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Abstract

When the true relationship between a covariate and an outcome is non-linear, one should use a non-
linear mean structure that can take this pattern into account. In this paper, the fractional polynomial
modeling framework, which assumes a pre-specified set of powers, is extended to a non-linear fractional
polynomial framework (NLFP). Inferences are drawn in a Bayesian fashion. The proposed modeling
paradigm is applied to predict the long-term persistence of vaccine induced anti-HPV antibodies. In
addition, the subject-specific posterior probability to be above a threshold value at a given time is
calculated. The model is compared with a power-law model using the Deviance Information Criterion
(DIC). The newly proposed model is found to fit better than the power-law model. A sensitivity analysis
was conducted, from which a relative independence of the results from the prior distribution of the power
was observed.

Some Keywords: Deviance information criterion; Fractional polynomial model; Non-linear fractional
polynomial; Power-law model

1 Introduction

Human papillomavirus (HPV) infection is a necessary cause of cervical cancer. Even though 90% of the

HPV infections are cleared within two years (Goldstein et al., 2009), persistent infection will lead to the

development of cervical cancer and other anogenital cancers (Ho et al., 1998). There are 120 HPV types

which are identified and indexed by a number (Chaturvedi and Maura, 2010). Of more than 40 HPV types,

HPV-16 and HPV-18 cause about 70% of the cervical cancers (Muñoz et al., 2003).

To protect against persistent HPV infection, many scientists synthesized a virus-like particle (VLP) vaccine

(Zhou et al., 1991; Kirnbauer et al., 1992). There are two types of vaccines available on the market, Cervarix
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and Gardasil1, that prevent infection with HPV-16/18 and may lead to further decrease in cervical cancer

(Kahn, 2009). Several authors employed different models to predict long-term immunity following this

vaccine and/or natural infection. Fraser et al. (2007) proposed a modified power-law model, which imposes

an asymptote onto the antibody level, whereas David et al. (2009) implemented a piece-wise model, which

assumes a constant antibody decline within a specified period. Recently, Aregay et al. (2013) showed that

the power-law model of Fraser et al. (2007) and David et al. (2009) can be formulated using fractional

polynomial (FP), which is a data-driven method to predict long-term persistence and to estimate the time

point above a given threshold.

Royston and Altman (1994) extended conventional polynomial regression to the aforementioned FPs, a more

flexible method. It has been shown that FPs are frequently among the least biased smoothing methods for

fitting non-linear exposure effects (Govindarajulu et al., 2009). Several researchers applied FPs to non-linear

longitudinal data (Long and Ryoo, 2010). Unsurprisingly, there are also some limitations to FP functions.

Some of them are sufficiently flexible to capture a non-linear function and possible sensitivity to extreme

values at either end of the distribution of a covariate (Royston and Sauerbrei, 2008). Although Royston and

Sauerbrei (2008) argued that the set {−2,−1,−0.5, 0, 0.5, 1, 2, 3} is oftentimes sufficient to approximate all

powers in the interval [−2, 3], there may be reasons to extend it (Shkedy et al., 2006; Aregay et al., 2013).

To incorporate prior information, Bové and Held (2010) implemented an FP model that combines variable

selection and “parsimonious parametric modeling” (Royston and Altman, 1994) of the covariate effects, with

Bayesian methods for univariate data. Auranenn et al. (1999) fitted a hierarchical Bayesian regression model

to predict the duration of immunity to Hemophilus influenza type b. In the context of long-term antibody

persistence after vaccination of Hepatitis A, Van Damme et al. (1994) used the geometric mean antibody

titer (GMT) to show that the predicted duration of antibody persistence for inactivated hepatitis A vaccine

is estimated to be at least 20 years. Wiens et al. (1996) proposed to estimate duration of protection for the

Hepatitis A vaccine based on an individual level instead of the GMT level. In the current paper, we combined

the approaches of Van Damme et al. (1994) and Wiens et al. (1996) and use a hierarchical Bayesian model

from which we estimate both the mean antibody titer and subject-specific profiles. Long-term persistence is

1Cervarix is a registered trade mark of the GlaxoSmithKline group of companies and Gardasil is a registered trade mark of

Merck and Co Inc.
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estimated using information obtained from subject-specific profiles.

