Whole-body cooling does not compromise muscle oxidative capacity in subjects with multiple sclerosis.

DOI: 10.3233/NRE-141159
Handle: http://hdl.handle.net/1942/17685
Whole-body cooling does not compromise muscle oxidative capacity in subjects with multiple sclerosis

Bert O Eijnde1,∗, Charly Keytsman2, Inez Wens2 and Dominique Hansen3

1Rehabilitation Research Center (REVAL), Biomed, Faculty of Medicine and Life Sciences, Hasselt University,
2Diepenbeek, Belgium
3Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium

Abstract

BACKGROUND: Whole-body cooling improves exercise tolerance in patients with multiple sclerosis (pwMS). To be able to exercise at greater intensities and/or for longer durations with whole-body cooling, it should be examined whether this compromises skeletal muscle oxidative capacity (assessed by exercise-onset VO2 kinetics).

OBJECTIVE: To study the impact of whole-body cooling on exercise-onset VO2 kinetics in pwMS.

METHODS: From 12 pwMS (EDSS 3.5±1.5) and 12 healthy age, BMI, and gender-matched subjects exercise-onset VO2 kinetics (mean response time [MRT]) and body temperature were determined under normothermic and hypothermic (pre-exercise 60-min whole-body cooling) conditions during submaximal exercise testing (two 6-min constant-load exercise bouts). Moreover, heart rate, blood lactate content, expiratory volume and ratings of perceived exertion (RPE) were assessed during exercise.

RESULTS: Exercise heart rate (−7±6 beats/min) and end-exercise body temperature (−0.9±0.5°C) was significantly lower in hypothermic vs. normothermic conditions in both populations (p<0.05). In pwMS exercise RPE was lower in hypothermic vs. normothermic condition (p=0.056). No significantly different MRT was found between normothermic vs. hypothermic conditions in both populations.

CONCLUSIONS: Lowering body temperature prior to endurance exercise does not affect muscle oxidative capacity in pwMS, but lowers RPE, thus making it possible to prescribe exercises of greater intensity and/or longer duration.

Keywords: Multiple sclerosis, endurance exercise, oxygen uptake kinetics, oxidative capacity, whole-body cooling

1. Introduction

Patients with multiple sclerosis (MS) frequently suffer from fatigue. Such fatigue might inhibit participation into exercise interventions and lead to inactivity. In worst case this leads to elevated morbidity and mortality due to further deconditioning and development of cardiovascular and metabolic disease (Motl et al., 2011). Strategies to facilitate participation into exercise in patients with MS are therefore being explored.

Reducing body temperature in patients with MS leads to enhanced nerve conduction velocities and improved evoked potentials (Baker, 2002). Moreover, by applying whole-body cooling before exercise body core temperature increase during activity is reduced, thus minimizing heat-induced conduction difficulties (heat-sensitivity) in subjects with MS (Graham et al., 2008; Reynolds et al., 2011; Skjerbaek et al., 2013; White et al., 2000).

In patients with MS whole-body cooling leads to an
improvement in daily physical activities and exercise tolerance (Granh et al., 2008; Reynolds et al., 2011; White et al., 2000). As such and similar to other populations (Siegel et al., 2012), whole-body cooling could enable patients with MS to perform endurance exercises with greater intensities and/or for longer durations facilitating exercise intervention outcome.

However, although an improvement in neurologic function and body temperature control is anticipated when exercising under hypothermic conditions in patients with MS, reduced local skeletal muscle temperature leads to a reduction in oxygen uptake (VO\(_2\)) kinetics of this muscle (Shiojiri et al., 1997). Such slower VO\(_2\) kinetics under hypothermic conditions can be explained by disturbances in oxidative reactions and/or decreased O\(_2\) extraction in the working muscle (Shiojiri et al., 1997). It is well described that a preserved skeletal muscle oxidative capacity is mandatory to maintain exercise tolerance (Russ et al., 2004). As a result, such reductions in skeletal muscle oxidative capacity could prevent patients with MS from exercising at greater intensities (above the anaerobic threshold) and/or for longer durations (longer than 30 minutes) during whole-body cooling. Therefore, it should be examined whether whole-body cooling affects skeletal muscle oxidative capacity in subjects with MS.

