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Abstract 
 
Information Production Processes (IPPs) without low-productive sources are 
studied. A success-breeds-success or preferential attachment mechanism is 
established in which, from some point in time on, no new sources are created. 
Such systems are called mature systems. When time increases in mature 
systems the expected number of sources with a low number of items strictly 
decreases. An adaptation of the Naranan-Egghe model indicates that IPPs 
without low-productive sources must have small alpha exponents (α < 2) in their 
size-frequency power law descriptions. 
 
A positive reinforcement model explains all the essential properties. Using this 
approach it is shown that, when time increases in mature systems the alpha 
exponent of the power size-frequency function decreases, while, moreover, the 
minimum source size increases.  
 
Examples related to country and city sizes illustrate the concepts and results 
discussed in this article.  
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Introduction 
 
Classical informetrics deals with sources producing (or having) items. Such 
systems are referred to as Information Production Processes (IPPs) or as 
conglomerates (a slightly more general framework). Well-known cases are 
 

• authors as sources and publications as items; 
• journals as sources and published articles about a given subject as items; 
• articles as sources and received citations (from a given pool of journals) 

as items; 
• articles as sources and their references as items; 
• web sites as sources and links (inlinks or outlinks) as items. 
 

 
In all the above mentioned cases it is normal that the lowest number of sources 
considered is one (although sometimes also systems including sources without 
items are studied, citation studies being a case in point). In most cases f(1), this 
is the number of sources producing one item, is the largest among the numbers 
f(n), n = 1,2,3, …Recall that the function f is called the size-frequency function 
(Egghe, 2005a). It is indeed often the case that in a set of scientific authors the 
group consisting of authors with exactly one publication is the largest one. 
Generally, all IPPs that can be described by a decreasing power law have the 
property that f(1) > f(2) > f(3) > … For other IPPs, such as web sites and links, or 
articles in chemistry and the number of authors of these articles, f(1) is usually 
not zero, but it is not the largest value in the set {f(1), f(2), … } either. Systems 
that can be described by a lognormal, Weibull, negative binomial, or general 
Poisson distribution are examples of this case (Rousseau, 1994; Rao, 1995; 
Egghe & Rao, 2002).  
 
IPPs with a power law as size-frequency continuous density function f(j) will be 
described as (Egghe, 2005a, p.128): 
 

( ) Cf j
jα

=                                                       (1) 

 
with [1, ]mj ρ∈ , C > 0 and where ρm denotes the maximum item density in a 
source. Its equivalent description in rank-frequency continuous density form is 
(Egghe, 2005a, p. 128): 
 

( ) , [0, ]
(1 )

Eg r r T
Fr β= ∈

+
                                               (2) 

The equation 
 

 1 1
1

orβ α 1
α β

= =
−

+                                                   (3) 
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expresses the relation between the two exponents involved in these equations. 
 
 
IPPs where f(1) ≠ 0, and where the size-frequency function f increases first and 
then shows a long decreasing tail can be considered as describing an 
intermediate situation between IPPs with a decreasing size-frequency function, 
and those which are the focus of our investigations in this article.  Consider texts 
with words (as types) and their occurrences (as tokens). Such IPPs are 
classically described by a decreasing power law as rank-frequency function (Zipf, 
1949). Note that it is not required that the size-frequency function corresponding 
to this ‘Zipf-function’ has sources with production 1. Indeed, it often happens that 
most words (excluding misprints) occur several times and that f(1) = 0 (Tuldava, 
1996). This is to be expected when a restricted vocabulary is used, such as for 
children’s books, or computer programs. Baayen (2001, p. 51-52 and Fig.2.3) 
gives even examples where nmin, the minimum number of times that a word is 
used, deviates more and more from 1. An abstract example can be given by 
considering N random draws with replacement from an urn containing M balls. As 
this experiment can only have M possible outcomes, f(nmin), the lowest value 
among the number of times a ball has been drawn, is first zero, but will increase 
as N increases. A concrete example is an IPP describing the sizes of databases. 
Here nmin certainly is quite large. The same is true for human settlements (usually 
containing much more than one inhabitant) or countries and their population 
sizes.  
 
IPPs where nmin >> 1, and hence f(n) = 0 for n = 1, …, nmin -1 will be referred to 
as IPPs without low-productive sources. Such IPPs are often characterized by 
the fact that f(n) – n a specified value -  is either 0 or 1: there is only one city in a 
country with exactly n = 395,465 inhabitants and there is none with exactly n = 
395,466 inhabitants.  
 