In this paper, we extend the FP framework to non-linear longitudinal data using a hierarchical Bayesian

approach. The method is applied to predict the long-term persistence of vaccine-induced anti-HPV-16

and anti-HPV-18 antibodies, as well as to predict the proportion of subjects above a threshold value. Many

researchers (Fraser et al., 2007; David et al., 2009; Aregay et al., 2013) have been focusing on the prediction of

long-term immunity but no attention was given to the subject-specific probability of being above a threshold

for a given time point. In contrast with the model-based long-term prediction, which treats subjects as above

threshold or not at any given time point, a subject-specific probability quantifies the uncertainty about the

subject protection status at any time point.

The paper is organized as follows. Section 2 introduces the data set and a brief exploratory data analysis.

The hierarchical Bayesian model used to predict the probability of being above a threshold is discussed in

Section 3. We apply the proposed model to the data in Section 4 and discuss the results in Section 5.

2 Motivating Case Study

The data set used encompasses 390 healthy women who received the HPV-16/18 AS04-adjuvanted vaccine

(Cervarix). They were enrolled in the initial multi-center study (HPV-001, NCT00689741) and took part in

a follow-up study for three additional years (HPV-007, NCT00120848). Their blood samples were evaluated

for the presence of anti-HPV-16/-18 antibodies at months 7, 12, 18 and then annually up to 6.4 years. The

age of the women ranges over 15–25 years and they came from North America (USA and Canada) and Brazil.

An enzyme linked immunosorbent assay (ELISA) which was developed in-house by GlaxoSmithKline (GSK)

was used to check the presence of anti-HPV-16/-18 antibodies. The assay cut-off value was 8 EU/mL and 7

EU/mL for anti-HPV-16 and anti-HPV-18 antibodies, respectively.

The number of blood samples for each visit (categorized month; the continuous time in month was categorized

into 12 time points) was obtained. For anti-HPV-16 antibodies, there was a drop in the number of blood

samples in the month range 25–32. Month 7 reveals the highest number of blood samples and thereafter a

small increase from 364 to around 366 was shown in month 12 and 18, but there was a rapid decrease to
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Figure 1: Random selection of 30 individual profiles for HPV-16 (left panel) and for HPV-18 (right panel).

89 in the months 25–32. The number of blood samples ranges between 130 and 234 in the month range

69–74, followed by a decrease to 66 blood samples in months beyond 75. A similar pattern was observed for

anti-HPV-18 antibodies.

Figure 1 shows randomly selected individual profile curves for the antibody mean and threshold value for

both HPV-16 and HPV-18 and reveals a high amount of variability between subjects, as well as that there

are a few subjects who cross a threshold value. The evolutions of mean antibody over time for both HPV-16

and HPV-18 are shown in Figure 2. In both studies, it can be seen that the decline in the antibody level

was higher in the first few months followed by a moderate decrease until the end of the follow-up period.

3 Modeling Mean Antibody Using Hierarchical Subject-specific

Models

3.1 Model Formulation

In previous studies of the decline in antibody level after induced vaccination against HPV, Fraser et al. (2007)

and David et al. (2009) employed a power-law (PL) model to estimate the persistence of anti-HPV level.
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Figure 2: Mean structure of HPV-16 and HPV-18.

We start this section with a brief discussion the modelling approaches for longitudinal anti-HPV antibodies

data and then we formulate the hierarchical Bayesian model used for the analysis presented in this paper.

Let Yij denote the log antibody level of subject i measured at time j, and consider the model

Yij = f(tij) + εij , (1)

(i = 1, . . . , n; j = 1, . . . , ti). Here, f(tij) is the mean log antibody titer, assumed to be time-dependent, and

εij is the random error term for subject i at time j, assumed to be normally distributed, εij ∼ N(0, σ2
ε).

The mean structure of such a subject-specific power-law model, discussed by Fraser et al. (2007), David et

al. (2009), and Aregay et al. (2013) could be formulated as

f(tij) = (β0 + b0i) + (β1 + b1i) ln tij . (2)

Note that the parameters β0 and β1 are the population (fixed) parameters, while b0i and b1i are subject-

specific random intercept and random slope, respectively, b0i ∼ N(0, σ2
b0

) and b1i ∼ N(0, σ2
b1

).