In this study we examined skeletal muscle oxidative capacity in subjects with MS and healthy controls, when performing endurance exercise bouts in normothermic vs hypothermic condition. We hypothesized that by the application of whole-body cooling skeletal muscle oxidative capacity is compromised, and patients with MS thus are not able to exercise at greater intensities and/or for longer durations.

2. Methods

2.1. Participants

Twelve patients with multiple sclerosis (MS) were selected to participate in this study. Sample size of the population was based on sample sizes of similar studies in patients with MS in which significant effects were found (Granh et al., 2008; Reynolds et al., 2011; Skjerbak et al., 2013; White et al., 2000). Patients were included regardless of age and gender. These subjects had been diagnosed with MS for at least 12 months and were free from any other chronic disease. Twelve healthy subjects, matched for age, gender and body mass index, were included as a control group. These healthy subjects did not suffer from any chronic disease. Participants were informed about the experimental procedures, the nature and risks of measurements, and written informed consents of all participants were obtained. This study was approved by a local medical ethical committee of Hasselt University, Belgium.

2.2. Study design

This was a cross-sectional study in which subjects underwent exercise tests on two days, separated by one week. After obtaining information regarding Expanded Disability Status Scale (EDSS), medication intake, and level of physical activity (PAISP), a constant-load exercise cycle ergometer test was performed to determine VO\(_2\) kinetics during the first day (day 1). During the second day, the participants underwent one hour of whole-body cooling prior to the same exercise test (day 2).

2.3. Measurements

2.3.1. Level of physical activity

Daily physical activity, related to sports and recreational activities, household activities, transportation, labor activities, and sitting time, was evaluated by the 13-item Physical Activity Scale for Individuals with Physical Disabilities (PAISP) (van der Ploeg et al., 2007). From this questionnaire, the metabolic equivalent (MET) * hours/week was calculated.

2.4. Exercise test and exercise-onset VO\(_2\) kinetics

Subjects performed a cardiopulmonary exercise test on an electronically braked cycle ergometer (eBike Basic, General Electric GmbH, Germany). Subjects were advised not to perform any exercise the day before testing, and only eat a light meal at least two hours prior to testing. Pulmonary gas exchange was continuously measured breath-by-breath with a mass spectrometer and volume turbine system (Jaeger Oxycon, Erich Jaeger GmbH, Germany). During the exercise test, oxygen uptake (VO\(_2\), ml/min) and expiratory volume (VE, l/min) was assessed breath-by-breath, after which these data were averaged every 10 sec. Heart rate was continuously monitored by 12-lead ECG. Predicted maximal heart rate was calculated by 220 – age. During each exercise bout, capillary blood samples were obtained from the fingertip to analyze blood lactate concentrations (mmol/l), using a portable lactate analyzer (Accutrend Plus, Roche Diagnostics Limited, Germany).
Subjects were seated on cycle ergometer for three min to obtain resting data after having rested for 15 min in the laboratory. Next, subjects were instructed to cycle at 70 rpm, against a resistance corresponding to 25% (for patients with MS) or 35% (for healthy subjects) of predicted cycling power output (Wmax), for six min (Hansen et al., 2013). After six min of cycling subjects remained seated on bike for an additional six min, after which a second 6-minute exercise bout was performed. Predicted Wmax was based on gender, age, body weight and height (Jones et al., 1985). A higher cycling resistance was selected in healthy subjects, as opposed to patients with MS, because a higher exercise capacity was anticipated in healthy controls, while relative exercise intensities during testing should be equal between groups to obtain valid comparisons of MRT between groups (Hansen et al., 2013). Exercise-onset VO2 kinetics were used as estimate of skeletal muscle oxidative capacity because these are significantly correlated with maximal VO2 (Powers et al., 2005) and exercise-onset VO2 kinetics are faster in skeletal muscle with predominantly slow-twitch fibers and/or with increased activation of oxidative muscle enzymes (Kowalchuk et al., 1990; Hughson, 2009). Moreover, exercise-onset VO2 kinetics are significantly slowed in patients with MS (Hansen et al., 2013), and improved by exercise training (Murias et al., 2010). Thus it is generally accepted that exercise-onset VO2 kinetics are sensitive for the evaluation of skeletal muscle oxidative capacity (Grassi, 2006). Exercise-onset VO2 kinetics were calculated algebraically and expressed as mean response time (MRT, see Fig. 1 for graphical clarification) (Hansen et al., 2013). The outcome parameter that is derived from this method correlates well with, and is not significantly different from, the time constant (Arena et al., 2003). Resting VO2 was calculated as the VO2 during the final min before exercise. Steady-state VO2 was defined as the averaged VO2 during the final min of cycling. The difference between rest VO2 and steady-state VO2, multiplied by exercise time (six min), was defined as the expected amount of VO2 during exercise. However, to examine skeletal muscle oxidative capacity by calculating exercise-onset VO2 kinetics, it is important to ignore the cardiodynamic phase of the kinetics. As a result, the first 20 seconds of data after onset of exercise were eliminated (Jones et al., 2003). The sum of VO2 above resting level was defined as the actually achieved VO2 during exercise. The oxygen deficit could then be calculated by: expected amount of VO2 = actually achieved VO2. Division of oxygen deficit by the difference between rest VO2 and steady-state VO2 equals MRT. The resultant MRT, multiplied by 60, finally produced a value expressed in sec, and this outcome is used throughout this manuscript to quantify exercise-onset VO2 kinetics. Finally, the two MRT's that were obtained from the two exercise bouts were averaged.