The above mentioned examples of systems without low-productive sources will 
be interpreted in the next section within the “success-breeds-success” 
(preferential attachment) formalism. We will reveal the mechanics behind such 
processes and will show that f(n), for n fixed, is decreasing as a function of 
system size. 
 
The third section deals with an interpretation of the Naranan-Egghe formalism 
(fractal theory of the growth of the number of sources and the number of 
corresponding items, leading to Lotkaian informetrics) in the framework of IPPs  
without low-productive sources. We show that this model leads to low values of 
the Lotka exponent (denoted as α).  
 
In the fourth section we adopt the positive reinforcement model of IPPs (Egghe, 
2005a) to the case of systems without low-productive sources. We generalize the 
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results obtained in (Egghe, 2004a, 2005a) by showing that the evolution of such 
systems can be described by 
 

( ) Cf j
jα

=                                                          (3) 

 
defined on [a, +∞ [, where the exponent α decreases and a increases over time. 
This yields a complete description of the growth of such systems and agrees with 
the result about α, as obtained in the previous section. 
 
In the fifth section we present some results related to fitting real data. These data 
deal with country sizes, city sizes, and database sizes. They confirm the main 
features of our theoretical models. The paper closes with some open problems 
and conclusions. 
 
 
The success-breeds-success formalism and sources without low-
productive sources 
 
General aspects of success-breeds-success 
 
Success-breeds-success (SBS), also known as preferential attachment, is a 
formalism describing how sources and items grow in time. It originates with 
Herbert Simon (1955) and was introduced in the information sciences by Price 
(1976). For further details we refer to Egghe (2005a). 
 
SBS is a discrete approach. At each tick a new item is created. At any moment, 
the total time passed is set equal to the total number of ticks and hence to the 
total number of items created. The formalism describes how the new item t+1 
(hence at time t+1) is linked to a source. Creation of a new item leads to the 
following alternatives: 
 
(i) Source creation alternative: with probability c(t) ∈  [0,1] this new item is 
created (or attached to) a new source, i.e. a source that did not yet exist at time t; 
(ii) General SBS alternative: with probability 1- c(t) the new item is created (or 
attached to) an already existing source. Then, with probability x(t,n) ∈ ]0,1] this 
item is created by a source that had n items at time t (n = nmin(t), .., nmax(t)). 
 
Formulated in this generality the formalism is more general than pure success-
breeds-success. Indeed, in pure SBS the probability x(t,n) is required to increase 
with n. Note also that for a fixed situation at time t, there is a lower and an upper 
bound for the number of items that actually occur: 1 ≤ nmin(t) < nmax(t) ≤ t. We next 
generalize a result shown in (Egghe & Rousseau, 1996), see also (Egghe, 2005a, 
Chapter I). 
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Theorem. For every t = 1, 2,… let f(t,n) denote the number of sources with n 
items at time t. Let Et(f(t+1,n)) denote the conditional expectation of f(t+1,n) with 
respect to t, i.e. the average of all possibilities at time t+1, given the situation at 
time t. Then, for n = nmin(t)+1, .., nmax(t) 
 

Et(f(t+1,n)) = f(t,n) + (1-c(t))(x(t,n-1)-x(t,n))                             (4) 
 
 

for n = nmin(t) = 1:  Et(f(t+1,1)) = f(t,1) + c(t) - x(t,1) (1-c(t))                           (5) 
 

and for n = nmin(t) ≠ 1:  Et(f(t+1, nmin(t))) = f(t, nmin(t)) - x(t, nmin(t)) (1-c(t))       (6) 
 

 
Proof. Clearly, for n = nmin(t)+1, .., nmax(t):  
 
Et(f(t+1,n)) = c(t)f(t,n)  
                  + (1-c(t)).[x(t,n)(f(t,n)-1) + x(t,n-1)(f(t,n)+1)+(1-x(t,n)-x(t,n-1))f(t,n)],  
 
yielding equality (4). For n = nmin(t) = 1, we have: 
 
Et(f(t+1,1)) = c(t).(f(t,1)+1)+(1-c(t)).[x(t,1)(f(t,1)-1)+(1-x(t,1))f(t,1)], 
 
yielding equation (5). Finally, for n = nmin(t) ≠ 1 
 
Et(f(t+1,nmin(t))) = 
     c(t).(f(t, nmin(t)))+(1-c(t)).[x(t, nmin(t))(f(t, nmin(t))-1)+(1-x(t, nmin(t)))f(t, nmin(t))],  
 
leading to equation (6). 
 