Aregay et al. (2013), pointed out that the power-law model can be formulated as first-order fractional

polynomials with p = 0 using the Box-Tidwell transformation (Box and Tidwell, 1962). For the general case

with p 6= 0 Aregay et al. (2013) used a first-order fractional polynomial mixed model to model the long-term
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persistence of induced anti-HPV antibodies in which the mean structure is given by:

f(tij) = (β0 + b0i) + (β1 + b1i)t
p
ij. (3)

Within the fractional polynomials framework, the unknown power in (3) are estimated by a grid search over

the pre-specified sequence p1 ≤ p2 ≤ · · · ≤ pm. Note that, for a given value of p, the mean structure in (3) is

linear with respect to tpij. Aregay et al. (2013) compared the first- and second-order fractional polynomials

for the data set discussed in Section 2 and they found that the first order fractional polynomial in (3) was

the best model. In what follows, we formulate a hierarchical Bayesian model that, in contrast with the FP

framework, is estimating the FP model (3) as a non-linear model (NLFP).

At the first stage of the hierarchical model we specify a normal likelihood model, i.e.,

Yij ∼ N(f(tij ), σ
2
ε),

where f(tij) has the mean structure defined in (3). In the second stage of the model we specify a prior model

for the unknown parameters in the model. We considered independent normal prior distributions for the

population parameters,

βk ∼ N(µk, σ2
βk

), for k = 0, 1.

The subject-specific intercept and slope are assumed to follow a bivariate normal distribution with a mean

vector of zeros and variance-covariance structure Db, i.e.,

[
b0i

b1i

]
∼ MV N

([
0

0

]
, Db =

[
σ2

b0
ρb0b1

σb0
σb1

ρb0b1
σb0

σb1
σ2

b1

])
.

A uniform prior distribution was defined for the power p ∼ U(a, b). A sensitivity analysis for the choice of a

and b is performed and is presented in Section 4.1.

In order to complete the specification of the hierarchical model, the following hyperprior distributions were

specified. A non-informative independent normal prior distribution (Gelman, 2006) for µk and a gamma prior

distribution (Gelman, 2006; Spiegelhalter et al., 2003) for the precision parameters, i.e.,σ−2
βk

∼ G(0.01, 0.01),

and σ−2
ε ∼ G(0.01, 0.01). However, Gelman (2006) argued that this prior is informative because of its shape

and suggested to use instead a uniform prior on the hierarchical standard deviation. We have considered a

uniform prior distribution for the standard deviation but the result does not change much compared with
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the result obtained from the assumption of an inverse gamma prior for the variance. An inverse Wishart

prior distribution for the covariance matrix Db was employed, i.e.,

D
−1
b ∼ Wishart(RD, 2), (4)

where RD is 2×2 identity matrix. We notice that the case in which Db is diagonal, i.e., the random intercept

an slope are independent, implies that

b0i ∼ N(0, σ2
b0

) and b1i ∼ N(0, σ2
b1

),

with hyperprior distribution given by σ−2
bk

∼ G(0.01, 0.01) for k = 0, 1.

Model formulation for the modified power-law model is given in Section 3 in the Supplementary Web Ap-

pendix of this paper

3.2 The Probability above a Threshold

All studies discussed above were conducted to assess the long-term protection after vaccination. Such an

assessment can be done by comparing the model-based empirical Bayes subject-specific predictions at a given

time point to a pre-specified threshold τ . Based on this approach, Fraser et al. (2007), David et al. (2009),

and Aregay et al. (2013) concluded that 76%, 100%, and 99.7% of the vaccinated subjects will be above the

threshold level near life long persistence of anti-HPV-16 antibodies after vaccination.

One of the motivations for using the hierarchical Bayes model presented in the previous section is to calculate

the probability of being above a threshold for a given time point. Note that, in contrast with the approaches

discussed by Fraser et al. (2007), David et al. (2009), and Aregay et al. (2013), here we wish to quantify the

uncertainty about being above threshold or not, rather than just the status of each subject. Hence, for each

subject, we estimate the probability of being above a pre-specified threshold. Let Zij be an indicator latent

variable, representing above threshold or not status of the ith subject at time tij:

Zij =

{
1 Yij > τ, an antibody level above a threshold,

0 Yij ≤ τ, an antibody level below a threshold.
(5)

Hence, the subject-specific probability of being above a given threshold value at time tij is given by πij =

P (Yij > τ ). We notice that to estimate the proportion of subjects above a threshold in the sample, Fraser
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et al. (2007), David et al. (2009), and Aregay et al. (2013) derive the value of Zij as

