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Abstract

The application of multiple imputation (MI) techniques as a preliminary step to
handle missing values in data analysis is well established. The MI methods can be
classified into two broad classes, the joint modeling and the fully conditional
specification approaches. Their relative performance for longitudinal ordinal data
setting is not well documented. This paper intends to fill this gap by conducting a
large simulation study on the estimation of the parameters of a longitudinal
proportional odds model. The two MI methods are also illustrated on a real dataset of

quality of life in a cancer clinical trial.
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1 Introduction

In clinical trials, it is common practice to assess quality of life (QoL) on a Likert-type
scale along with the patient’s disease evolution [1]. Patients however may withdraw
prematurely from the trial or miss one or more follow-up visits. The latter situation refers
to intermittent or non-monotone missingness pattern and the former to monotone
missingness. The statistical analysis of non-Gaussian longitudinal data with
non-monotone missingness pattern is difficult to handle. Even when the number of
patients with intermittent missing data is small, discarding these patients from the
analysis [2] is unsatisfactory and alternative methods have to be considered.

Multiple imputation (MI) has become a reference method for handling missing data [3].
For longitudinal ordinal data with monotone missingness patterns, MI consists in a
sequential application of the proportional odds model considering the previous assessment
time as covariate and accounting for the uncertainty about the regression coefficients [4].
We shall refer to this method as the ordinal imputation model (OIM). Even if
inappropriate for ordinal data, it is common practice to impute ordinal data using a MI
approach for continuous data based on multivariate normality [5]. This MI method will be
refereed to as multivariate Normal imputation (MNI). In a previous work of our group, we
compared the performance of both approaches for the monotone setting and we clearly
demonstrates the superiority of the OIM approach [6]. The OIM method however hardly
works for non-monotone missing data and it has been suggested to apply the MNI method
based on multivariate normality [5] even if inappropriate for ordinal data. Here, we
propose to adapt the OIM method to longitudinal ordinal data with non-monotone
missingness patterns.

Multivariate MI methods can be classified into two broad classes, respectively the joint



modeling (JM) and the fully conditional specification (FCS). The latter is also known as
chained equation, variable-by-variable imputation or regression switching. Within the JM
approach, the joint distribution of the data has to be specified (e.g. normality). The idea
of the FCS imputation method is to bypass the definition of the joint distribution by
specifying a conditional distribution for each variable where data need to be imputed. In
the subsequent, we shall assume that covariates are fully observed and only the ordinal
outcome can be missing. Thus, a proportional odds model needs to be specified at each
assessment time point.

We shall adapt the FCS strategy to monotone and non-monotone missing ordinal data by
means of widely available statistical software procedures. The performance of the
proposed method was compared to the joint modeling that assume a multivariate normal
distribution method by focusing on the estimation of the parameters of a longitudinal
proportional odds model. Both imputation methods were assessed through Monte Carlo
simulated artificial data sets and also illustrated on a real example. The simulations will
cover well-balanced outcome data but also skewed distributions, as often observed in QoL
studies.

The paper is organized as follows. The proportional odds model to analyze longitudinal
ordinal data is briefly reviewed in Section 2, while a general overview of the problem of
missing data is given in Section 3. Section 4 outlines the theoretical background of
multiple imputation including those for continuous and ordinal variables. The simulation
experimental design is described in Section 5 and results are presented in Section 6. Both
MI methods are illustrated on a QoL dataset in Section 7. Concluding remarks are given

in Section 8.



2 The QoL dataset

The QoL data used in this work were obtained from the EORTC phase III clinical trial
26981 comparing radiotherapy (RT) and radiotherapy plus concomitant daily
temozolomide, followed by adjuvant temozolomide (RT+TMZ) in patients with newly
diagnosed and histologically confirmed glioblastoma. Between August 2000 and March
2002, a total of 573 patients were randomized by 85 institutions in 15 countries in this
trial, respectively 286 in the RT arm and 287 in the RT+TMZ arm. Clinical and QoL
results have been published previously [7, 8].

