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ABSTRACT 

 

In a previous paper we introduced a general transformation on sources and one on items in an 

arbitrary information production process (IPP). In this paper we investigate the influence of 

these transformations on the h-index and on the g-index. General formulae that describe this 

influence are presented. These are applied to the case that the size-frequency function is 

Lotkaian (i.e. is a decreasing power function). We further show that the h-index of the 

transformed IPP belongs to the interval bounded by the 2 transformations of the h-index of the 

original IPP and we also show that this property is not true for the g-index. 
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I.  Introduction 

 

We suppose that we have a general information production process (IPP) with 

[ ] ( )mf : a, , j f j +® ®¡  as size-frequency function and with [ ] ( )F: 0,T ,r F r+® ®¡  as rank-

frequency function. Here j denote item densities and r rank densities; a and 
m  are the 

minimum and maximum item densities and T denotes the total number of sources. We will 

limit ourselves to a 1= . Note that F usually is denoted by g (see Egghe (2005)) but to avoid 

confusion with the g-index we denote the rank-frequency function by F. 

 

Such a general IPP can be transformed in many ways, hereby describing a possible evolution 

of this IPP into another one, which we will denote by using asterisks * : size-frequency 

function ( )mf : a , , j f j* * * + * * *é ù® ®ê úë û
¡  and rank-frequency function ( )F : 0,T ,r F r* * + * * *é ù® ®ê úë û

¡ . 

 

A very general way of describing the evolution from one IPP to another one is by applying 

two transformations: one on the sources: 

 

 [ ]: 0,T 0,T *é ù® ê úë û
 

(1) 

 ( )r r r*® =  

 

(  differentiable and increasing ( )0 0 =  and ( )T T *= ) and one on the items: 

 

 [ ]m m: a, a ,  * *é ù® ê úë û
 

(2) 

 ( )j j j*® =  

 

(  differentiable and increasing ( )a a *= , ( )m m  *= ). These two functions   and   the 

define the new rank-frequency function g* : 

 

 ( ) ( )( ) ( )( )F r F r F r * * *= =  (3) 
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for [ ]r 0,TÎ . 

 

General properties are studied in Egghe (2007a) where one also presents a formula for the 

transformed size-frequency function f * . We proved the following result: 

 

 ( ) ( )
( )( )

( )

1' F j
f j f j

' j





-

* * =  (4) 

 

for ( )j j* =  (we assume   strictly increasing so that ( )' j 0 ¹ ). In the case that ( ) br Ar =  

and ( ) cj Bj =  ( )A,B 0, b,c 0> >  and in case f is the function of Lotka: 

 

 ( )
C

f j
j

=  (5) 

 

with 
m = ¥  we prove in Egghe (2007a) that 

 

 ( )
D

f j
j 

* *

*
=  (6) 

 

where  

 

 
( )( )

( )1 b

b 1 1 cCAbE B
D

c





-

- -

=  (7) 

 

and where 

 

 
( )c 1 b

c




+ -
=  (8) 

 

and where E is the parameter in the rank-frequency function 

 

 ( )
E

F r
r

=  (9) 
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which is equivalent with (5) as is well-known; here  

 

 

1

1C
E

1





-æ ö÷ç= ÷ç ÷çè ø-
 (10) 

 

and 

 

 
1

1



=

-
 (11) 

 

- see Egghe (2005), Exercise II.2.2.6 or Egghe and Rousseau (2006a) where the complete 

proof is given. 

 

The importance of these basic transformation results has been described in two papers. In 

Egghe and Rousseau (2006b) one shows that IPPs which grow such that the number of 

sources remains constant but where the number of items in each source grows extensively, 

have low Lotka exponents  . This proof is given using formula (8) and confirmed in several 

examples of communities such as country sizes or municipality sizes or even database sizes. 

V. Cothey (2007) uses the same formula (8) to predict certain evolutions in (parts of) WWW. 

 

We can now wonder what will be the effect of the above transformations on the h-index and 

g-index of an IPP. We first recall the definitions of these indexes. Hirsch (2005) defines the h-

index as the largest rank h of a source such that this source (and hence also the sources on a 

lower rank) has h or more items (Hirsch uses the paper-citation terminology hereby defining 

the h-index for an author). Since here we work in the continuous case where we only have 

continuous functions (hence where all values between two range values are attained) we have 

the following easy definition of the h-index: 

 

 ( )F h h=  (12) 

 

In Egghe and Rousseau (2006a) we show that h always uniquely exists. An alternative 

definition is 
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 ( )
h

f j dj h
¥

=ò  (13) 

 

as is readily seen.  