Ẑij =

{
1 f̂(tij) > τ,

0 f̂(tij) ≤ τ.
(6)

Hence, the proportion of subjects above a threshold at time tij was estimated by

p̄j =

nj∑

i=1

Ẑij/nj,

where nj is the number of subjects at the jth time point. The proposed hierarchical Bayes model allows

us to estimate the probability πij using Monte Carlo integration. In practice, πij can be obtained from the

WinBUGS program by using the step( ) function. The function creates a binary variable that counts the

number of MCMC simulations for which, Yij > τ is true. Hence, the 0/1 values from the step( ) function

can be used to compute πij. For example, consider an MCMC simulation with M samples of step(Yij) from

which the first T are the burn-in samples, πij is estimated using Monte Carlo integration by

1

M

T+M∑

t=T+1

Z
(t)
ij .

This implies that the hierarchical Bayesian model enables estimation of both the quantities Zij and πij.

4 Data Application

4.1 Long-term Prediction Using Subject-specific Non-linear Fractional Polyno-

mials

To estimate the subject evolution of the log antibodies within the follow up period, the NLFP model was fitted

using the R2WinBUGS package (Sturtz et al. , 2005). A Markov Chain Monte Carlo (MCMC) simulation

of 10,000 iterations, from which the first 1000 were considered burn in and discarded from the analysis, was

used to estimate the model parameters. Model selection was done using the Deviance Information Criterion

(DIC; Spiegelhalter et al. , 2002) and convergence was checked using trace plots, estimated potential scale

reduction factor (R̂) and Brooks, Gelman, and Rubin’s (BGR) statistics (Gelman and Rubin, 1992). The

trace plot and BGR statistic indicate convergence for all model parameters. Furthermore, the estimated

potential scale reduction factor (R̂) for all the parameters were close to one which indicates convergence for

all model parameters (see Supplementary Web Appendix).
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Initially, we fitted an NLFP that assumes the random intercept and the random slope to be independent.

Because we have prior knowledge of the power p, which is p = −1.25 from Aregay et al. (2013), a uniform

prior distribution for the power p ∼ U(−1.4,−1.2) was used. A sensitivity analysis for the prior of p

will be discussed in the section below. The posterior mean for the power was estimated to be −1.356 for

anti-HPV-16 antibodies, while −1.259 for anti-HPV-18 antibodies. In the second stage, an NLFP that

assumes the random intercept and the random slope to be correlated was applied. For this model, the

posterior means are estimated to be equal to −1.332 for anti-HPV-16 antibodies, whereas it is −1.243 for

anti-HPV-18 antibodies. For both anti-HPV-16 and anti-HPV-18 antibodies, the DIC for the correlated

random-effects model was smaller than the DIC for the independent random effects model. Hence, the

former is to be preferred. Additionally, the posterior mean for the correlation between the random effects is

equal to −0.413 (95% credible interval: [−0.511,−0.307]) for anti-HPV-16 antibodies and −0.596 (credible

interval [−0.677,−0.508]) for anti-HPV-18 antibodies. Parameter estimates for the posterior mean of the

fixed effects are shown in Table 1.

To assess whether the results depend on the prior distribution of the power p, a sensitivity analysis was

performed using different values for a and b. This shows that the results do not depend on the prior

distribution chosen (see Table 2).

Different threshold values (τ ) were used: 29.8 EU/mL (1.474 log (EU/mL)) and 417.8 EU/mL (2.621 log

(EU/mL)) for anti-HPV-16 antibodies and 22.6 EU/mL (1.355 log (EU/mL)) and 279.3 EU/mL (2.446 log

(EU/mL)) for anti-HPV-18 antibodies (Fraser et al., 2007; David et al., 2009; Aregay et al., 2013). Unless

otherwise specified in the text, authors will focus their analysis on the low threshold values, i.e., 29.8 EU/mL

for anti-HPV-16 antibodies and 22.6 EU/mL for anti-HPV-18 antibodies.

Figure 3 shows the long-term posterior predicted population means with 95% predictive intervals, indicating

that on average all of the subjects have antibody levels above a threshold level for near life time.

Figure 4 shows the observed and posterior prediction for the antibody levels for selected months within the

estimation period. The posterior prediction densities and observed densities are similar, indicating that the

NLFP is fitting the data very well over the follow-up period. The posterior predictive densities for 30 and
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Figure 3: Long-term prediction with posterior predictive interval over 50 years for anti-HPV-16 (left panel)

and anti-HPV-18 antibodies (right panel).