Per protocol, QoL had to be assessed in all patients using the EORTC QLQ-C30 version 2
questionnaire [9]. In the RT arm, QoL assessment was performed at baseline (ie, before
start of treatment), during radiotherapy at 4 weeks, 4 weeks after completion of the
radiotherapy and then every three months until disease progression. In the RT+TMZ
arm, QoL assessment was performed at baseline, during radiotherapy and concomitant
chemotherapy at week 4, 4 weeks after RT at the end of the third and sixth cycle of
adjuvant temozolomide, and then every 3 months until disease progression. At the time of
the analysis, time windows for acceptable QoL forms were defined around each time point
to gather the maximum information available [8]. Since there were only a few assessments
available after the first two follow-up time points, the analysis was stopped there.

In this paper, we shall consider the appetite loss (AP) scale of the QLQ-C30 as the
outcome varaible. AP is an ordinal variable with 4 response categories (‘Not at all’, ‘A
little’, ‘Quite a bit’, ‘Very much’). Since only few patients reported category ‘Very much’,
the two last categories were combined into a single one. In the following, the time of AP
assessment was treated as a categorical covariate. The distributions of AP according to

time points and treatment groups are displayed in Table 1.



Table 1: Distribution of appetite loss (Number (%)) for each time point and treatment arm

RT arm RT+TMZ arm

) ] Quite a bit ) Quite a bit
Time Not at all A little Very much Not at all A little Very much
TO - Baseline 201 (81.4) 35 (14.2) 11 (4.45) 206 (85.5) 21 (8.71) 14 (5.81)
T1 - During RT 148 (78.7) 28 (14.9) 12 (6.38) 133 (66.2) 41 (20.4) 27 (13.4)
T2 - After RT 104 (73.2) 27 (19.0) 11 (7.75) 109 (66.1) 39 (23.6) 17 (10.3)
T3 - FU1 45 (73.8) 13 (21.3) 3 (4.92) 58 (62.4) 22 (23.7) 13 (14.0)
T4 - FU2 25 (80.7) 4 (12.9) 2 (6.45) 61 (75.3) 17 (21.0) 3 (3.70)

FU1 = first follow-up / FU2 = second follow-up

In cancer trials, the drop-out is typically linked to disease progression and death.
Furthermore, it has been shown that no sharp increase or decrease was observed in scores
just before missingness, which is usually a good indicator for non-ignorable missing data
[7, 8]. A total of 29 different missingness patterns was observed for AP. The distribution
of the complete, monotone and non-monotone missingness patterns in each treatment

group is summarized in Table 2.

Table 2: Distribution of the different missingness patterns (Number (%)) in both treatment

arms

Missingness pattern RT arm RT+TMZ arm

Complete 15 (5.62) 30 (11.2)
Monotone 200 (74.9) 138 (51.3)
Non-monotone 52 (19.5) 101 (37.6)
Total 267 269

3 Models for longitudinal ordinal data

3.1 The proportional odds model

Consider a sample of NV subjects and let Y be an ordered variable with K categories
assessed on " occasions in each subject. Then, let Y;; denote the assessment of the ordinal

variable Y for the ith subject (i = 1,...,N) at the jth occasion (j = 1,...,7"). Hence, Y; =



(Yi1, ..., Yir) is the vector of the repeated assessments of the ith subject and Y; =

(Y15, ..., Yn;)" is the vector of responses at the jth occasion. Associated with each subject,
there is a p x 1 vector of covariates, say x;;, measured at time j. Hence, let

X; = (x41, .-, X47) denote the T' x p design matrix of the ith subject. Covariates typically
include time of measurement, age, gender, treatment group, and so on.

The ordinal nature of the outcome variable may be accounted for by considering the
cumulative probabilities Pr(Y;; < k),k =1,--- , K. The cumulative proportional odds
model is a popular choice to relate the marginal probabilities of Y to the covariate vector

x [10]. Specifically,

logit[Pr(Yi; < klxyj)] = Box + xi; 8 (1)

where Bo = (Bo1, ..., Bo,k—1)" is the vector of the intercept parameters and 3 = (81, ..., 5p)’
the vector of coefficients (i = 1,....,N; j=1,....,T; k=1,..., K — 1). Under the

proportional odds assumption, 8 does not depend on k.