We now present an interpretation of this result in the context of IPPs without low-
productive sources. 
 
SBS for systems without low-productive sources 
 
It is not possible to derive analytical forms for f(t,n), even for concrete c(t) and 
x(t,n), due to the occurrence of the conditional expectation Et. Nonetheless, the 
simple theorem shown above helps us interpreting the evolution of general IPPs 
and, especially, those without low-productive sources. 
 
In the introductory section we briefly described an evolution starting with systems 
where the majority of sources had low productions (a typical case being scientific 
author productions), over systems where sources with one item exist, but they 
are not the majority (e.g. articles in chemistry and the number of authors of these 
articles), leading finally to systems without low-productive sources, i.e. f(n) = 0 for 
n = 1, …, nmin -1 (e.g., cities and their inhabitants). The natural number nmin is the 
smallest one for which f(n) ≠ 0. We refrain from calling this evolution as one 
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going from ‘young’ to ‘old’ systems. While this may be true for systems without 
low-productive sources (any city has very humble origins), this is certainly not the 
case for the classical cases studied in informetrics, where there are always 
sources (authors, journals, articles) producing a small number of items 
(publications, articles, citations). The study of the differences between these 
systems, and the causes leading to these differences is left as an open problem. 
 
When a system without low-productive sources reaches the end of its evolution 
c(t), the probability of the creation of a new source is almost zero. Yet, originally 
c(t) must have been very high (in the beginning many new sources must have 
been created). This is true for cities and countries: very few new countries or 
municipalities are created nowadays). So we conclude that systems without low-
productive sources are characterized by 
 

c(t) ≈ 0                                                          (7) 
 
for t large. Interpreting equation (7) as c(t) = 0 (such systems will be called stable 
systems) yields the following forms for equations (4), (5) and (6): 
 

Et(f(t+1,n)) = f(t,n) + x(t,n-1) - x(t,n)                                (8) 
 
for n = nmin(t)+1, .., nmax(t),  

 
and  Et(f(t+1,n)) = f(t,n) - x(t,n)                                   (9) 

for n = nmin(t). 
 
We derive from equation (9) that, as x(t, nmin(t)) > 0 and whatever the exact value 
of x(t, nmin(t)):  
 

Et(f(t+1, nmin(t))) < f(t, nmin(t))                                            (10)  
 
If we suppose now, moreover, that we have pure SBS, i.e. x(t,n) > x(t, n-1) for n 
= nmin(t)+1, …,nmax(t), then (9) yields that: 
 

Et(f(t+1,n)) <  f(t,n)                                               (11) 
 
By induction on t inequalities (10) and (11) also yield that, for t’ > t: 
 

Et(f(t’,n)) <  f(t,n)                                                (12)                            
 
for n = nmin(t), .., nmax(t), (where we have used that Et-1 Et = Et-1, by the definition 
of a conditional expectation). The meaning of inequality (12) is that for all n = 
nmin(t), .., nmax(t), and t’ > t, averaged over our knowledge at time t, we expect to 
have fewer and fewer sources with n items and this for all possible n, i.e. n 
between nmin(t) and nmax(t). This result is in agreement with (Baayen, 2001, p. 52).  



 7

Note, however, that equation (10), derived without the extra pure SBS 
assumption, already suggests that f(t, nmin(t)) decreases, and hence is expected 
to become zero. This leads – intuitively – to a window nmax(t) - nmin(t), moving to 
the right. 
 
The use of the SBS formalism yields a first, partial, explanation for the 
occurrence of size-frequency functions f(n) (we have dropped the symbol t) 
having low values for small n  (in the limit this might lead to f(n) = 0 for n = 1, …, 
nmin -1). We do not think that it is possible to derive more relevant facts from the 
SBS - conditional expectation - model. In the following sections we will derive 
more concrete results.  
 
 
An argument explaining the frequent occurrence of alpha exponents 
between 1 and 2 for the size-frequency function of IPPs without low-
productive sources, based on the Naranan-Egghe formalism 
 
 
Assuming that IPPs without low-productive sources can be described by a size-
frequency function of the form 
 

( ) Cf j
jα

=                                                           (1) 

 
we will show in this section that the exponent α is expected to have a low value, 
i.e. lies between 1 and 2. 
 
 
The following theorem is essentially due to Naranan (1970), see also (Egghe, 
2005a,c). 
 