50 years at different threshold values are shown in Figure 5. Note that the posterior predictive densities for

30 years and 50 years are almost the same.

A comparison of the observed and model-based proportion within the follow up period using the power-law

and NLFP model is shown in Figure 6 at the top. Using the NLFP, we observe from the lower panels

that the proportion of subjects who are above the threshold value was 99.7% (389 out of 390 subjects) for

anti-HPV-16 antibodies, while it was 99.5% (388 out of 390 subjects) for anti-HPV-18 antibodies over 50

years. If we use τ = 2.621 and τ = 2.446, the proportion above the threshold will decrease to 48.9% and

52.6% for anti-HPV-16 and anti-HPV-18 antibodies, respectively. These results agree with these reported in

David et al. (2009) and Aregay et al. (2013)

4.2 Estimation of Subject-specific Probability to be Above a Threshold

As we mentioned in Section 3.2, the hierarchical Bayesian model allows us to estimate the posterior prob-

ability of being above a threshold for a given time point. First, we discuss the results obtained for the

anti-HPV-16 antibodies.

The posterior mean for some selected subjects is shown in Figure 7. Note that the first subject (8650) has
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Figure 4: The densities of the posterior predictions (solid line) and observed values (dashed line) of the

antibody level at the categorized months, i.e., M63–M68 and M75–. . . , for anti-HPV-16 (top figure) and

anti-HPV-18 antibodies (bottom figure).

a posterior predictive value below the threshold level while the other subjects have values above this one.

The estimated posterior mean for πij above the threshold level for these subjects is equal to 0.25, 1, 1, 1,

respectively.

Using the methodology described in Fraser et al. (2007), David et al. (2009) and Aregay et al. (2013),

subject 8650 is classified as having a predicted mean below the threshold level for 50 years. However, using

the current model π̂i50 is equal to 0.25. In other words, the current model provides a measure for uncertainty

for each subject.

Figure 8 shows the histogram of the posterior probability of being above threshold for anti-HPV-16 antibod-
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Figure 5: The densities of posterior predictions of the antibody level over 30 and 50 years for anti-HPV-16

and anti-HPV-18 antibodies. Vertical solid line and bold dashed line indicate the thresholds, 29.8 EU/mL

and 417.8 EU/mL (left panel), and 22.6 EU/mL and 279.3 EU/mL (right panel), respectively.

ies. It shows that 93 (23.8%) subjects have a posterior probability of being above the threshold τ = 2.621

equal to 0, for 193 (49.5%), 0 ≤ π̂ij ≤ 1 and the rest (104, 26.7 %) have a probability of being above the

threshold equal to 1; π̂ij = 1 for 50 years. The sorted posterior probabilities of being above the threshold

for all subjects in the trial are shown in left panel of Figure 9 and the posterior probabilities of being above

the threshold for 10 years for subjects who have posterior predicted mean above/below the threshold are

shown in the right panel of Figure 9 and illustrate the main difference between the analysis presented in

this paper to the analysis discussed in Fraser et al. (2007), David et al. (2009), and Aregay et al. (2013).

As mentioned before, all authors used a model based classification procedure. In contrast, the right panel

of Figure 9 shows π̂ij for subjects who were classified as above/below the threshold by David et al. (2009)

and Aregay et al. (2013). We clearly see that among the 199 (51.02%) subjects who were classified as above

the threshold, 102 subjects have π̂ij = 1, while 97 subjects have 0.5 < π̂ij < 1. On the other hand, among

the 191 (48.98%) subjects who were classified as below the threshold, 89 subjects have π̂ij = 0 while 102

subjects have 0 < π̂ij < 0.5 over 10 years. This indicates that some of the subjects who were classified as

above the threshold in David et al. (2009) and Aregay et al. (2013), are surrounded by some uncertainty.

The hierarchical model allows us to calculate the proportion of individuals for which the probability of being
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Figure 6: Observed proportion and model-based proportion above different threshold values (τ = 1.474 and

τ = 1.355 (solid line) and τ = 2.621 and τ = 2.446 (dashed line) for anti-HPV-16 (left panel) and anti-

HPV-18 antibodies (right panel) within (top figure) and after (bottom figure) the follow up period, using the

power-law and NLFP models.

above a threshold is more than α. For instance, over 50 years, if we use τ = 2.621, 190 subjects for anti-

HPV-16 antibodies have a posterior probability of being above a threshold more than 0.5. On the other

hand, if we use the lower thresholds, τ = 1.474, all of the subjects but one have a posterior probability above

0.5 over 50 years.