3.2 Generalized estimating equations

Estimation of the regression coefficients of marginal models can be approached by
likelihood-based or non-likelihood-based methods. One difficulty present with likelihood
models resides in the complexity of the relationship between the parameters of the model
and the joint probabilities that define the likelihood. Alternative solutions to
likelihood-based analysis have been explored, in particular the generalized estimating
equations (GEE), quite popular for the analysis of non-Gaussian correlated data. This
approach circumvents the specification of the joint distribution of the repeated responses

by means of a ‘working’ correlation matrix and only the marginal distributions are



specified. Since the proportional odds model is not part of the regular generalized linear
model family, some transformations are required before applying the GEE method.
Following Lipsitz et al. [11], a (K — 1)-dimensional expanded vector of binary responses

has to be created for each subject at each occasion, Y;; = (Y7

* /
i1 ""Y;,(K—l),j) where

Y*

iy =1 if Y;; = k and 0 otherwise. Now,

logit[Pr(Y;; < k|xi;)] = logit[Pr(Y;; = 1xi;)], k=1,..,K —1 (2)

1

Since the logistic regression model is a member of the generalized linear model family, the
GEE method applies and consistent estimates of the regression parameters can be

obtained by solving the estimating equations

™

N
0
>0

where Y = (Y,....Y ), mi = E(Y]), V; = Ai/QRiAi/Q with A; the diagonal matrix

S~

VY ) =0 3)

of the variance of the elements of Y, and 3 the expanded vector of intercepts and
regression coefficients. The matrix R, is the ‘working’ correlation matrix that expresses
the dependence among repeated observations over the subjects ranging from independence

to exchangeable, banded, or unstructured.

4 Missingness

In line with the notation introduced previously, consider the missing data indicators, R;;,

defined as follows:

R — 1 if Y;; is observed,
] 0 otherwise,

and let R; = (R, ..., Ry7) the indicator vector corresponding to Y; = (Yi1,...,Yir) .



Now Y; can be split into two subvectors (Y?,Y!™) where Y refers to the observed
component of Y; and Y" refers to the missing component part.

When missing data occur, we are concerned with the distribution of the measurement
process together with the missing-data process. Little and Rubin [12, 13, 14] identified
two broad classes of joint models: the selection model and the pattern-mixture model. In
the selection model, the joint distribution (Y;, R;) is split into the marginal distribution
of the measurement and the distribution of the missingness process conditional on the
measurement Y;. By contrast, the pattern-mixture model specifies the marginal
distribution of R; and the conditional distribution of Y; given R;. Here we shall focus on
the selection model approach in which Rubin [4] and Little and Rubin [12] made essential
distinctions between the processes responsible for the missingness: missing completely at
random (MCAR), missing at random (MAR), and missing not at random (MNAR). The
determination of the mechanism responsible for missing data has a decisive implication on
the choice of the statistical method used to analyze the data. Under the MCAR
mechanism, the probability of an observation being missing is independent of both Y° and
Y. Under the MAR mechanism, the probability of an observation being missing is
independent of Y™ given Y° . When neither MCAR nor MAR holds, the missingness
mechanism is said to be MNAR, whence the probability of an observation being missing
depends on Y.

Liang and Zeger [15] pointed out that GEE are only valid under the restrictive assumption
that the data are missing completely at random (MCAR). Alternative methods were
investigated to allow the analysis of data under less strict missingness assumptions.
Robins et al. [16, 17] developed an extension of the GEE, known as the weighted

generalized estimating equations (WGEE), that provide consistent estimates of the



regression parameters even under the MAR assumption. With their method, each
subject’s measurements is weighted in the GEE by the inverse probability of dropping out
at that time point. Another alternative to analyze the data under the MAR assumption is
multiple imputation based on GEE (MI-GEE). In this approach, missing values are
imputed several times [4, 18] and the resulting completed datasets are analyzed using
standard GEE methods. Using Rubin’s rules, the final results obtained from the
completed datasets are combined into a single inference. In the context of longitudinal
binary data, Beunckens et al. [19] showed by simulations that, in spite of the asymptotic
unbiasedness of WGEE, the combination of GEE and multiple imputation is both less
biased and more accurate in small to moderate sample sizes which typically arise in

clinical trials. In this paper, focus will be on MI-GEE methods.

5 Multiple imputation

5.1 Theoretical framework

The idea behind multiple imputation is to replace each missing value wit a set of M > 1
plausible values drawn from the conditional distribution of the missing data given the
observed data. This conditional distribution represents the uncertainty about the right
value to impute in the sense that the set of M imputed values properly represents the
information about the missing value that is contained in the observed data.