Naranan’s Theorem. Consider an arbitrary IPP, and assume that 
(i) the number of sources grows exponentially in time: 

                                                                 (13) 1 1( ) tN t c a=
where N(t) denotes the total number of sources at the time t, c1 > 0, a1 > 1; 
 
(ii) the number of items in each source grows also exponentially in time, where 
the growth rate is the same for each source: 

2 2( ) tj t c a=                                                               (14) 
where j(t) denotes the number of items in each source at time t, c2 > 0, a2 > 1. 
 
Then the size-frequency function of this IPP has the form 

( ) Cf j
jα

=                                                               (15) 
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where j ≥ c2 [this corrects a small mistake in Egghe (2005 a,c) where it is written 
that j  ≥ 0. The argument given in Egghe (2005 a,c) is, however, still valid] and 
where  
 

1

2

ln( )1
ln( )

a
a

α = +                                                                (16) 

 
In Egghe (2005 a,c) Naranan’s theorem has been extended and reinterpreted as 
follows: 
 
Theorem (a fractal interpretation of Naranan’s theorem). Under the conditions of 
Naranan’s theorem this IPP is a self-similar fractal with fractal dimension D, given 
by 
 

1

2

ln( )1
ln( )

aD
a

α= − =                                                        (17) 

 
 
These results will next be used in the framework of IPPs without low-productive 
sources. Assume that we have such an IPP, then a1 ≈ 1 (but larger than 1). 
Hence the size-frequency function of this IPP is 
 

( ) Cf j
jα

=                                                               (18) 

 
where j ≥ c2, and α ≈ 1 (but larger than 1). Since the Naranan model is rather 
general (it does not go into specific details) and does not aim at providing a fitting 
method for real situations, we just conclude from the previous observations that 
for IPPs without low-productive sources, the alpha-value is expected to be low. 
Classically (Lotka, 1926) α is close to two, hence alpha-values between 1 and 2, 
can be considered to be ‘low’. Moreover, the value two divides the set of 
Bradford curves, i.e cumulative rank-frequency representations on a semi-log 
plot, into two distinct classes: for α ≥ 2 this curve is convex, for α < 2 is shows a 
so-called Groos droop at the end, i.e. the Bradford curve is convex for small r-
values, but then has an articulation point where the curve becomes concave 
(Rousseau, 1988).  
 IPPs without low-productive sources have low alpha-values implying that 
such systems have a low fractal dimension. Indeed, D = α – 1 takes here a value 
between zero and one.  
 
Note that j ≥ c2 includes that 0 = f(1) = f(2) = … Yet, this is only part of what we 
hope to explain. Indeed, we think that nmin increases during the growth process of 
the IPP, while the number c2 is a constant.  Such a growing lower bound, 
combined with small exponents α will be obtained when using a positive 
reinforcement argument.  
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The fact that IPPs without low-productive sources usually have low alpha-
exponents is confirmed by Rosen & Resnick (1980). They present a table of so-
called Pareto exponents (our βs in equation (3)) for city sizes in 44 countries. The 
average Pareto exponent in their list is 1.136, with a minimum of 0.81 and a 
maximum of 1.96. These values correspond to an average α-value of 1.88 and a 
minimum and maximum value of 1.51 and 2.23. 
 
 
A positive reinforcement approach to systems without low-
productive sources 
 
Definition. An IPP is said to be mature if growth in the number of sources has 
stopped. It may only grow through an increase in the number of produced items. 
 
 
Suppose that a mature IPP without low-productive sources is given. Tracking its 
further growth we assume that the number of sources is T (constant) and the 
total number of produced items is A. Its rank-frequency function is denoted as gA. 
Assume now that gA+1, the rank-frequency function when a new item has been 
produced, is given as:  
 

( )1( ) ( ) A

A A Ag r B g r γ
+ =                                                 (19) 

 
for , B[0, ]r T∈ B

ds

s

< +

A > 1, γA > 1. Equation (19) expresses the fact that sources with the 
higher number of items grow relatively faster than the ones with a lower number 
of items. This is another way of expressing success-breeds-success (namely 
without conditional expectations). As 
 

1
0

1 ( )
T

AA g s++ = ∫                                                        (20) 

 
the parameters in equation (19) are related through the equality: 
 

                                                             (21) ( )
0

1 ( ) A

T

A AA B g s dγ+ = ∫
 
We take γA > 1 such that 
 

( )
0

( ) 1A
T

AA g s ds Aγ< ∫                                                (22) 
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Clearly, as ,  γ
0

( )
T

AA g s d= ∫ s A must be taken larger than one. Because of the right-

hand inequality in (22) also BBA must be larger than 1. Yet, equation (22) leaves 
some freedom in the choice of the parameters. Note also that parameters BAB  and 
γA are assumed to depend on A. These assumptions lead to the following 
theorem, explaining the size-frequency structure of IPPs without low-productive 
sources. 
 