Figure 10 shows the subject-specific posterior probability of being above a threshold for anti-HPV-18 an-

tibodies. Similar to the results obtained for anti-HPV-16 antibodies, among the 212 (54.4%) subjects who

were classified as above the threshold, we can see that 133 subjects have π̂ij = 1 while 79 subjects have
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Table 1: Comparison of power-law model, non-linear fractional polynomial model with ρ12 = 0 and non-

linear fractional polynomial model with ρ12 6=0 for anti-HPV-16 and anti-HPV-18 antibodies.

HPV-16

PL NLFP with p∼dunif(-1.4,-1.2);ρ12=0 NLFP with p∼dunif(-1.4,-1.2); ρ12 6=0

Parameters mean sd MC error 95 % CI mean sd MC error 95% CI mean sd MC error 95%CI

β0 4.104 0.033 0.001 (4.042,4.171) 2.604 0.024 0.001 (2.559,2.651) 2.601 0.025 0.001 (2.555,2.649)

β1 -0.368 0.008 3.83E-4 (-0.386,-0.351) 13.97 0.824 0.039 (12.21,15.29) 13.32 0.941 0.048 (11.45,15.03)

σb0
0.532 0.029 3.56E-4 (0.475,0.592) 0.4431 0.017 0.0001 (0.413,0.478) 0.4605 0.0173 0.0001 (0.428,0.496)

σb1
0.140 0.008 9.05E-5 (0.126,0.156) 4.585 0.359 0.0113 (3.866,5.264) 4.539 0.3821 0.016 (3.805,5.294)

σε 0.235 0.004 3.503E-5 (0.227,0.242) 0.1847 0.003 3.19E-5 (0.178,0.191) 0.1838 0.003 2.5E-5 (0.178,0.189)

ρb0b1
-0.581 0.048 5.62E-4 (-0.668,-0.4881) -0.413 0.052 5.1E-4 (-0.511,-0.307)

p -1.356 0.031 0.001 (-1.398, -1.287) -1.332 0.037 0.002 (-1.39, -1.254)

DIC 429.51 -756.54 -777.454

HPV-18

PL NLFP with p∼dunif(-1.4,-1.2);ρ12=0 NLFP with p∼dunif(-1.4,-1.2); ρ12 6=0

Parameters mean sd MC error 95 % CI mean sd MC error 95% CI mean sd MC error 95%CI

β0 4.079 0.024 0.001 (4.032,4.125) 2.468 0.022 0.001 (2.425,2.512) 2.465 0.021 0.001 (2.422,2.507)

β1 -0.389 0.006 0.0001 (-0.402,-0.377) 12.07 0.186 0.0034 (11.71,12.44) 11.79 0.545 0.026 (10.97,13.08)

σb0
0.347 0.017 0.0002 (0.315,0.379) 0.446 0.015 0.0001 (0.417,0.477) 0.446 0.015 0.0001 (0.417,0.476)

σb1
0.079 0.005 0.0001 (0.068,0.089) 3.149 0.169 0.003 (2.822,3.485) 3.069 0.213 0.007 (2.682,3.527)

σε 0.219 0.004 3.21E-5 (0.213,0.226) 0.171 0.003 2.71E-5 (0.165,0.178) 0.169 0.003 2.54E-5 (0.164,0.175)

ρb0b1
-0.396 0.065 8.85E-4 (-0.515, -0.259) -0.596 0.043 4,4E-4 (-0.677, -0.508)

p -1.259 0.032 0.002 (-1.326, -1.205) -1.237 0.024 0.001 (-1.293, -1.202)

DIC 34.5 -1182.65 -1232.97

0.48 < π̂ij < 1. For an elaborate presentation of the results obtained for anti-HPV-18 antibodies, we refer

to Section 1 in the Supplementary Web Appendix.

There are two vaccines against HPV available on the market. It is difficult for many medical experts to choose

among them. Our method can be used to compare two or more vaccines using the posterior probability of

being above threshold for a given time point. To underscore this, we created an illustrative figure with

vaccine 1 and vaccine 2 (Figure 11). From the plot, we can see that vaccine 1 is better than vaccine 2.
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Table 2: A sensitivity analysis of the non-linear fractional polynomial for anti-HPV-16 and anti-HPV-18

antibodies.

