with the enormous complexity of designing a user interface that should work
in an ambient intelligent environment. A task-centered approach could benefit
by using a planning algorithm to calculate an optimal strategy for executing
the required tasks with the interaction resources that are available. Look et
al proposed a similar approach in Look et al. (2003), where the importance
of the user’s goals is recognized as input for deciding on an optimal resource
allocation to support the user.

Distribution of a user interface among different interaction resources or multi-
ple surfaces is also gaining importance: unlike traditional desktop computing,
a user interface in an ambient intelligent environment is no longer limited to
one device that is the center of interaction. In Coutaz et al. (2003) an ontol-
ogy for multisurface interaction is proposed by Coutaz et al. This ontology
offers an unifying framework for reasoning about distributed user interfaces.
Because of the complexity of the covered types of problems, this ontology can
only show its full potential when it is used in a HCI design tool.

Balme et al. Balme et al. (2004) presented the CAMELEON-RT Software
Architecture Reference Model for Distributed, Migratable, and Plastic User
Interfaces. Some type of middleware is provided (the Distribution-Migration-
Plasticity middleware) to allow smooth integration of user interfaces that
reside on different physical locations. This type of suppport for distributed
user interfaces is required to deploy a user interface for an ambient intelli-
gent environment. In Vandervelpen et al. (2005) we show how conventional
interactive websites can be distributed among different interaction resources
with a minimum of effort required from the designer to prepare the website
for distribution. This proves a structured high-level user interface description
language (HTML in the case of the website) is the most suitable way to create
distributable user interfaces.

4

Modeling user interfaces is an important part of the design of complex in-
teractive applications. The user interface, however, must also be coupled to
application logic. This together with the fact that often programmers must
ultimately also produce working code for the user interface, led to several
approaches that describe models that originally came from the MBUID com-
munity using UML.

Some of the earliest results in pairing UML diagrams and model-based user
interface design were discussed in Nunes (2000). UMLi and Wisdom were
among the discussed approaches. UMLi da Silva and Paton (2003) focused
on the description of user interfaces and defined two new diagram types for
the description of user interfaces. The presentation model was described us-
ing a diagram similar to the deployment diagram, while the user interface
logic was described using a notation based on the activity diagram. The Wis-
dom approach Nunes and e Cunha (2000), a light-weight software-engineering
method for small businesses, used a set of stereotypes to extend the UML for
interactive systems development. Among others it used an extended version
of the class diagram to express the presentation model and the task model.
CanonSketch Campos and Nunes (2005) offers specialized tool support for the
presentation model offering views using UML, Canonical Abstract Prototype
notation Constantine (2003) and HTML.

The Context-sensitive User interface Profile (CUP) Van den Bergh and Coninx
(2005a,b) is a UML 2.0 profile targeting the development of context-sensitive
user interfaces, combining features of both Wisdom and UMLi while taking
advantage of the extra capabilities that UML 2.0 over the earlier versions used
by both Wisdom and UMLi.

3 Properties of Ambient Task Modelling

3.1 Task Notation and Dialog Derivation

We use Paternò’s ConcurTaskTrees (CTT) notation Paternò (2000); Mori
et al. (2002); a notation for task modeling that provides temporal opera-
tors between tasks. This notation offers a graphical syntax, an hierarchical
structure and a notation to specify the temporal relation between tasks. Four

types of tasks are supported in the CTT notation: abstract tasks , inter-

action tasks , user tasks and application tasks . These tasks can
be specified to be executed in several iterations. Sibling tasks, appearing in
the same level in the hierarchy of decomposition, can be connected by tem-
poral operators like choice ([]), independent concurrency (|||), concurrency
with information exchange (|[]|), disabling ([>) , enabling (>>), enabling

5

with information exchange ([]>>), suspend/resume (|>) and order indepen-
dence (|=|). Paternò and Santoro (2002) specifies the following priority order
among the temporal operators: choice > parallel composition > disabling >
enabling. Figure 1 shows a simple example of a CTT specification for querying
information about a person.

Fig. 1. Example CTT specification

The CTT notation allows to extract task sets where each task set contains
tasks that should be “active” during the same period of time in order to reach
a (sub)goal. This concept is called enabled Task Sets (TSs) Paternò (2000). For
a given task model M several of such enabled task sets can be identified: each
set contains tasks that execute within the time frame defined by the set and
do not overlap with other tasks from other sets. We can describe this process
by the function f : M → TS1, TS2, · · · , TSn that maps a task model M on
the set of enabled task sets TSi,1≤i≤n; which is a set of subsets of the model
M . Several design tools exist that provide this TS extraction functionality by
means of the ConcurTaskTrees notation and their use is described in existing
literature Mori et al. (2002, 2004); Luyten et al. (2003); Vanderdonckt et al.
(2003).