Theorem 
 
Assume that we have a mature IPP growing from A to A+1 items such that the 
relation between successive rank-frequency functions is given as:  
 

1( ) ( ( )) A
A A Ag r B g r γ
+ =                                              (19) 

 
for , B[0, ]r T∈ BA > 1, γA > 1. If the size-frequency function fA is given as: 
 

( )
A

A
A A

A

Cf j
jα

=                                                         (23) 

 
with jA ≥ BA ≥ 1, αA > 1, then 
 

( )
1

1

1
1 1 1

1
1

( ) A

A
A

AA A
A

A A

A
A A

A
A

C B
Cf j
jj

α
γ

αα γ
γ

γ
+

−

+
+ + + −

+
+

= =                                                    (24) 

 
with,   

                          
1

1 1
1A

AA A A A
A A

A A

C BC and
α
γ α γα

γ

−

+ + γ
+ −= =                                (25) 

 
 
Consequently: 1A Aα α+ <  and 1

A
A A Aj B jγ+ = . Finally, 1 . A

A A A AB B B Bγ
+ = > , showing 

that the lower bound for the argument of fA is strictly increasing in A. 
 
Proof.  The proof is an extension of a result shown in Egghe (2004a, 2005a). 
Using the relations between rank and size-frequency functions (Egghe, 2005a) 
we have for all , T constant: [0, ]r T∈
 

, 1

1

1
1 1 1( ) ( )

m A

A

A A A
j

r g j f k dk
ρ +

+

−
+ + += = ∫                                              (26) 
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and                                                                               (27) 
,

1( ) ( )
m A

A

A A A
j

r g j f k dk
ρ

−= = ∫
where , andm A m A, 1ρ ρ +  denote the maximum item densities in a source. Hence, 
using the relation jA+1 = gA+1(r) (see equation (26)) and jA = gA(r) (equation (27)), 
we have, by (19): 
 

1
A

A A Aj B jγ+ =                                                        (28) 
 
Inserting equation (28) in (26) and (27) yields: 
 

, 1 ,

1( ) ( )
m A m A

AA A

A A
jB j

f k dk f k dk
γ

ρ ρ+

+ =∫ ∫                                                (29) 

 
for all jA ≥ BA. Taking in equation (29) the derivative with respect to jA yields: 
 

1
1( ) (A

A A )A A A A A A Af B j B j f jγ γγ −
+− =−                                        (30) 

 
for all jA ≥ BA. Using equations (28) and (23) leads to: 
 

1 1 1

( )( )
A

A A A
A A

A A A A A A

f j Cf j
B j B jγ αγ γ+ + 1A Aγ− + −= =                                         (31) 

 
Again using equation (28) yields: 
 

( )

1

1 1 1

1

( )

A

A

A A

A

A A

A
A A

A

C B

f j
j

α
γ

α γ
γ

γ

−

+ + + −

+

=  

 
which proves equations (24) and (25). As j A+1 is defined for values larger than or 
equal to BBA+1 en jA is defined for values larger than or equal to BAB

≥

, equation (28) 
shows that  
 

1 1A
A A A AB B B Bγ
+ = >                                                        (32) 

 
Equation (32) shows that the lower bound of the argument of fA is strictly 
increasing in A.  Finally, we show that αA+1 < αA . 

Indeed, as 1
1A A

A
A

α γα
γ+
+ −

=  we have to show that 
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( )( )

1

1 .
0 1 1 .

A A
A

A

A A A A

A A

or

or

α γ α
γ

α γ α γ
α γ

+ −
<

+ − <

< − −

 

 
This last inequality is true, as αA and γA are assumed to be strictly larger than 1. 
This proves the theorem. 
 
Remarks 
 
We took BBA > 1 in the model discussed above. If we take BAB  =1 as a limiting case, 
then equation (20) becomes: 
 

( )
0

( ) 1A
T

Ag s ds Aγ = +∫                                                       (33) 

 
while (19) becomes: ( )1( ) ( ) A

A Ag r g r γ
+ = . Since γA > 1 this situation is an example 

of a positively reinforced IPP. This means that there exists a strictly increasing 
function φ such that φ(1) = 1, φ(x) ≥ x and  
 

( )1( ) ( )Ag x g xϕ+ = o A                                                      (34) 
 
for all . Such positively reinforced IPPs were studied in (Egghe 2004a, 
2005a). There the relation between successive Lotka-exponents (equation (25)) 
was already proved. The difference is that in the earlier approach j

[0, ]r T∈

A always (i.e. 
for all A) starts in the point 1. The extension given in this article to an increasing 
lower bound for values for the variable jA is new. It explains the occurrence of 
IPPs without low-productive sources, but, clearly, the relation between 
successive Lotka-exponents is not influenced. 
 