 

The h-index, introduced only 2 years ago, has become a real hype in and even outside 

informetrics: Ball (2005, 2007), Bornmann and Daniel (2005, 2007a), Braun, Glänzel and 

Schubert (2005, 2006) (introducing the h-index for journals, yielding a new journal indicator 

to be preferred above the impact factor – see Miller (2006)), Glänzel (2006a,b), van Raan 

(2006), Bar-Ilan (2006), Rousseau (2007a), Burrell (2007a,b), Glänzel and Persson (2005), 

Egghe (2007b), Saad (2006), Oppenheim (2007), Hirsch (2007), Barendse (2007), Wan, Hua 

and Rousseau (2007), Rao and Rousseau (2007), Vinkler (2007), Vanclay (2007) and see also 

the papers in the special issue on the Hirsch index in Journal of Informetrics 1(3), 2007: 

Schubert and Glänzel (2007), Beirlant, Glänzel, Carbonez and Leemans (2007), Costas and 

Bordons (2007) and Bornmann and Daniel (2007b). 

 

Banks (2006) introduces the interesting notion of the h-index for topics and compounds – see 

also Egghe and Rao (2007a) and the STIMULATE6 Group (2007). Schubert (2007) and 

Prathap (2006) introduce h-indices for institutions via the notion of “successive h-indices” 

(see also Egghe (2007c) and Egghe and Rao (2007b)). Let us, finally note that both the Web 

of Science and Scopus offer the h-index in their databases (remarkably quick after its 

introduction in 2005!). 

 

According to Egghe (2006b) – see also Egghe (2006a,c), the h-index has (at least) one 

disadvantage: it does not take into account the exact number of citations of the first h papers. 

In other words, once a paper belongs to the h most cited papers, it does not matter anymore 

how much citations it actually received, even when this number can be very high. Therefore 

Egghe defined the g-index as the highest rank g of a source such that all the sources on this 

and lower ranks have together, at least 2g  items. In the continuous model this gives the 

following defining equation for the g-index: 

 

 ( ) ( )
g

2

0
G g F r dr g= =ò  (14) 
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Alternatively, g is defined via (the less simple) equations 

 

 ( )
j

f j' dj' g
¥

=ò  (15) 

 

 ( ) 2

j
j'f j' dj' g

¥

=ò  (16) 

 

In Egghe (2006b) it is shown that also g uniquely exists. 

 

Of course we assume here that 2I T£  (I = total number of items, T = total number of sources). 

This is not always true since, if 
m = ¥  (what we suppose in this paper), and if f is Lotkaian 

(equation (5)) with 2> , then it follows from 

 

 ( )
1

I jf j dj
¥

= ò  

 

and  

 

 ( )
1

T f j dj
¥

= ò  

 

that (see also Proposition II.2.1.1.1 in Egghe (2005)) 

 

 
1

I T
2





-
=

-
 

 

(I is called A in Egghe (2005)), so I can be larger than 2T  if 2>  is close enough to 2. In 

practise one can add fictitious sources with 0 items so that g can be defined beyond T. But in 

this theoretical paper this is no problem: we just assume that 2I T<  which implies 

 

 
1

T
2





-
<

-
 

 

hence  
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2T 1

T 1


-
>

-
 

 

which is almost always true if 2>  since T usually is large.  

 

It is further trivial that g h³  in each IPP. 

 

In Egghe (2006b,c) it is shown that the g-index has more discriminatory power than the h-

index. This finding was also confirmed in Schreiber (2007) and Tol (2007). The h- and g-

index (and some other indices) can be calculated using the software program “Publish or 

Perish” (see http://www.harzing.com/pop.htm). 

 

The above explanations of the importance of transformations in IPPs and of the importance of 

the h- and the g-index should make it clear that the study of the influence of transformations 

on the h- and g-index is equally important. 

 

In the next section the analogue definitions of the h- and g-index in the transformed system 

will be studied and calculated in general systems and in case we have a Lotkaian system (5). 

 

In the third section we prove, denoting by h the h-index in the original system and by h*  the 

h-index in the transformed system, that always 

 

 ( ) ( )h h h *£ £  (17) 

 

or  

 

 ( ) ( )h h h *£ £  (18) 

 

(with strict inequalities if ( ) ( )h h ¹ ). We also show by example that none of the above 

double inequalities are true for the g-index. 