Each task set TSi,1≤i≤n contains a subset of tasks t1, t2, · · · , tm from the task
model M . A task set requires a distribution configuration for the tasks it
contains: the representation of a task set is distributed among different devices
that are available in the environment. Notice that a user interface distribution
is defined in section 1. It specifies the combination of tasks in a dialog with
the available interaction devices. Temporal relations between different tasks,
together with the fact there are no two TSs that can overlap in time, allow
to construct a sequence of TSs that the user(s) should execute to reach their
goals as specified by the task specification. Figure 2 depicts an example of
such a sequence of enabled task sets (labeled with TS1, TS2,. . .).

6

3.2 Task-set Distributions

The first property we consider in our approach is completeness. User interface
completeness indicates that all interaction tasks needed to reach a goal at a
particular moment are made accessible to the user regardless of the interac-
tion resources available in the environment (including the interaction resources
exposed by the user’s personal devices). The use of TSs to guide the design
process ensures this property: all tasks of the active TS need to be allocated
to interaction resources that can handle these tasks. From a given task model
the number of TSs that can be found is exactly the minimal number of logi-
cally different interfaces (or “presentation units” according to Eisenstein et al.
(2001)) the designer should provide to allow the user to access the complete
functionality of a system. Figure 2 shows how tasks in an active TS are dis-
tributed over interaction resources in the environment. Notice TSs can be
ordered in time because of the definition given above (this ordering is also
referred to as the dialog model).

The second property we consider is continuity. User interface continuity en-
sures the user can interpret and evaluate the internal state of the system while
using different interaction resources. Consequently, the user does not lose track
of the current task. When the distribution of the interface parts changes at
run time, this property must hold. Consistency of the user interface across
different platforms can support a better continuity of the user interface. In
this sense continuity is a broader concept: it refers to minimization of inter-
ruption of the user by the changes in the user interface. Providing support for
the preservation of continuous interaction will pose a difficult challenge for a
design methodology (and tool) that uses tasks, activities and temporal rela-
tions P. Faconti and Massink (2000). In our approach continuity is supported
by constraining the possible task-distribution strategies. For example; a con-
straint to support continuity is the fixed task constraint which is formalized
as follows: if the tasks in TSi are enabled and ∃t ∈ M : t ∈ TSi ∧ t ∈ TSj

then t will not be re-distributed to another device when a transition from TSi

to TSj is executed. A task that reoccurs in different TSs can be restricted to
the same device when the transition to the following TS is made. In figure 2,
task 3 is an example of the application of such a fixed task constraint for the
transition from TS5 to TS3.

We can add more specific constraints depending on the properties of the de-
vices. For t ∈ M , t can be constrained to a set of devices Dc that is a subset
of all available devices D, and ∀d ∈ Dc, πc(d) = 1. πc(d) is a projection of the
property c over the element d. E.g.: when distributed, certain tasks can be con-
strained to devices that have some kind of network communication available.
In this example the property value is 0 if there is no network communication
available and 1 otherwise. Of course, a distribution can also be constrained

7

Fig. 2. Different Enabled Task Sets on a timeline with their distribution

according to a value of a property such as the quality of network communi-
cation that is available. This can be expressed as b1 ≤ πb(d) ≤ b2, where b is
the attribute of d representing the bandwidth available at element d, b1 is the
lower boundary of the required bandwidth and b2 the upper boundary.

The properties such as the bandwidth should be made explicit in the design
tool. This allows the designer to use these properties while modelling the
interactive system. Section 5 shows how the device model and constraints
are combined in an environment model and used in a tool to support task-
modelling for ambient intelligent environments. The environment model can
also be represented as a UML deployment diagram that encodes the available
interaction resources, relations between interaction resources and properties of
both resources and relations. Section 6 shows the relation of the environment
model and the deployment diagram.

3.3 Task Migration Paths

The previous section discussed the distribution of tasks of each individual TS
taking into account continuity and completeness of the user interface. Once
an appropriate set of task-set distributions is found for each TS, the designer
should be able to constrain the transitions from one TS to another. A lack
of continuity because of a context switch (other devices that come into play,
tasks that appear and disappear,. . .) can have a disastrous effect on task
performance.