2.5. Whole-body precooling

Prior to the second exercise test participants wore a cooling vest and cap (Flexi therm, Life Enhancement Technologies LLC, China) during one hour while sitting in chair. The vest was connected to a cooler which pumped cold fluid through this vest and cap. During cooling body temperature was measured every 15 min by a classic mercury thermometer that was held under the tongue for four min. The temperature of the cooler fluid lied between 7–13°C. Immediately after cooling participants performed the same exercise test with similar measurements.
vs. hypothermic conditions in patients with MS and healthy subjects separately, paired sample T-tests were used. Univariate relationships between parameters were examined by Pearson correlations. Statistical significance was set at \(p < 0.05 \) (2-tailed).

3. Results

3.1. Subject characteristics

Only cycling power output was significantly different between groups (see Table 1, \(p < 0.01 \)). Following medication was prescribed to the subjects: beta-blockers (1 in MS, 1 in control), statins (1 in MS, 1 in control), benzodiazepines (1 in MS, 1 in control), antiplatelets (1 in MS), anti-epileptics (1 in MS), interferons (3 in MS), antifugal drugs (1 in MS), selective adhesion molecule inhibitors (2 in MS), ace-inhibitors (1 in control), antihistamines (1 in control), and meglitinides/biguanides (1 in MS, 1 in control).

<table>
<thead>
<tr>
<th>Healthy controls</th>
<th>MS patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>General characteristics</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>12</td>
</tr>
<tr>
<td>Age (years)</td>
<td>50 ± 9</td>
</tr>
<tr>
<td>N Males</td>
<td>5</td>
</tr>
<tr>
<td>Body height (cm)</td>
<td>173 ± 9</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>75 ± 17</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>24.7 ± 3.3</td>
</tr>
<tr>
<td>Disease characteristics</td>
<td></td>
</tr>
<tr>
<td>(n = 9^p)</td>
<td></td>
</tr>
<tr>
<td>EDSS score</td>
<td>-</td>
</tr>
<tr>
<td>Type of MS</td>
<td>-</td>
</tr>
<tr>
<td>SPMS</td>
<td>-</td>
</tr>
<tr>
<td>RRMS</td>
<td>-</td>
</tr>
<tr>
<td>PPMS</td>
<td>-</td>
</tr>
<tr>
<td>PA score (MET/hwk)</td>
<td>20.6 ± 2.5</td>
</tr>
<tr>
<td>Cycling power output, W</td>
<td>56 ± 18</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard deviation and represent subject characteristics. \(p < 0.05 \) compared to healthy subjects. * Information regarding disease characteristics were only obtained from 9 MS patients. Abbreviations: EDSS, Expanded Disability Status Scale; SPMS, secondary progressive multiple sclerosis; RRMS, relapsing remitting multiple sclerosis; PPMS, primary progressive multiple sclerosis; PA, physical activity; MET, metabolic equivalent.