Using the notation introduced in previous sections, let 8 represents the parameter vector
of the distribution of the response Y; = (Y?,Y/). Note that 6 may differ from the
parameters 3 of the substantive model. The observed data Y will be used to estimate the

conditional distribution of Y™ given Y°, f(Y™|Y?,0). If 0 is known, the values for Y™



can be drawn from f(Y™|Y?,0). For 6 unknown, an estimate is obtained from the data,
say é; then missing values will be imputed using f(Y"™|Y?, 9) Frequentists incorporate
uncertainty in @ by using bootstrap or other methods. A Bayesian prior distribution for 6
can also be chosen. Given this distribution, a draw 8* is generated and now values for Y™
can be drawn from f(Y™[Y?,0"). These two steps for the construction of the imputed
data are the first phase of MI. Then the substantive model is applied to each of the M
completed data (Y?,Y™). Let By, and U,, be the vector of estimates and the
corresponding variance-covariance matrix for the m* imputed data set (m = 1,..., M),
respectively. The last step of MI is the combination of the M results. The MI point

estimate for 3 is simply the average of the M complete-data point estimates [4, 5],

A measure of the precision of 3* is obtained by Rubin’s variance formula [4] which
combines the within- and the between-imputation variability. Define W, the

within-imputation variance, as the average of the M within imputation variance estimates

~

Un,
M
W= > Un
m=1
and B, the between-imputation variance, measuring the variability across the imputed

values,

1 L s
12 B =8B, - B

m=1

B - y

Then, the variance estimate associated with B* is the total variance

1
T = 1+— 1B
w (145

where (1 + ﬁ) is a correction factor for the finite number of imputations.

10



5.2 DMNI method

In Bayesian inference, information about unknown parameters is expressed in the form of
posterior probability distributions computed using Bayes’ theorem. In this context,
Markov Chain Monte Carlo methods (MCMC) have been considered to explore and
simulate the entire joint posterior distribution of the unknown quantities through the use
of Markov chains.

Assuming that data arise from a multivariate normal distribution, Schafer [5] developed a
method based on an MCMC process for generating proper imputations that accounts for
between imputation variability, the MNI approach. This approach, based on the algorithm
of data augmentation [20], is a procedure that iterates between an imputation step
(I-step) and a posterior step (P-step). In the I-step, given starting values for the mean
and the covariance matrix, i.e. given starting values for 6, values for missing data Y are
simulated by randomly drawing a value from the conditional multivariate normal
distribution of Y™ given Y°, f(Y™|Y?,0). After the first iteration, new values for 6 are
drawn from its posterior distribution. Both steps are iterated, which creates a Markov
chain (Y?f), 0(1)), ( g), (2)); -+ Where each step depends on the previous one,
introducing dependency across the steps. The two steps are then iterated long enough
until the distribution becomes stationary. Imputations from the last iteration are used to
impute the missing values of the dataset. More detail about this procedure can be found
in [5].

When proceeding this way for an ordinal outcome, the imputed values obtained are no
longer integer values and need then to be rounded off to the nearest integer (category) or
to the nearest plausible value. However, in the binary case, it was demonstrated that

rounding is not recommended because the rounded imputed values may provide biased

11



parameter estimates [21, 22, 23|. In situations like ours, where one is concerned with
missing values for the outcome variable, unrounded values are physically not plausible. So,
the rounding phase is unavoidable before application of the substantive model (e.g. GEE

with proportional odds model).

5.3 FCS based on ordinal imputation model

The adaptation of the ordinal imputation model (OIM) to arbitrary missingness pattern
appears as an alternative to the MNI approach. To impute missing data for an ordinal
outcome, one has to impose a probability model on the complete data. In the presence of
an ordinal outcome variable, a proportional odds model will be considered to link the
ordinal outcome to a set of g covariates. The FCS with an ordinal imputation model is
based on the Gibbs sampling algorithm; that is random draws from the multivariate
distribution of interest, f(Y"|Y?,0), is be obtained by iteratively drawing from the
conditional distribution of each outcome assessment. This imputation process is composed

of two steps, a filled-in step and an imputation step.

Filled-in step

In this step, all missing value, Y™, are filled-in using an arbitrary method. Let

YO = (Y%O), e ,YFEFO)) where Y](O) = (Y;?,Y](.E)) with Y? the observed part of the jth

(

assessment of the ordinal outcome Y and sz) its filled-in part. Y©) will serve as initial

starting values for the imputation step.