HPV-16

NLFP with p∼dunif(-1.6,-1.2) NLFP with p∼dunif(-3,3) NLFP with p∼dunif(-5,5)

Parameters mean sd MC error 95 % CI mean sd MC error 95% CI mean sd MC error 95%CI

β0 2.604 0.026 0.001 (2.554,2.653) 2.604 0.024 0.001 (2.557,2.650) 2.604 0.024 0.001 (2.557,2.650)

β1 13.910 1.134 0.059 (11.750,16.240) 13.720 1.045 0.054 (11.810,15.860) 13.720 1.045 0.054 (11.810,15.860)

σb0
0.459 0.017 0.0001 (0.427,0.495) 0.459 0.017 1.34E-4 (0.427,0.495) 0.459 0.017 1.34E-4 (0.427,0.495)

σb1
4.738 0.446 0.020 (3.904,5.66) 4.668 0.416 0.010 (2.576,3.538) 4.668 0.416 0.010 (2.576,3.538)

σε 0.184 0.003 2.79E-5 (0.178,0.190) 0.184 0.003 2.85E-5 (0.178,0.190) 0.184 0.003 2.85E-5 (0.178,0.190)

ρb0b1
-0.411 0.051 0.0005 (-0.508,-0.305) -0.411 0.053 4.80E-4 (-0.510,-0.304) -0.411 0.053 4.8E-4 (-0.510,-0.304)

p -1.354 0.043 0.002 (-1.439, -1.266) -1.229 0.033 0.001 (-1.293, -1.165) -1.229 0.033 0.001 (-1.293, -1.165)

DIC -777.19 -777.4 -777.4

HPV-18

NLFP with p∼dunif(-1.6,-1.2) NLFP with p∼dunif(-3,3) NLFP with p∼dunif(-5,5)

Parameters mean sd MC error 95 % CI mean sd MC error 95% CI mean sd MC error 95%CI

β0 2.466 0.026 0.001 (2.415,2.517) 2.466 0.024 0.001 (2.419,2.512) 2.466 0.024 0.001 (2.419,2.512)

β1 11.84 0.639 0.032 (10.88,13.26) 11.63 0.755 0.038 (10.22,13.28) 11.63 0.755 0.038 (10.22,13.28)

σb0
0.4603 0.017 0.0001 (0.428,0.495) 0.4604 0.017 0.0001 (0.428,0.495) 0.4604 0.017 0.0001 (0.428,0.495)

σb1
3.227 0.242 0.008 (2.8,3.748) 3.175 0.261 0.010 (2.69,3.73) 3.175 0.261 0.010 (2.69,3.73)

σε 0.169 0.003 2.343E-5 (0.164, 0.175) 0.169 0.003 2.42E-5 (0.164, 0.175) 0.169 0.003 2.42E-5 (0.164, 0.175)

ρb0b1
-0.596 0.043 0.0004 (-0.676, -0.506) -0.597 0.043 0.0004 (-0.677, -0.507) -0.597 0.043 0.0004 (-0.677, -0.507)

p -1.243 0.028 0.001 (-1.304, -1.202) -1.232 0.034 0.002 (-1.302, -1.165) -1.232 0.034 0.002 (-1.302, -1.165)

DIC -1232.06 -1232.770 -1232.770

5 Concluding Remarks

In this paper, we proposed an extension of the fractional polynomial model discussed by Aregay et al. (2013)

to non-linear fractional polynomial using a hierarchical Bayesian model. We have shown that the model

can be used to calculate a subject-specific probability of being above a threshold and to predict the long-

term persistence of vaccine induced anti-HPV-16/18 antibodies. The Bayesian perspective of the fractional

polynomial was implemented by assuming a uniform prior distribution for the power. The NLFP is more

flexible than the fractional polynomial, which assumes pre-specified fractional powers. It can easily be

extended to include multiple covariates. We have conducted sensitivity analysis, establishing that the results

do not depend on the prior distribution of the power.
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Figure 7: Long-term (50 years) prediction with posterior predictive interval of some selected subjects for

anti-HPV-16 antibodies.