In traditional MBUID this is represented by a dialog model and the transi-
tions between different dialogs. These transitions could be invoked by simple
interactions such as a window manipulation Vanderdonckt et al. (2003). In

8

an ambient intelligent environment things are more complicated however: the
physical location of the user interface parts differs from one dialog to another
in contrast with a single-device system where a dialog is always represented on
the same device. The design of such a system should make sure the cognitive
burden of making a transition is minimized while supporting the tasks and
goals of the user. Denis and Karsenty Denis and Karsenty (2004) describe a
set of design principles to ensure inter-usability in a multi-device environment:
inter-device consistency, transparency and adaptability of device usage. In this
paper we focus on the first principle to support task set transition continuity.
Inter-device consistency is composed out of four levels: perceptual (appearance
and structure), lexical (labeling), syntactical (operations) and semantic (ser-
vice functionality) consistency. The former two levels, perceptual and lexical
consistency, are provided by the presentation model that is used. The latter
two levels, syntactical and semantic consistency, can be enforced by defining a
set of constraints in the environment model as shown in the previous section.
The support of these types of consistency levels inside the different models
contributes to a better continuity while making the transition from one TS to
another.

3.4 Task Representations

Each interaction task from the task specification should be presented in the
environment one way or another so the user can interact with it. In partic-
ular the interaction tasks can be annotated by different ways they can be
presented to the user(s). For each task t ∈ M an abstract user interface de-
scription x ∈ {X1, X2, ..., Xn} can be retrieved, the set of related user interface
descriptions is referred to as the presentation model. Based on the findings in
related research Luyten et al. (2004), a user interface description is specified
using an XML-based notation. Figure 2 shows how the high-level user inter-
face descriptions of all tasks available in an TS are distributed among different
appropriate interaction resources available in the environment while the user
continues her/his interaction with the application, from one active TS to the
other.

For each TS there are different possibilities of how the user interface represent-
ing the set of tasks can be divided. In Vandervelpen et al. (2005) we showed
a method that uses XHTML as the presentation language and a set of rules
and a cost function to select the “preferred” distribution configuration among
all possible configurations. The XHTML document was subdivided according
the tasks it supported, and the different parts were distributed among the
available devices in the neighborhood of the user.

9

4 Contextual Task Constraints

The allocation of a task to a set of interaction resources can also constrain
the execution of the task. For example: a task can only be valid within a
certain physical range because the interaction resource it is allocated to, has
to maintain a communication channel with another device that executes a
parallel task exchanging information with the first task. Figure 3 shows this
scenario. In Clerckx et al. (2004a) we presented an approach to take these kind
of context switches explicitly into account in the task and the dialog model.
A decision task can be inserted in the task model: this type of task allows
a designer to specify a set of rules that can select an alternative task set to
execute according to the context of use. This approach allows us to insert a
decision rule in the task specification that will select another task set when
the device is out of range.

Fig. 3. Location constraint example for the task specification T1|[]|T2.

To support this kind of reasoning for a task-centered approach we need to
extend the semantics of the task specification with new constraints besides
the temporal constraints and hierarchical structure. More precisely: we need
to relate the context of use and the task set in terms of constraints over the
task distribution behavior. Elaborating on the example of figure 3, where there
are two tasks that can be executed in parallel and exchange information while
performing (t1|[]|t2,) two different constraints can be identified for these two
tasks:

(1) both tasks should be observable at the same time by the user
(2) both tasks should be able to exchange data using some kind of commu-

nication channel.

The first one depends on the designer’s intentions and should be part of the
task specification, the second one can be derived from the task-device alloca-
tions. With either one (or both) of these constraints there is only one possibil-
ity: the device that represents t2 has to be located in the predefined area of the
device presenting t1. Notice t1 and t2 belong to the same TS, since they can be

10

executed during the same period of time. This example is equally valid for the
construction t1|[]|t2|[]| · · · |[]|tn (t1, · · · , tn belong to the same task set),
but the number of constraint checks involved to evaluate a distribution con-
figuration for all tasks increases to

(
n
2

)
in this situation. If the number of areas

increases to m, the number of constraint checks increases exponentially since
there are now

(
n
m

)
possible combinations. The number of possibilities that a

designer would have to check by hand is not feasible without any tool support.
Our approach allows to visualize these constraints and automatically define
valid task distribution configurations according to the task specification.

The example in the previous paragraph focused on a typical intra-TS relation:
a relation between two tasks in the same TS. It is sufficient to take this
into account for a distribution configuration for a single TS. In other cases
however, similar concerns arise. For example, the construction t1 []>> t2 []>>
t3 []>> · · · []>> tn implies that every task is in a separate TS, but still
requires each task ti,1≤i≤n−1 to exchange information with its successive task
ti+1,1≤i≤n−1. These types of relations have to be taken into account for the
possible migration paths between task sets.