Imputation step

In this second step, the previously filled-in elements of Y

(2) are imputed using the specified

J
conditional distribution, f(Y7'[Y?,0;). These imputations are made in turn for all Y7

12



(j=1,---,T). In order to obtain imputed values that are independent of the starting
values, YO the cycling imputation through all Y;-” (j=1,---,T) is repeated several

times. The imputations above will be based on the following proportional odds model,

logit[Pr(Y{? < k)[x5] = 055 + X045, (4)

where the covariates typically include those of the substantive model X;;, possible
auxiliary covariates A;j, and the other outcomes Y_j = (Y1, , Y(j_1), Y(j41), Y7
To realize proper imputation [4], uncertainty about 8; = (6;, 6,;) has to be accounted
for. For this purpose, a value for 8; is drawn from an appropriate posterior distribution
about 8; conditionally on the most recently imputed data. One way of proceeding is
known as the ”Normal approximation draw” method. This method is correct for linear
regression [4] but is near far a reasonable approximation for situation involving categorical
regression. Nevertheless, it is a common practice, supported by the law of large-sample, to
use this Normal approximation [4]. To correct for possible misleading association that
could have been introduced in the filled-in step, the proportional odds model is fitted on
the part of the dataset with observed observation for the jth assessment, Y?, which might
contain observations with imputed values for the other assessments, Y _;.

Based on these considerations, the tth iteration of the imputation step goes as follows,

Y&t) : 1. Fit the proportional odds model (4) on the part of the dataset for which Y is

fully observed and draw new values for 6 using
0,.=6,+ V.7,

where V. is the upper triangular matrix of the Cholesky decomposition,

Vi =V}, V}; of the covariance matrix of 0, and Z is a (K — 1) + q vector of

13



independent random normal variates.
2. For each element of Y] compute
PIY" = k|61, i’,Yét_l), . 7Y,E,'f_l),xﬂ, A;1] from equation (4).
3. For each element of YT* draw a random variate from a multinomial distribution

with probabilities derived in step 2.

Ygf) : 1. Fit the proportional odds model (4) on the part of the dataset for which Y is

fully observed and draw new values for 67 using
Or. =0r+ V.7,

where V. is the upper triangular matrix of the Cholesky decomposition,
V= V’hthZ- of the covariance matrix of éT and Z is a (K — 1) + ¢ vector of
independent random normal variates.

2. For each element of Y7 compute P[Y; ! = k|0T*,Y’1’,Y§t), L Y9 x, At
from equation (4).

3. For each element of Y7' draw a random variate from a multinomial distribution

with probabilities derived in step 2.

The previous cyclic iteration process is repeated several times, usually between 10-20

[25, 24], until stabilization of the results. As within the Gibbs sampling algorithm,
convergence is influenced by the choice of the initial values, Y(©). In the filled-in step, we
then replace the missing values using an ordinal logistic regression sequentially by order of

assessment.
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6 SIMULATION STUDY

To assess the performance of both imputation methods (MNI and FCS OIM), we

conducted a large simulation study as described hereafter.

6.1 Longitudinal ordinal data-generating model

Correlated ordinal responses were generated with the SAS macro developed by Ibrahim
[26] and based on Lee’s algorithm [27]. The basic measurement model utilized in this
study includes as covariates a binary group effect (X = 0 or 1), an assessment time (7')
and an interaction term between group and time, so that the proportional odds model

(Eq. 1) is written as:

logit[Pr(Yi; < k|zi,t5)] = Bok + Bawi + Bitj + Brazit;. (5)

(t=1,---,N;j=1,---,T; k=1,--- , K —1). An exchangeable correlation structure was

considered.

6.2 Missing data generating mechanisms

The mechanism used to generate MAR, missingness data is based on the following binary

logistic regression model:

logit[Pr(Ri; = 0]z, Y; (j—1))] = %o + Ya®i + Yprev Yi (j-1) (6)

(t=1,---,N;j=1,--- ,T; k=1,--- , K — 1). Thus, the probability to be missing at a
certain time point j depends on the binary covariate X and the outcome value at the

previous time point Y'i,(j_l).

15



6.3 Simulation patterns

Theoretical values of the model parameters (see (Eq. 5)) considered in our simulations are

given in Table 3 for a well-balanced and skewed distribution.