3.2. Comparison between normothermic vs. hypothermic condition

During the first and second exercise bout, and when combining data from two exercise bouts, steady-state HR and steady-state % predicted maximal HR was significantly lower in hypothermic vs. normothermic conditions in healthy subjects and patients with MS (\(p < 0.05 \), see Table 2). Body temperature ahead of, and after, exercise was significantly lower in hypothermic vs. normothermic conditions in patients with MS and healthy subjects (\(p < 0.05 \)).

In patients with MS steady-state ratings of perceived exertion were significantly lower in hypothermic vs. normothermic conditions during the second exercise bout (\(p < 0.05 \)), and trends for reductions in ratings of perceived exertion from normothermic to hypothermic condition (\(p = 0.056 \)) were found when combining data from two exercise bouts.

3.3. Comparison between first and second exercise bout

Between the first and second exercise bout steady-state HR and steady-state % predicted maximal HR were significantly different within the hypothermic conditions in healthy subjects, but in patients with MS within the normothermic as well as within hypothermic conditions (see Table 2). Exercise blood lactate level was significantly different between bouts in healthy subjects in normothermic and hypothermic conditions (\(p < 0.05 \)), but for patients with MS only in hypothermic condition (\(p < 0.05 \)). Exercise ratings of perceived exertion were significantly different in normothermic condition in patients with MS between the first and second exercise bout (\(p < 0.05 \)). Oxygen deficit was significantly different between first and second exercise bout in normothermic condition in patients with MS, but in the healthy subjects in normothermic and hypothermic conditions (\(p < 0.05 \)).

3.4. Exercise-onset VO\textsubscript{2} kinetics

Mean response time (MRT) was significantly slower in patients with MS vs. healthy subjects in normothermic (\(p < 0.05 \)) and hypothermic (\(p < 0.05 \)) conditions (see Table 2). No significantly different MRT between normothermic and hypothermic conditions was found in patients with MS and healthy subjects. There was a significantly greater MRT in second vs. first exercise bout in patients with MS and healthy subjects, under normothermic and hypothermic conditions (\(p < 0.05 \)).