5 The MoDIE Platform

The models discussed in the previous section are all integrated by the MoDIE
platform, a platform that supports a user interface design process for ambient
intelligent environments. The central model is the task model, describing the
set of tasks the (ubiquitous) application supports. Other models include the
environment model that describes all available interaction resources in the
environment of the user, a dialog model containing the TSs derived from the
task model, a presentation model that is related to the tasks in the task model
and an interaction model describing the interaction between the user interface
and the application logic. Every view in MoDIE offers direct manipulation of
these different models and visualizes the relations between different models
appropriately. Figure 4(c) shows an environment view combined with a task
view that allows to assign tasks to interaction resources.

Figure 5 shows the MoDIE platform architecture. It consists of three modules:
The MoDIE design tool (MDT), an Environment Repository (ER) and the
Distribution Manager (DM). When the ER is started, it will probe the ambient
intelligent environment to look for interaction clusters that can be used in an
interactive distributed user interface session (figure 5(1)). At the moment,
this is implemented using Universal Plug and Play (UPnP 2). We extended
the UPnP discovery mechanism such that the interaction clusters can respond

2 http://www.upnp.org

11

(a) View on the Interaction Resources
of the environment model

(b) Visualizing a distribution config-
uration for a task set

(c) Allocating tasks from a task specification to
devices in an ambient intelligent environment

Fig. 4. Different views of the MoDIE tool.

by sending a description of their properties. This description is provided in
the form of a Resource Description Format (RDF, http://www.w3.org/RDF/)
document that is being sent to the ER. By using RDF, the ER can use existing
tools (like Jena 3) to parse all the received documents and merge them into
one in-memory RDF model. From now on, this in-memory RDF model will
be referred to as the Environment model. Notice that this model is based
on the CoDAMoS ontology presented in Preuveneers et al. (2004). Figure 6
shows the RDF model of an interaction cluster. For keeping the figure concise,
the properties for the interaction resources are omitted. For example, the
codamos:keyboard001 interaction resource has properties localization, keys and
technology.

Once the ER is started, the MDT can interface with it (figure 5(2)) locally or
through a network to get information about the environment model. The MDT

3 http://jena.sourceforge.net/

12

Fig. 5. The MoDIE platform architecture

Fig. 6. A piece of the environment RDF graph

uses this information to build a visual representation of the environment and
to check constraints of interaction resources while the UI designer constructs
the distribution model. A constraint check on a property of an interaction
resource can be translated into an RDF query that is executed on this RDF
model. Part of the RDF query is just an implementation of the projection
function of section 3.2 which maps an interaction resource property on a value
in the domain of this property. Another part of the RDF query reflects the

13

condition on the value of this property. Notice that the UI designer also has the
ability to create an environment model through the MDT. This is interesting
because it opens the doors to simulate environments for testing purposes.

The last important module of the MoDIE platform is the DM which can be
used to deploy the user interface in the real ambient intelligent environment
according to the distribution model constructed by the UI designer (using the
MDT) and the state of the environment. The distribution model describes
the properties of interaction resources that can be used for particular tasks in
the task model. The DM can be invoked by the MDT (figure 5(3)). In this
mode, the necessary models are passed to the DM and the state of the task
distributions at a particular moment is communicated back to the MDT. The
MDT uses this information to update its visualizations. This helps the UI
designer in understanding the distributed user interface evolution as reactions
to changes in the environment. However, the DM can also be used on its own
as part of a runtime infrastructure for deploying distributable user interfaces
that were designed using the MDT. This is done by providing the serialized
models as input to the DM.

The DM is also divided into two modules. The first one is the DistributionPro-
ducer (DP). The DP is also connected to the ER and uses RDF queries to check
constraints upon the properties of the interaction resource in the environment
model (figure 5(4)). These constraints are described in the distribution model.
Using this technique, a possible distribution scenario is calculated and passed
to the DistributedUiSessionManager (DSM). The DSM is responsible for ex-
ecuting the scenario by sending the appropriate user interface components to
the interaction clusters as depicted in the current distribution scenario (figure
5(5)). Notice that the DP can register itself to receive notifications from the
ER when changes in the properties of relevant interaction resources occur (like
for example the position). These notification can result in a new distribution
scenario that is passed to the DSM.

Tasks can be related with interaction resources of the environment model in
two ways:

(1) Automatically: task can be allocated among the available interaction re-
sources automatically by applying the different constraints.

(2) Manually: usually, there are a number of solutions that are valid with
respect to the constraints defined by the different models. The MDT
supports manual editing of the task allocations (which actually presents
the task-environment inter-relation): the designer can relate tasks with
interaction resources and observe the effects of these changes.