Table 3: Values of the model parameters used for generating longitudinal ordinal dataset (well-balanced and

skewed distribution)

Distribution K Bo1  Boz2  Boz  Poa Bos Los Bz B Btz
Well-balanced

2 -0.25 - - - - - 0.10 0.10 -0.15
3 -0.71 0.66 - - - - 0.10 0.10 -0.15
4 -1.10 0.00 1.10 - - - 0.10 0.10 -0.15
5 -1.39 -041 041 1.39 - - 0.10 0.10 -0.15
7 -1.79 -092 -029 0.29 092 1.79 0.10 0.10 -0.15
Skewed
2 1.00 - - - - - 0.80 0.10 -0.25
3 -220 -0.85 - - - - 0.80 0.10 -0.25
4 -0.41 0.00 041 - - - 0.80 0.10 -0.25
5 -0.85 -0.20 0.20 0.85 - - 0.80 0.10 -0.25
7 -1.39 -0.66 -0.16 0.16 0.66 1.39 0.80 0.10 -0.25

Three distinct sample sizes N were considered for the simulation: 100, 300 and 500,
equally distributed between both groups. This covers small (50 subjects/arm) to large
studies (250 subjects/arm). For the assessment time points 7', two possibilities were
envisaged corresponding to short (7" = 3) or long (7" = 5) longitudinal study. Note that for
skewed data, only T = 3 was considered. The ordinal outcome variable Y covered several
numbers of categories K = 2,3,4,5 and 7, respectively. Finally, the population parameters
of (Eq. 6) (%0, %z, Yprev) Were chosen to yield a rate of missingness approximatively equal
to 10%, 30% and 50%, respectively. The complete data case (0% missingness) was also
considered. Thus, both imputation methods were assessed on 90 different combination
patterns. For each pattern, S = 500 random samples were generated. The two MI

methods (MNI and FCS OIM) were applied to impute missing data on the same

16



incomplete dataset allowing a paired comparaison of the two approaches. A GEE model
was then fitted to the resulting multiply imputed datasets. For each MI method, the
number of multiple imputation was fixed to M = 20 [4, 28]. As the generation of the
MAR missingness was based on the binary covariate X, the latter had to be included in
the imputation model. In the GEE model, the same working correlation matrix as the one
used in the generation data process was considered, that is an exchangeable correlation
matrix. The MI based on MNI and on FCS OIM were carried out using the SAS MI
procedure. The GEE SAS macro based on the extension of Lipsitz et al. method [11] and
implemented by Williamson et al. [29] was used to analyze the imputed datasets. Finally,

the SAS MIANALYZE procedure was used to pool the results obtained.

6.4 Evaluation criteria

For each simulation pattern, the relative bias RB = B /B expressed in percent was averaged

over the S = 500 replicated datasets. Likewise, the mean square error was calculated as

MSE = Bias* 4+ Var(B)

. A — 2 3 ) ) 3
with Var(g) = 25:1 (?f;jg 0= 25521 % and Bias =0 —f.

The effect of the modeling parameters on RB was assessed by multiple regression analysis
and so was the difference between RB obtained by MNI and FCS OIM, respectively. To
account for the matching between both imputation methods, a generalized linear mixed
model taking all modeling parameters as covariates was applied to the MSE derived after
imputation. This statistical scheme was applied to both kinds of generated ordinal data,

well-balanced and skewed distribution.

17



7 Results

The values of the relative bias (%) and the MSE calculated over the 500 replicate samples
are detailed in Appendices for both imputation methods. For clarity, results for intercepts

were omitted.

7.1 Well-balanced distributions

Relative bias

Table 4 reports the mean (£SD) of RB of each regression parameter derived under both
imputation methods as well as their differences. Globally, underestimated values of the
model parameters were found using the MNI method, while estimates derived with the
FCS OIM method were almost unbiased. Although differences between the two
imputation methods were highly significant (p < 0.0001) for all regression parameters, the
RB difference was small (3 — 8%).