 
Decreasing Lotka-exponents as occurring in the previous theorem lead to the 
following consequence. 
 
Corollary. If L(h) denotes the Lorenz curve of a function h, then: 
 

L(fA) >L(f A+1) 
 

L(gA) < L(g A+1) 
 
These inequalities show that the size-frequency inequality decreases, while the 
rank-frequency inequality increases.  
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Proof.  We refer the reader to (Egghe 2005a,b) for the definition of the Lorenz 
curve of a continuous function. In these references (see e.g. Egghe, 2005a, p. 
204-205) it is shown that the Lorenz curve of the size-frequency function 
increases strictly in α (the Lotka-exponent) while the Lorenz curve of the rank-
frequency function decreases in α. This proves this corollary. 
 
 
Practical examples and discussion 
 
The determination of Lotka’s α for systems without low-productive items is not 
straightforward. In informetric studies Lotka’s size-frequency function usually 
begins with many sources producing one item. Indeed, the mode of Lotka’s 
distribution is always situated at the point 1. This is not the case here. Hence, a 
program such as LOTKA (Rousseau & Rousseau, 2000) cannot be used.  
 
Consequently, we will determine Lotka’s α from the corresponding β in 
Mandelbrot’s function. Recall that Mandelbrot’s rank-frequency function, denoted 
as g(r), and the relation between the exponents α and β are given as (Egghe, 
2005a, p. 128): 
 

( ) , [0, ]
(1 )

Eg r r T
Fr β= ∈

+
                                                (2) 

 
1

1
and β

α
=

−
                                                                     (3) 

 
When we determine α based on formulae (2) and (3) we refer to this approach as 
method M. As an alternative, Lotka’s α can also be determined from the 
cumulative rank-frequency form, denoted as G(r) (Egghe, 2005a, p. 128; 
Rousseau, 1988): 
 

2
12 1 1( ) , [0, ]

2 m m
CG r r r T

C

α
αα α αρ ρ

α

−
−− −

⎛ ⎞−⎛ ⎞⎜= − − ∈⎜ ⎟⎜− ⎝ ⎠
⎝ ⎠

⎟
⎟

                        (35) 

 
where ρm  denotes the highest density of items in a source. Determining α from 
equation (35) will be called method R. 
 
In the examples that follow we will apply these two methods where curve fitting is 
performed using the Marquardt algorithm for nonlinear regression as 
implemented in Statgraphics ©. 
 
Note that when it comes to fitting there is no difference between ‘natural’ IPPs 
without low-productive sources and other IPPs for which the size-frequency 
function has been left-truncated (or equivalently: the rank-frequency function is 
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right-truncated). For the truncated IPPs there is, however, no special reason to 
expect low values of the exponent α. 
 
 
Test 
 
In order to check how well the proposed algorithms work we first test them on a 
truncated version of Bradford’s Applied Geophysics data. More precisely, we only 
consider the first 45 sources (beginning with the most productive one), restricted 
moreover to one source with a specific production. More precisely, there are, e.g., 
four sources with production 16, occupying ranks 10, 11, 12 and 13. We only 
kept the one at rank 13.  
 
The alpha-value for the complete data obtained using method R is 2.07 [R² = 
0.9974] (Rousseau, 1994b), while using method M it is 1.81 [R² = 0.9746]. The 
truncated data yield 2.13 [R² = 0.9981], using method R, and 1.75 using method 
M [R² = 0.9699]. Differences between the two methods seem larger than 
between complete and truncated versions. Close inspection of the data 
represented on a semi-log scale shows a small ‘droop’ at the end. This indicates 
that the ‘real’ alpha-value is somewhere near 1.9. Hence, in this test, method M 
seems to give the better result. We postpone final judgment as to which method 
is the better of the two till the end of this section. 
 