An important aspect of the MDT is the possibility to simulate the run-time
behavior of the distributed user interface. This simulation is considered as a

14

view on the different models that are built with the MDT and is integrated
with the other views. The simulation creates a 3D model of the environment
model (using the Java3D API 4), and uses the list of interaction resources
to dynamically render the user environment. A simulation module aids in
defining the appropriate Task Migration Paths. Figure 4(a) shows the MoDIE
combined view of the environment model and the dialog model (expressed
as a set of task sets). By moving the mobile device away from the desktop
computer the designer can see what kind of transitions are invoked and how
the design fits in the simulated situation.

Relating tasks with devices through direct manipulation on the 3D view of
the environment model is obviously more intuitive that working only with
diagrammatic notations. Although this model supports direct manipulation,
it is also suitable to visualize existing relations already created between the
other models. This way the designer will have a graphical overview of the user
interface distribution and instantly sees the effect of model manipulations.

A possible extension that is investigated is to use a UML representation of the
ER. This could be done in real-time within the tool or by converting snapshots
of the ER to a XMI-document that can be imported and displayed in many
of the currently available UML-modeling tools. Conversely a UML-diagram,
describing a certain task distribution could serve as input for a simulation by
converting it to RDF.

6 Integration with UML-based Software Engineering

This section details a mapping of the previously introducted concepts to UML
2.0 Object Management Group (2004) and how this mapping can be used to
combine the approach with model-driven engineering. We made the choice to
use UML 2.0 in order to have a rigorous description of the different aspects
of interactive software based on a established technology. The fact that is
has better facilities for model-driven development which can bring a boost to
design methodologies based on a diverse set of models is promising.

An integration with the UML modeling languages is important for several
reasons: first of all it makes aids in bridging the gap between the HCI designer
and the software developer. In particular for the complex domain described in
this paper (ambient intelligent environments) there is currently no support to
integrate the design of application logic with the interaction design. Besides
the fact UML is widely accepted, it also offers a more formal way to describe
the functionality of a system and it provides the tools to relate a user interface

4 http://java.sun.com/products/java-media/3D/

15

with the functionality that is represented by this user interface.

6.1 Mapping to UML

To represent the architectural aspects of a distributed user interface, we pro-
pose the use of UML 2.0 deployment diagrams. The deployment diagrams
can be used to describe some features in more detail, which cannot be seen
easily in the 3D view. One part of the architecture is the communication
channels that are available between the different interaction clusters. Another
is the composition of an interaction cluster; which interaction resources are
contained in the cluster. Traditionally, the deployment diagram is a static di-
agram, but in the current setting this diagram depends on the context-of-use.
Section 5 introduced the dynamic discovery of available interaction clusters:
the result of such a discovery can be visualized as a deployment diagram. Since
the content of the deployment diagram depends on the point in time when a
discovery is executed, it is possible to have many deployment diagrams for a
single application.

The distribution of a user interface can be specified by allocating parts of the
user interface to specific interaction resources or interaction clusters. There
is a natural mapping from interaction clusters and interaction resources to
Devices in UML 2.0, where the former can contain other Devices (interaction
resources) and the latter cannot, due to the definition of an interaction resource
(see section 1). A part of a user interface can be allocated to a certain device
by specifying the manifest-relationship between the part (a stereotyped class)
and an Artifact on a specific node.

Stereotypes can be used to denote the function of each user interface part
(<<inputComponent>>, <<outputComponent>>, or <<actionComponent>>). Parts
can be combined in a <<groupComponent>>. An <<inputComponent>> part is
used to allow the user to give input but also contains labels, drawings or
sound that is necessary or aids in the understanding of what information
should be put into the system. Selection from a non-empty set of options is
also considered input. An output part is a part of the user interface that shows
information provided by the application core, including all relevant labels etc.
An <<actionComponent>> is a part of the user interface that is responsible for
triggering functionality in the application core. Note that <<inputComponent>>

and <<groupComponent>> are not mutually exclusive, allowing selection of a
group of user interface parts related to a single concept. In a graphical user
interface such a selection could correspond to the selection of a table-row.
More information about these stereotypes and the related models they are
used in can be found in Van den Bergh and Coninx (2005b).

16

We thus propose to explicitly model the links between the logical structure
of the user interface and the physical structure. Specific stereotypes, such as
<<html>> or <<javaSwing>> can be applied to the Artifacts to identify the tech-
nologies that will be used to realize them. This approach has the advantage
that the realization of the user interface is explicitly and unambiguously spec-
ified using an approach already in use for the application logic.