When considering the results under the various simulation patterns, the following
observations could be made. For the binary effect parameter, (,, using the MNI method,
the RB was unchanged for K and rate of missingness but it varied according to the
number of time points (p = 0.001) and to N (p = 0.019). In fact, RB was lower in short
term than in long term studies (92.9 + 15.9 % vs 101.8 + 10.5 %; p = 0.001) and it
decreased from 100.1 £+ 18.8 % for N=100 to 92.1 + 9.27 % for N = 500. Nearly the same
conclusions apllied for the RB derived under the FCS OIM process. The RB remained
unchanged with 7" and the rate of missingness but decraesed with K (p = 0.009) and with
N (p =0.022). The RB for the time effect parameter, 3;, and for the interaction term,
Bz, behaved similarly under both MI methods. It significantly decreased with K

(p < 0.0001), the rate of missingness (p < 0.05) and increased with the number of time

18



point (p < 0.05) but was unchanged for N. Overall, for each simulation pattern, better

RB values were obtained under the FCS OIM approach.
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Mean square error

The mean square error (mean + SD) of each regression parameters under both imputation
methods and their difference are given in Table 5. Globally, although results were
significant, difference between MNI and FCS OIM were minute and not practically
relevant. From this perspective, MNI and FCS OIM were similar.

As expected, under both imputation methods and for each model parameter, the MSE
decreased significantly (p < 0.0001) with the sample size N. A decrease was also observed
with 7' (p < 0.0001). The number of categories K and rate of missingness did not affect

MSE.
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7.2 Skewed distributions

As mentioned in the simulation plan, the impact of both imputation methods within the
skewed ordinal data setting has been investigated in the context of a short term study,
that is 7' = 3. Simulation results are summarized in the Appendices.

The overall RBs under both imputation methods are depicted in Figure 1 for each
regression parameter. Globally, the MNI method overestimated the binary and the
interaction term parameters of the model, while at the same time underestimated the time
parameter ;. As in the well-balanced setting, the OIM method yielded less biased
estimates. The median RB difference between the two imputation methods ranged from
2% to 10%, with the worst results observed for the time parameter, 5;. In fact, the lowest
RB value of 8, was equal to 52.6% and the highest RB value was equal to 205.6%; both
extremes values were obtained under the MNI method. The extreme RBs under the OIM
method presented the same but less marked behaviour; they were equal to 76.7% and

144.4%, respectively.
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Figure 1: Global Relative bias (%) of the model parameters (84, B¢, Biz) (MNI= shaded boxplot -
OIM=empty boxplot)

The effect of the modeling parameters on the RB derived under both imputation methods
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was found to be the same for K and N but not for the rate of missingness. As shown in
Figure 2, under both multiple imputation methods, the RB varied according to K,
especially for the time effect. While no association was found between RB and the rate of
missingness for the OIM, Figure 3 shows that, except for the time effect, RB under MNI
increased significantly with the rate of missingness (8,: p = 0.0003, B;: p = 0.99, Sy,:

p < 0.0001). No relationship was observed between the RBs derived under both MI
methods and the sample size, V.

The MSE of each regression parameter under both imputation methods and their
differences are displayed in Table 6. Comparison of the MSE calculated in presence of
skewed ordinal outcomes with those derived in well-balanced setting showed that MSE
values were larger in presence of skewness. Contrary to the well-balanced setting,
differences in the behaviors of the MSE were observed with respect to the modeling
parameters, especially according to K.

As expected, under both imputation methods and for each model parameter, the MSE
decreased significantly (p < 0.0001) with the sample size N. Contrary to the
well-balanced setting, MSE values got lower as the number of categories K increased.
However, these falls in the MSE behaved differently in the two MI methods for the binary
and the interaction terms of the model. For the binary effect of the model, the difference
in MSE increased with the number of categories of the ordinal outcome (p < 0.0001),
while for the interaction term the MSE difference decreased (p < 0.0001). While the rate
of missingness did not affect MSE; the difference in MSE between the two MI methods

increased with the rate of missingness.
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8 QoL data EXAMPLE

We applied both imputation methods on the QoL data (see Table 7).

Table 7: Results of the MI-GEE (proportional odds model) when using MNI and FCS OIM

as multiple imputation method

Parameter MNTI FCS - OIM

Estimate (SE)  P-value Estimate (SE) P-value
Bor 141 (0.17) < 0.0001 1.46 (0.15) < 0.0001
Boz 3.59 (0.21) < 0.0001 2.94 (0.21) < 0.0001
T —0.36 (0.22) 0.11 -0.097 (0.20) 0.62
Ty ~0.73 (0.22) 0.001  -0.52 (0.22) 0.021
T3 —0.92 (0.24) 0.0001 -0.43 (0.33) 0.20
Ty —0.70 (0.35) 0.054 0.10 (0.36) 0.77
TRT x T 0.21 (0.27) 0.44 0.26 (0.26) 0.32
TRT x T —0.52 (0.22) 0.017 -0.69 (0.23) 0.003
TRT xT,  —0.12 (0.22) 059  -0.23 (0.23) 0.32
TRT xT;  —0.26 (0.26) 032  -0.47 (0.37) 0.21
TRT x T, 0.01 (0.34) 0.97 -0.47 (0.42) 0.27