 
Example 1. Country sizes 
 
Countries and their number of inhabitants are good examples of IPPs without 
low-productive sources. There clearly are no countries with 1 or two inhabitants. 
Using data from the website: www.gazetteer.de on the number of inhabitants of 
237 countries (visited on July 10, 2005) we obtained an α-value of 1.69 with 
method R [R² = 0.9876], and an α-value of 1.64 with method M [R² = 0.9369].  
Fig. 1 illustrates the data and the best-fitting curve according method R. These α-
values are, as predicted, ‘small’, i.e. smaller than two.  
 
 

http://www.gazetteer.de/
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Fig. 1 Countries of the world and best-fitting cumulative rank-frequency function. 
Ranks on the abscissa, cumulative population (in 109 persons) on the ordinate 
axis. Only selected data are shown. 
 
 
Example 2. Municipalities in Belgium (July 1, 2004 data) 
 
The number of inhabitants of each municipality in Belgium can be found at: 
www.statbel.fgov.be/figures/download_nl.asp (visited on June 5, 2005) 
 
We obtained an α-value of 2.31 with method R [R² = 0.9978], and an α-value of 
2.54 with method M [R² = 0.9851].  Fig. 2 illustrates the data and the best-fitting 
curve. These exponent values are not ‘small’, suggesting that these data are of a 
different nature. This is, indeed, the case. In 1831 Belgium consisted of 2739 
cities and villages. On January 1977 (1983 for the city of Antwerp) the existing 
cities and villages of Belgium were merged, such that only 596 municipalities 
remained. Merging has been done in such a way that municipalities are 
approximately of the same size. More equality in size means that due to this 
human intervention, the Lorenz curve of the rank-frequency function g, denoted 
as L(g), approached the diagonal line of total equality. As explained in (Egghe, 
2005a,b) such an operation implies an increase in the corresponding α-exponent 

http://www.statbel.fgov.be/figures/download_nl.asp
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for the size-frequency function f. Hence it is not surprising to find a best-fitting α-
value which is somewhat larger than expected.  
 
Fig.2 
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Fig. 2 Belgian population and best-fitting cumulative rank-frequency function. 
Ranks on the abscissa, cumulative population on the ordinate axis. Only selected 
data are shown. 
 
 
Example 3. Local councils in Malta (1997 data) 
 
Malta is only a small country where a merging operation such as in Belgium did 
not take place. As we had access (from the local Yellow Pages) to the complete 
data for the 68 local councils we checked if these data were more according to 
our predictions. (Actually data are only provided for 67 local councils, as the 
population of Mtarfa is included in that of Rabat (Malta)). 
 
For the Malta data we found an α-value of 1.12 with method R [R² = 0.9995], and 
an α-value of 1.31 with method M [R² = 0.9785].  Fig. 3 illustrates the data and 
the best-fitting curve. These exponent values are ‘small’, corresponding to the 
predictions of our theory. 
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Figure 3. Population of Maltese local councils and best-fitting cumulative rank-
frequency function. Ranks on the abscissa, cumulative population on the ordinate 
axis. Only selected data are shown. 
 
 
Example 4. Database sizes 
 
Our next example deals with database size.  Although any database begins in 
theory with one source and one item, in reality when considering a group of 
databases, there never are databases (sources) with a small number of items. 
The specific data we will use, however, are of the left-truncated type. Indeed, we 
use data presented in (Hood & Wilson, 2003) on database sizes, limited to the 
topic “fuzzy set theory”. Since we only have data on the twenty largest databases, 
this example is indeed a left-truncated case. So, whether or not the complete 
data set follows a power law, we only try to model its tail behavior.  
 
Table 1. Database sizes (number of documents present) on the topic “fuzzy set 
theory”. Data taken from (Hood & Wilson, 2003). 
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Rank Production 

1 5,815 
2 5,149 
3 4,980 
4 2,902 
5 1,708 
6 980 
7 677 
8 652 
9 556 
10 373 
11 365 
12 308 
13 265 
14 261 
15 244 
16 212 
17 154 
18 132 
19 102 
20 76 

 
According to method M α = 1.001 [R² = 0.9524], method R yields α = 1.09 [R² = 
0.9919].  The result using method M does not lead to a good fit (visually), its R²-
value is smaller than that for the R-method, and the resulting α basically yields a 
divergent curve. For this reason we conclude that α = 1.09 is the best value. 
Although this value is small there was no a priori reason to expect a small α-
value, as the data are truncated.  
 
Example 5. Unique documents in databases 
 
Hood and Wilson (2003) present another interesting table, namely the number of 
unique documents in each of the above twenty databases. This table is ranked in 
decreasing order, and hence ranking is not necessary the same as for table 2. 
 