In figure 7 the scene and allocations from figure 2 are represented using the
UML deployment diagram. In this diagram, interaction clusters and interac-
tion resources are represented by Nodes, while the physical representation of
the task, the user interface through which the task can be performed, is de-
picted as an Artifact linked to a class with an appropriate icon indicating the
type of task. An integration of this approach into MoDIE allows the designer
to get adapted representations of the deployment diagram for the different
possible situations. The use of stereotypes and the associated tagged values
can allow adapted representations in standard UML modeling tools, should
MoDIE support saving configurations manually or semi-automatically selected
by the designer into XMI Group (2002). The advantages and disadvantages of
both approaches are currently under investigation.

Fig. 7. Deployment diagram describing the task allocation of figure 2

6.2 Model-driven engineering

Abstract presentations can be derived from the tasks/task sets. These can be
converted to concrete, albeit high-level description based on marks (stereo-

17

types) made to the abstract models and context information (e.g. user pro-
files). The resulting concrete representation can be similar to the notation used
for Canonical Abstract Prototypes Constantine (2003), possibly including an
allocation to interaction resources.

The use of abstractions can be useful to derive user interfaces that are consis-
tent and complete, but have different appearances. It would be more difficult to
design a multi-cultural, multi-device user interface that is both consistent and
complete using separate designs. The use of model-driven development start-
ing from a high-level (platform independent) model that is refined through
one, or possible multiple, transformations into a concrete user interface to
drive or guide the design of a user interface can offer many benefits.

An example can be the realization of a wizard-based user interface on a kiosk
system versus a single form on a wall-sized screen operated by his smart phone
when both user interfaces could be used to perform the same tasks. At the
highest level, both interfaces are represented using the same set of user in-
terface components. Using multiple transformations, this high-level model is
gradually translated into concrete models. This can be done by applying HCI
design patterns or best practices based upon contextual information.

We envision two possible tool configurations for integration of MoDIE with
model driven engineering to create a complete environment for the design of
distributed user interfaces. In both configurations MoDIE provides the task-
based distribution facilities based upon the discovery of interaction devices
and resources in the neighborhood and designer input. MoDIE works at the
task-level and relies on the linking of tasks to (declarative) user interface de-
scriptions (using URI’s) to accomplish effective distribution of user interfaces.

In the first configuration all necessary components to create the user inter-
faces are integrated into one integrated tool, as can be seen in figure 8(a). In
this configuration, the distribution created in the MoDIE tool is passed to a
separate part of the tool that works with UML and starts from a deployment
specification as discussed in the previous section. Starting from this model,
several transformations will be made that gradually transform the abstract
model into different concrete models, specifying concrete user interface config-
urations for certain hardware configurations. These concrete models can then
be translated into XML-based user interface descriptions of which the URI’s
can be delivered back into the MoDIE tool to create an actual deployment.
The main advantage of this approach is that their is only one environment to
develop and that it can be easier to get specific support for transformations
and some modeling needs. It however implies that a significant amount of work
already established for other environments has to be duplicated.

The second configuration splits the total functionality over three parts (see

18

figure 8(b)): MoDIE (1) for task distribution, once this task distribution is
created, it is delivered in XMI-format to an UML-tool (2) supporting model
driven engineering (MDE). After one or more transformations, the abstract
representation that was given to the UML-tool is translated into one or more
concrete models (of user interfaces) and is delivered to a user interface model-
ing tool that provides the look-and-feel to the user interfaces through the use
of constraints and styles. The advantage of this second configuration is that
one can use existing tools for software engineering tools for manipulating the
models, integrated development environments such as MagicDraw, and trans-
formation tools. In this configuration it might however be more difficult to
tackle problems that are specific for the design of distributed user interfaces.
An example is offering synchronized alternative views of one or more models,
such as models that describe the user interface structure.

(a) Integrated environment (b) Separate tools

Fig. 8. MoDIE tool and model driven engineering.

7 Conclusions and Future Work

In this paper we investigated the requirements to support model-based user
interface design for ambient intelligent environments: a promising approach
that abstracts user interface design away from the technical details typical for
an ambient intelligent environment. It enables us to design and test user in-
terfaces that can be distributed among different interaction resources. For this
purpose we introduced MoDIE, a system that uses a model-based approach
to design user interfaces for ambient intelligent environments. MoDIE allows
a designer to combine different models, such as the presentation model, the
task model and an environment model, that describe different aspects that
influence the final user interface but release the designer from the technical
details necessary to realize the distributed user interface. This tool visualizes
task allocations in a 3D representation of the real environment and makes
the design process more intuitive by using visualization and simulation tech-
niques. User interface completeness (is the required functionality to reach the
user’s goals accessible?) and continuity (can we create a usable user interface
for a dynamic environment?) are the two main properties that are considered

19

here. Both the visualization of the task allocations in the environment and
the simulation of the execution of a task specification are the primary tools
to ensure completeness and continuity.