TRT is treatment (0 = RT, 1 = RT+TMZ); TO = Baseline; T1 = During RT;
T2 = After RT; T3 = FU1; T4 = FU2

Results derived under the MNI method showed that AP was more severe during RT (p =
0.001) and after RT (p = 0.0001) than at baseline. Moreover, severe AP affected more RT
+ TMZ patients than RT patients (T'RT x T1; p = 0.017) during treatment. When
applying the FCS OIM approach, the time effect disappeared except after RT (p = 0.021).
As for the MNT approach, the deleterious effect was significantly higher in RT + TMZ
patients (p = 0.0003). The difference between the two MI methods is evidenced in Figure
4 where the probabilities of each category at each assessment time in both treatment arms
are displayed for both MI approaches.

Increasing the number of imputations up to 100 to test the robustness of the results did

not change the conclusions.
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Figure 4: Distribution of appetite loss at each assessment time and in each treatment arm

for both MI methods

9 DISCUSSION

Several studies have compared MNI and FCS imputation methods [25, 31, 30] but to the
best of our knowledge, none have focused on longitudinal ordinal outcome data. This
study was designed to compare the performance of the two methods, available in most
statistical packages, in the context of longitudinal ordinal datasets with non-monotone
missing values. The comparison was based on a comprehensive simulation plan covering a
wide range of real life situations. Specifically, the parameters of the experimental design
included the following parameters: number of categories of the ordinal outcome (K),
number of time points (7'), sample size (N) and rate of missingness (%) but also the form
of the distribution (well-balanced or skewed) of the ordinal outcome data. Both MI

methods were also applied on a real QoL dataset. The performance of the two MI
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methods was appraised by the relative bias and the mean square error of the regression
parameters of the model. The latter included a group effect and a time effect, as well as
their interaction.

Within the well-balanced setting, the model parameters were slightly underestimated in
the MNI approach as compared to the FCS OIM method which yielded almost unbiased
estimates. Except for the binary term where effects were less marked, both imputation
methods behaved similarly for each regression parameters. Under both MI methods, RB
decreased with K and the rate of missingness, increased with the number of assessment
time and was unchanged for the sample size (N). However, within each simulation
pattern, RB values derived under the FCS OIM were slightly better than those derived
under the MNI process. For all regression parameters, the MSE of both imputation
methods were comparable.

For skewed data, application of the MNI process led to a marked overestimation of the
regression coefficients of the binary and the interaction terms and an underestimation of
the time coeflicient. Overall, estimates derived under FCS OIM process were less biased.
While, RB evolved differently according to K under both MI methods, it was only affected
by the rate of missingness under MNI. In both distribution settings, estimation of the time
effect coefficient was more biased than the other coefficients.

Although globally, simulations did not evidenced a large differences between the
performance of the two MI methods, some simulation patterns were clearly against MNI.
This was confirmed by the AP dataset where the ordinal outcome had K=3 categories, a
skewed distribution and a large amount of missing data. Application of the two MI
methods led to different conclusions, in particular for the time effect.

Within the longitudinal setting, Donneau et al. [6] previously showed that the OIM

30



method provides less biased results when imputing drop out cases than the MNI method.
In comparison with those findings where the RB difference between the two imputation
methods ranged from 9% to 16%, the difference between the MNI and the FCS OIM
method found here was much lower (3% to 8%). As far as the MSE is concerned, the
conclusions made for the non-monotone setting paralleled those found for the monotone
setting.

Based on the results of this large simulation study and application to QoL dataset, salient
conclusions may be drawn. Although theoretically unsuitable for ordinal data, the MNI
method with rounding imputation to the nearest integer value globally provided better
acceptable results than expected. However, as shown across the different simulation
patterns, some situations were less favorable for MNI than for FCS OIM. This remark was
reinforced by results of the QoL dataset where different conclusions applied according to
the MI method used. Finally, as for the analysis model, the choice of the imputation
method should be guided by the type of the data that needs to be imputed. Thus, it is

advisable to impute missing ordinal data using suitable MI method.
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