Table 2. Unique documents (taken from (Hood & Wilson, 2003)) 
 
 
Rank Unique documents 

1 2,456 
2 1,650 
3 1,618 
4 681 
5 431 
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6 336 
7 316 
8 266 
9 234 
10 151 
11 138 
12 126 
13 120 
14 99 
15 86 
16 82 
17 62 
18 57 
19 56 
20 56 

 
According to method M α = 1.14 [R² = 0.9671], method R yields α = 1.33 [R² = 
0.9959].  Although this value is small also here there was no a priori reason to 
expect a small α-value, as the data are truncated.  
 
 
Conclusions and open problems 
 
In this article we studied IPPs without low-productive sources. Although such 
systems must, by necessity, have evolved from systems in which some sources 
have low-productivity, we cannot say that such systems are necessarily old (this 
is certainly not the case for texts or web links), nor can we say that systems 
where most sources produce just one item are necessarily young (any 
bibliography of authors or journals). 
 
We established a success-breeds-success mechanism in which, from some point 
in time on, no new sources are created. Such systems are called mature systems. 
When time increases further on in mature systems the expected number of 
sources with n  items strictly decreases, if such a source already existed. An 
adaptation of the Naranan-Egghe model indicates that IPPs without low-
productive sources must have small alpha exponents (α < 2). Yet this model 
does not provide an explanation why the minimum number of items in a source is 
increasing in time. 

∈�

 
An extension of the positive reinforcement model explains all the essential 
properties. Using this approach we have shown that, when time increases in 
mature systems the alpha exponent of the Lotka size-frequency function 
decreases, while, moreover, the minimum source size increases. Another 
argument in favor of lower alpha-values is presented in the appendix. 
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Examples related to country sizes, city sizes and databases illustrate the 
concepts and results discussed in this article.  
 
Recall that our positive reinforcement model assumes that the size-frequency 
function of an IPP can be modeled through a decreasing power density function, 
corresponding to a rank-frequency power (Zipf-Pareto) law (Gabaix, 1999). Other 
models may and do exist. William Reed (2001, 2002) for instance derives a 
double-Pareto-lognormal model for the size-frequency distribution of human 
settlement. Consequently, our derivations only apply to his tail distribution.  
 
An intriguing open problem is to find an explanation why certain IPPs always stay 
within the confines of the classical framework where the majority of sources have 
only one item [a necessary condition seems to be that there should be a virtually 
infinite possibility for creating new sources, as in the author case], why some 
IPPs move to a situation where f(1) ≠ 0, but the mode of f is reached for a value n 
> 1 (e.g. articles and their references, web sites and outlinks), and, finally, why 
some IPPs may reach a state where f(n) = 0 for n = 1, …, nmin -1, as for texts, 
databases sizes, countries or municipalities. This problem is related to that of the 
emergence of cities (Batty, 2003), the writing process of texts (Baayen, 2001) 
and simulations of the generation of bibliographies, e.g. through some form of 
success-breeds-success mechanism (Wilkinson, 1972; Brookes, 1988). 
 
This article is only exploratory in nature. We do not claim to have found final or 
complete answers to the questions studied here. We, nevertheless hope to have 
shed some light on the intriguing phenomena of IPPs without low-productive 
sources, and on the evolution of IPPs.  We hope that many colleagues will be 
interested in continuing this type of study, including fitting new data sets and 
explaining the results of this fitting exercise. 
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Appendix 1 
 
In this appendix we show that in the framework of so-called Lotkaian informetrics, 
decreasing alpha-values are quite natural when growth in the number of sources 
stagnates. This argument is, however, restricted to alpha > 2, while in general we 
expect lower α-values. For this reason we only mention this argument in an 
appendix. 
 
 
Lotkaian informetrics and stagnation in the growth of sources 
 
Assume that we work in the framework of Lotkaian informetrics, i.e. the size-
frequency function of the system is given by a power law: 
 

( ) Cf j
jα

= . 

 
Then Egghe (2004b,2005a) has shown the following. 
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If the total number of items, denoted as A, is strictly larger than the total number 
of sources, denoted as T, and if ρm the maximum item per source density is 
equal to infinity, then the following relation is true: 
 

2A T
A T

α −
=

−
                                                        (36) 

 
Recall though that the theory leading to equation (36) implies that α > 2. 
 
If now the number of sources stagnates, say, becomes a constant, while the 
number of items still increases, then, clearly α decreases (by equation (36)). This 
finding implies that for IPPs without low-productive sources, very high alpha-
values are not probable at all.  
 