It is clear there are an overwhelming number of aspects that need to be taken
into account to use a model-based approach for designing user interfaces that
are deployed in ambient intelligent environments. Traditional model-based
user interface development approaches do not take dynamic environments
with different devices that can be used simultaneously into account. This work
contributes to a solution for this problem by proposing new ways to aid the
designer in creating user interfaces for complex environments and hiding the
technical details so one can focus on the tasks the user interface should support
instead of the implementation issues involved..

Acknowledgements

The authors would like to thank Geert Houben, Frederik Winters and Tim
Clerckx for co-developing the software supporting the ideas of this paper.

Part of the research at EDM is funded by EFRO (European Fund for Regional
Development), the Flemish Government and the Flemish Interdisciplinary in-
stitute for Broadband technology (IBBT). The CoDAMoS (Context-Driven
Adaptation of Mobile Services) project (IWT 030320) is directly funded by
the IWT (Flemish subsidy organization).

References

Balme, L., Demeure, A., Barralon, N., Coutaz, J., and Calvary, G. (2004).
CAMELEON-RT: A Software Architecture Reference Model for Dis-
tributed, Migratable, and Plastic User Interfaces. In Markopoulos, P.,
Eggen, B., Aarts, E. H. L., and Crowley, J. L., editors, EUSAI, volume
3295 of Lecture Notes in Computer Science, pages 291–302. Springer.

Campos, P. F. and Nunes, N. J. (2005). Canonsketch: a user-centered tool
for canonical abstract prototyping. In Rémi Bastide, Philippe Palanque,
Jörg Roth, editor, Engineering Human Computer Interaction and Interac-
tive Systems: Joint Working Conferences EHCI-DSVIS 2004, volume 3425
of LNCS, pages 146–163. Springer.

Clerckx, T., Luyten, K., and Coninx, K. (2004a). DynaMo-AID: a Design Pro-
cess and a Runtime Architecture for Dynamic Model-Based User Interface
Development. In The 9th IFIP Working Conference on Engineering for
Human-Computer Interaction Jointly with The 11th International Work-
shop on Design, Specification and Verification of Interactive Systems.

20

Clerckx, T., Luyten, K., and Coninx, K. (2004b). Generating Context-
Sensitive Multiple Device Interfaces from Design. In Pre-Proceedings of the
Fourth International Conference on Computer-Aided Design of User Inter-
faces CADUI’2004, 13-16 January 2004, Funchal, Isle of Madeira, Portugal.

Constantine, L. L. (2003). Canonical abstract prototypes for abstract visual
and interaction design. In Proceedings of DSV-IS 2003, number 2844 in
LNCS, pages 1 – 15, Funchal, Madeira Island, Portugal. Springer.

Coutaz, J., Lachenal, C., and Dupuy-Chessa, S. (2003). Ontology for multi-
surface interaction. In INTERACT.

da Silva, P. P. and Paton, N. W. (2003). User interface modelling in umli.
IEEE Software, 20(4):62–69.

Denis, C. and Karsenty, L. (2004). Inter-Usability of Multi-Device Systems –
A Conceptual Framework, pages 373–385. Wiley.

Eisenstein, J., Vanderdonckt, J., and Puerta, A. R. (2001). Applying model-
based techniques to the development of uis for mobile computers. In Intel-
ligent User Interfaces, pages 69–76.

Group, O. M. (2002). Omg xml metadata interchange. Object Manage-
ment Group, WWW, http://www.omg.org/cgi-bin/apps/doc?formal/02-
01-01.pdf.

Heider, T. and Kirste, T. (2002). Supporting Goal-Based Interaction with
Dynamic Intelligent Environments. In van Harmelen, F., editor, ECAI,
pages 596–600. IOS Press.

Larsson, A. and Berglund, E. (2004). Programming ubiquitous software ap-
plications: requirements for distributed user interface. In Maurer, F. and
Ruhe, G., editors, SEKE, pages 246–251.

Look, G., Peters, S., and Shrobe, H. (2003). Plan-Driven Ubiquitous Com-
puting. In Artificial Intelligence in Mobile System .

Luyten, K., Abrams, M., Limbourg, Q., and Vanderdonckt, J., editors (2004).
Developing User Interfaces with XML: Advances on User Interface Descrip-
tion Languages.