3.4. Correlations

A significant moderate correlation was found between body weight \(r = 0.64, p < 0.05 \) or % predicted maximal HR (indicator of exercise intensity) \(r = 0.69, p < 0.05 \).
296 Changes in ratings of perceived exertion as a result of
297 whole-body cooling did not affect perceived exertion in MS
298 patients (p=0.91). This suggests that whole-body cooling ahead
299 of exercise might not affect perceived exertion, which is
300 consistent with previous findings. However, the lack of an
301 effect on perceived exertion may be due to the relatively short
302 duration of the cooling protocol (10 minutes) and the
303 intensity of the exercise protocol used (65% VO₂ max).
304
305 4. Discussion
306
307 Although whole-body cooling ahead of endurance exercise
308 did not affect MRT, mild hypothermia was present after
309 applying whole-body cooling. Body temperature at the
310 end of exercise was ~0.9 ± 0.5°C lower in total population in
311 comparison to non-cooled condition (p<0.05). Moreover, a
312 significantly lower temperature was observed at the end of
313 exercise in patients with MS in presence of greater exercise
314 comfort, thus proving an opportunity to exercise at greater
315 intensities and/or for longer durations.
316
317 Table 2
318 Exercise test data
319
320 | | Control (day 1) | Precooling (day 2) | Control (day 1) | Precooling (day 2) |
321 |------------------|-----------------|-------------------|-----------------|-------------------|
322 | 1st exercise bout | | | | |
323 | Temperature before exercise (°C) | 36.8 ± 0.5 | 36.7 ± 0.3 | 36.8 ± 0.4 | 36.7 ± 0.3* |
324 | HR rest (bpm) | 78 ± 12 | 66 ± 6* | 77 ± 8 | 64 ± 6* |
325 | VO₂ rest (ml/min) | 297 ± 92 | 284 ± 92 | 289 ± 96 | 274 ± 79 |
326 | Lactate rest (mmol/L) | 2.5 ± 0.8 | 3.1 ± 1.1 | 2.9 ± 0.8 | 3.2 ± 0.9 |
327 | Magnitude VO₂ (ml) | 804 ± 200 | 816 ± 203 | 804 ± 140 | 620 ± 112 |
328 | Steady-state VO₂ (ml/min) | 1111 ± 261 | 1100 ± 264 | 802 ± 218 | 902 ± 141 |
329 | Steady-state HR (bpm) | 93 ± 7* | 93 ± 7* | 105 ± 9 | 97 ± 9* |
330 | Steady-state % predicted max HR | 65 ± 5* | 55 ± 5* | 64 ± 6 | 58 ± 6* |
331 | Steady-state VO₂ (ml/min) | 20.4 ± 15 | 21.4 ± 13.7 | 20.4 ± 14.9 | 21.4 ± 13.7 |
332 | VO₂ deficit | 690 ± 287 | 318 ± 256 | 438 ± 180 | 481 ± 249 |
333 | Temperature after exercise (°C) | 30.9 ± 0.5 | 29.2 ± 0.9 | 29.9 ± 0.4 | 29.2 ± 0.9 |
334 | VO₂ rest (ml/min) | 297 ± 92 | 284 ± 92 | 289 ± 96 | 274 ± 79 |
335 | Magnitude VO₂ (ml) | 804 ± 200 | 816 ± 203 | 804 ± 140 | 620 ± 112 |
336 | Steady-state VO₂ (ml/min) | 1111 ± 261 | 1100 ± 264 | 802 ± 218 | 902 ± 141 |
337 | Steady-state HR (bpm) | 93 ± 7* | 93 ± 7* | 105 ± 9 | 97 ± 9* |
338 | Steady-state % predicted max HR | 65 ± 5* | 55 ± 5* | 64 ± 6 | 58 ± 6* |
339 | Steady-state VO₂ (ml/min) | 20.4 ± 15 | 21.4 ± 13.7 | 20.4 ± 14.9 | 21.4 ± 13.7 |
340 | VO₂ deficit | 690 ± 287 | 318 ± 256 | 438 ± 180 | 481 ± 249 |
341 | Temperature after exercise (°C) | 30.9 ± 0.5 | 29.2 ± 0.9 | 29.9 ± 0.4 | 29.2 ± 0.9 |
342 | Combined data: 1 + 2nd exercise bout | | | | |
343 | VO₂ rest (ml/min) | 313 ± 90 | 288 ± 78 | 282 ± 86 | 267 ± 81 |
344 | Magnitude VO₂ (ml) | 796 ± 196 | 814 ± 194 | 614 ± 151 | 639 ± 93 |
345 | Steady-state HR (bpm) | 107 ± 8 | 106 ± 9 | 99 ± 1* | 99 ± 1* |
346 | Steady-state % predicted max HR | 56 ± 5* | 56 ± 5* | 64 ± 6 | 60 ± 8* |
347 | Steady-state lactate (mmol/L) | 2.3 ± 0.7* | 2.9 ± 1.2* | 2.7 ± 0.9 | 2.9 ± 0.8* |
348 | Steady-state VO₂ (ml/min) | 10.2 ± 1.4 | 10.3 ± 2.0 | 12.1 ± 1.9* | 10.3 ± 2.3* |
349 | VO₂ deficit | 505 ± 220* | 594 ± 198* | 625 ± 316* | 609 ± 191* |
350 | Temperature after exercise (°C) | 36.7 ± 0.4 | 35.7 ± 0.4 | 36.6 ± 0.4 | 35.8 ± 0.4* |
351 | 2nd exercise bout | | | | |
352 | VO₂ rest (ml/min) | 313 ± 90 | 288 ± 78 | 282 ± 86 | 267 ± 81 |
353 | Magnitude VO₂ (ml) | 796 ± 196 | 814 ± 194 | 614 ± 151 | 639 ± 93 |
354 | Steady-state HR (bpm) | 107 ± 8 | 106 ± 9 | 99 ± 1* | 99 ± 1* |
355 | Steady-state % predicted max HR | 56 ± 5* | 56 ± 5* | 64 ± 6 | 60 ± 8* |
356 | Steady-state lactate (mmol/L) | 2.3 ± 0.7* | 2.9 ± 1.2* | 2.7 ± 0.9 | 2.9 ± 0.8* |
357 | Steady-state VO₂ (ml/min) | 10.2 ± 1.4 | 10.3 ± 2.0 | 12.1 ± 1.9* | 10.3 ± 2.3* |
358 | VO₂ deficit | 505 ± 220* | 594 ± 198* | 625 ± 316* | 609 ± 191* |
359 | Temperature after exercise (°C) | 36.7 ± 0.4 | 35.7 ± 0.4 | 36.6 ± 0.4 | 35.8 ± 0.4* |
360
361 *Represents difference between control test vs. precooling test within the same group (p<0.05). #Represents difference between 1st and 2nd exercise bout within the same group (p<0.05). Abbreviations: MS, multiple sclerosis; VO₂, oxygen uptake; HR, heart rate; VE, expiratory volume; RPE, ratings of perceived exertion. ∗Data are expressed as mean ± standard deviation. bRepresents trend for reduction in ratings of perceived exertion (p=0.06).
et al., 2000). However, these lower ratings of perceived activity (Grahn et al., 2008; Reynolds et al., 2011; White with MS leads to greater physical comfort during such body cooling prior to endurance exercise in patients with MS were found in the hypothermic condition (Shiojiri et al., 1997). Even though the applied cooling protocol in this study was at a local muscle level and much more vigorous compared to ours, it seems fair to conclude that whole-body hypothermic conditions do not impair skeletal muscle oxidative capacity.