Furthermore, using the current method, the uncertainty of lying above a threshold can be calculated for

subjects who were classified as above/below a threshold in David et al. (2009) and Aregay et al. (2013).

Subjects who were classified previously as above a threshold have some uncertainty of being above the

threshold also in this study (Figure 9; Figure 10).

For both HPV-16 and HPV-18, the main findings show that the posterior probability of being above the

threshold value is equal to one for 97.5% subjects (380 out of 390 subjects) over 50 years. We note that

one can also estimate the probability of being above a given threshold, proposed by David et al. (2009) and

Aregay et al. (2013), by simulating from a normal distribution with mean f̂(tij) and residual variance, σ̂2
ε .

One of our objectives was to obtain the long-term individual prediction of being above a threshold. Hence,
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Figure 8: The posterior probability of being above threshold value 2.621, at 10, 20, 30, and 50 years for

anti-HPV-16 antibodies.

the posterior individual predictive mean was calculated. It was found that 389 out of 390 subjects had

posterior predicted mean above a threshold level for 50 years for anti-HPV-16 antibodies while 388 out of

390 subjects for anti-HPV-18 antibodies. If we use τ = 2.621, the proportion of subjects above this threshold

for 50 years was approximately 48.9% for anti-HPV-16 antibodies, whereas 52.6% for anti-HPV-18 antibodies

with τ = 2.446. These results were similar to previous findings that were obtained from the same data set

by Aregay et al. (2013). We were able to show that the posterior predicted mean was above the threshold

level for 50 years.

Model comparison between the non-linear fractional polynomial and power-law model was done using the

Deviance Information Criterion. For both anti-HPV-16 and anti-HPV-18 antibodies, the NLFP was to

be preferred. To evaluate the performance of the prediction over the estimation period, the model-based
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Figure 9: HPV-16: Subject-specific sorted posterior probability of being above threshold 2.621 (left panel) and

posterior probability of being above threshold 2.621 over 10 years for subjects who were classified as above

threshold and below threshold (right panel). The index represents the number of subjects.

proportions and observed proportions for both models were obtained. The NLFP returned proportions more

similar to the observed proportion than the power-law model. Hence, in this work, the NLFP model fits to

the data better than the power-law model within the follow-up period. Moreover, to assess the robustness of

the inferences, the modified power-law (MPL) model was implemented. The NLFP fits the data better than

the MPL model. On the other hand, the results obtained from the MPL and NLFP models are comparable

(see Supplementary Web Appendix). However, this does not automatically mean it does the same outside

the range of the observed data. Rather, this can be ascertained only with long-term follow up.

In summary, we have shown that the fractional polynomial framework can be extended to a non-linear

fractional polynomial approach by assuming a prior distribution on the power using Bayesian approach. In

this study, more than 99% of the subjects who were vaccinated with HPV-16/18 AS04-adjuvanted vaccine,

had higher chance of having antibody level above the threshold level for 50 years. Moreover, we have

discussed that subjects who were classified as above a threshold in David et al. (2009) and Aregay et

al. (2013) approach, will not automatically be classified above a threshold in this study. We have also shown

that the performance of different vaccines can be compared using the posterior probability of being above

a threshold for a given time point. We would like to recommend that further work be done to define a
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Figure 10: HPV-18: Subject-specific posterior probability of being above threshold 2.446 over 10 years for

subjects who were classified as above threshold and below threshold. The index represents the number of

subjects.

threshold antibody level associated with protection.

Acknowledgments

Mehreteab Aregay, Ziv Shkedy and Geert Molenberghs gratefully acknowledge support from IAP research

Network P7/06 of the Belgian Government (Belgian Science Policy). The authors thank the study partic-

ipants and clinical investigators from the Phase IIb primary efficacy study (NCT00689741). Finally, they

thank the laboratory personnel for their contribution in performing the assays.

References

Aregay, M., Shkedy, Z., Molenberghs, G., David, M., and Tibaldi, F. (2013). Model based estimates

of long-term persistence of induced HPV antibodies: A flexible subject-specific approach. Journal of

Biopharmaceutical Statistics, 23, 000–000.

19



0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

S
o

rt
e

d
 P

o
s
te

ri
o

r 
P

ro
b

a
b

ili
ty

 t
o

 b
e

 P
ro

te
c
te

d

vaccine 1 vaccine 2

Figure 11: An illustrative probability of being above a threshold plot, which shows the comparison of two

vaccines.
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