Luyten, K., Clerckx, T., Coninx, K., and Vanderdonckt, J. (2003). Derivation
of a Dialog Model for a Task Model by Activity Chain Extraction. In Jorge,
J. A., Nunes, N. J., and F. e Cunha, J., editors, DSV-IS, volume 2844 of
Lecture Notes in Computer Science, pages 203–217. Springer.

Mori, G., Paternò, F., and Santoro, C. (2002). CTTE: support for developing
and analyzing task models for interactive system design. IEEE Trans. Softw.
Eng., 28(8):797–813.

Mori, G., Paternò, F., and Santoro, C. (2004). Design and Development of
Multidevice User Interfaces through Multiple Logical Descriptions. IEEE
Trans. Softw. Eng., 30(8):507–520.

Nunes, N. J., editor (2000). Towards A UML Profile for Interactive Systems
Development (TUPIS 2000). online math.uma.pt/tupis00/.

Nunes, N. J. and e Cunha, J. F. (2000). Towards a uml profile for interaction
design: the wisdom approach. In Evans, A., Kent, S., and Selic, B., editors,
UML 2000 - The Unified Modeling Language. Advancing the Standard., vol-

21

ume 1939 of LNCS, pages 101–116. Springer.
Object Management Group (2004). UML 2.0 Superstructure Specification.
P. Faconti, G. and Massink, M. (2000). Continuity in Human Computer In-

teraction. In CHI 2000 Workshop report. http://www.acm.org/sigchi/
bulletin/2000.4.

Paternò, F. (2000). Model-Based Design and Evaluation of Interactive Appli-
cations. Springer.

Paternò, F. and Santoro, C. (2002). One model, many interfaces. In Kolski, C.
and Vanderdonckt, J., editors, Computer-Aided Design of User Interfaces
III CADUI, volume 3, pages 143–154. Kluwer Academic.

Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., and Winograd, T. (2001).
ICrafter: A Service Framework for Ubiquitous Computing Environments.
In Ubicomp 2001: Ubiquitous Computing, Third International Conference
Atlanta, Georgia, USA, September 30 - October 2, 2001, Proceedings, Lec-
ture Notes in Computer Science, pages 56–75. Springer.

Preuveneers, D., den Bergh, J. V., Wagelaar, D., Georges, A., Rigole, P.,
Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., and Bosschere, K. D.
(2004). Towards an Extensible Context Ontology for Ambient Intelligence.
In Markopoulos, P., Eggen, B., Aarts, E. H. L., and Crowley, J. L., editors,
Ambient Intelligence: Second European Symposium, EUSAI 2004, Eind-
hoven, The Netherlands, November 8-11, 2004. Proceedings, pages 148–159.

Savidis, A., Maou, N., Pachoulakis, I., and Stephanidis, C. (2002). Conti-
nuity of interaction in nomadic interfaces through migration and dynamic
utilization of I/O resources. Universal Access in the Information Society,
4(1):274–287.

Van den Bergh, J. and Coninx, K. (2005a). Towards Modeling Context-
Sensitive Interactive Applications: the Context-Sensitive User Interface Pro-
file (CUP). In SoftVis ’05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 87–94, New York, NY, USA. ACM Press.

Van den Bergh, J. and Coninx, K. (2005b). Using uml 2.0 and profiles for
modelling context-sensitive user interfaces. In Pleuss, A., Van den Bergh, J.,
Hussmann, H., and Sauer, S., editors, Proceedings of Model Driven Design of
Advanced User Interfaces 2005, volume 159 of CEUR Workshop Proceedings,
Montego Bay, Jamaica. online CEUR-WS.org/Vol-159/paper7.pdf.

Vanderdonckt, J., Limbourg, Q., and Florins, M. (2003). Deriving the Nav-
igational Structure of a User Interface. In Rauterberg, M. and Wesson,
J., editors, Proceedings of 9th IFIP Conf. on Human-Computer Interaction
Interact’2003 (Zrich, 1-5 September 2003), pages 455–462.

Vandervelpen, C. and Coninx, K. (2004). Towards model-based design support
for distributed user interfaces. In Proceedings of the third Nordic Conference
on Human-Computer Interaction, pages 61–70. ACM Press.

Vandervelpen, C., Vanderhulst, G., Luyten, K., and Coninx, K. (2005).
Light-weight Distributed Web Interfaces: Preparing the Web for Heteroge-
neous Environments. In 5th International Conference on Web Engineer-
ing (ICWE’2005). http://research.edm.luc.ac.be/cvandervelpen/

22

research/icwe2005/.
Weiser, M. (1991). The Computer for the 21st Century. In Scientific American.

23