In this study, a significant moderate correlation was found between exercise %predicted maximal heart rate (which indicates exercise intensity) and the effect of whole-body cooling in patients with MS ($r=0.69$, $p<0.05$). The lower the exercise %predicted maximal heart rate, and thus degree of exercise intensity, the greater the reduction in body temperature was as result of whole-body cooling in patients with MS. During exercise, heat is produced from the conversion of metabolic energy into mechanical and thermal energy. However, when exercise is intense, a doubling in heat production occurs (Gonzalez-Alonso, 2012). Therefore, smaller reductions in body temperature as result of whole-body cooling could be anticipated during exercises of greater intensity, due to greater heat production.

A moderate correlation was also found in patients with MS between body weight and reductions in body temperature during whole-body cooling ($r=0.65$, $p<0.05$). A greater reduction in body temperature could be achieved by whole-body cooling in patients with MS who were leaner. An explanation for this correlation remains presently speculative.

Examining the impact of medication intake on MRT, and influence of whole-body cooling, is difficult in the present study because only to few patients (maximally up to three) a certain drug was prescribed. However, it has been shown that beta-blocker intake significantly slows exercise-onset VO$_2$ kinetics, while ACE-inhibitor intake exerts the opposite effect (Kowalchuk et al., 1990; Dayi et al., 2004).

4.1. Study limitations

A mercury thermometer was used to measure (core) body temperature orally. Such assessment of body temperature is however not always valid for skeletal muscle oxidative capacity) in patients with MS ($r=-0.08$, $p=0.81$). Thus follows that an improvement in physical comfort during exercise (or increased exercise tolerance as observed in previous studies) as result of whole-body cooling in patients with MS is probably not related to altered skeletal muscle oxidative capacity.
(Mazerolle et al., 2011). Rectal temperature devices are more valid for body core temperature assessment. Moreover, the thermometer was not calibrated before each assessment. However, evidence for a reduced body core temperature is present because of a significantly reduced heat rate during exercise in the whole-body cooling condition. This study was also limited by the small sample size. In future studies, it could be interesting to obtain skeletal muscle biopsies to assess muscular oxidative capacity directly, and the impact of hypothermia during exercise.

5. Conclusions

Lowering body temperature prior to endurance exercise does not compromise exercise-onset VO2 kinetics in patients with MS, but leads to lower ratings of perceived exertion. Exercising at greater intensities and/or for longer durations during whole-body cooling may thus be possible to patients with MS.

Financial support

None.

Declaration of interest

None declared.

References