 

Finally we present conclusions and suggestions for further research. 

http://www.harzing.com/pop.htm
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II.  General equations for the h- and g-index in 

general transformed IPPs and in Lotkaian systems 

 

In the sequel we will denote by h and g the h-index and g-index in the original IPP and by h*  

and g*  the h-index and g-index in the transformed IPP, the transformations being given by 

(1), (2) and (3). 

 

II.1  General equations for h
*
 

Theorem II.1: The transformation formula for h is 

 

 ( ) ( )( )
( )1

1

j' h
f j' ' F j' dj' h




- *

¥
- *

=
=ò  (19) 

 

For the proof: see Appendix A 

 

Let us now illustrate how these basic equations can be used in the concrete calculation of h* . 

 

II.2  Calculation of h
*
 given that the original IPP is Lotkaian 

Theorem II.2: We suppose that f is as in (5), the law of Lotka. We will again suppose that the 

transformations are increasing power laws, an important case: for A,B 0,>  b,c 0> : 

 

 ( ) cj j Bj* = =  (20) 

 

 ( ) br r Ar* = =  (21) 

 

Then we have that 

 

 
1 1

h B T


 

-
*

* =  (22) 

 

with   as in (8). 

 

For the proof we refer to Appendix B. 
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This result generalizes the result 

 
1

h T=  (23) 

 

obtained in Egghe and Rousseau (2006a). 

 

We now turn our attention to the calculation of the g-index. 

 

II.3  General equation for g
* 

For the sake of simplicity we will only use equation (14). For the transformed system this 

gives 

 

 ( )
g

2

0
F r dr g

*

* * * *=ò  (24) 

 

By (1) and (3) we have 

 

 ( )( ) ( )
( )1

2g

0
F r ' r dr g



 
- *

*=ò  (25) 

 

which is the basic general equation for g* . 

 

Again we will illustrate its use, given (5), (20) and (21). 

 

II.4  Calculation of g
*
 given that the original IPP is Lotkaian            

Theorem II.3: We suppose that f is as in (5) and   and   are as in (20) and (21). Then 

 

 

1
1 1

1
g B T

2





 





-
-

*
*

æ ö- ÷ç= ÷ç ÷çè ø-
 (26) 

 

with   as in (8). 

 

For the proof we refer to Appendix C. 
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Note that the requirement c 1 b 1 + - <  is needed for the convergence of the integral. For the 

same reason one must require, in the original IPP, that 2>  in order to be able to calculate 

the g-index g. If we work in systems with bounded densities then formula (9) is replaced by 

the function of Mandelbrot (see Egghe (2005)) and the restrictions can be dropped. We do not 

follow this approach since calculations become very intricate. Note also, as is readily seen, 

that restriction c 1 b 1 + - <  is equivalent with 2>  (so exactly the same requirement as 

2>  in the original system). 

 

Formula (26) could also have been obtained from (22) together with the result on the g-index, 

proved in Egghe (2006b) (in our notation): 

 

 

1

1
g h

2







-

* *
æ ö- ÷ç= ÷ç ÷çè ø-

 

 

 

III.  Qualitative study of h
*
 and g

*
 in comparison 

with h and g 

 

Since h*  and g*  are the h-index and g-index of the transformed system it would be logical 

that one can prove relations with ( )h  and ( )h , respectively ( )g  and ( )g , the 

transformed values of h and g, respectively the h-index and g-index of the original system. 

Note that h and g, by definition, can be considered as arguments of   and  . This is clear 

from (12) for h and from (15) for g (implying g T£ , assuming 2I T£  as we do in this paper) 

and since the argument of   is unbounded (since we assume 
m = ¥  in this paper). 

 

We will now show that h*  is limited by ( )h  and ( )h  but that this is not the case for g*  in 

relation with ( )g  and ( )g . 

 

We first prove a Lemma. 
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Lemma III.1: 

For all IPPs we have 

 

 ( )( ) ( )( ) ( )F h F h h  * = =  (27) 

 

Proof: 

This follows readily from (3) and by the fact that the h-index satisfies ( )F h h= , by (12).       □ 

 

Theorem III.2: 

For all IPPs we have 

 

 ( ) ( )h h h * = =  (28) 

 

or 

 

 ( ) ( )h h h *< <  (29) 

 

or 

 

 ( ) ( )h h h *< <  (30) 

 

 

For the proof we refer to Appendix D. 

 

Corollary III.3: 

For all IPPs we have 

 

 ( ) ( )1 1h h h - * - *= =  (31) 

 

or 

 

 ( ) ( )1 1h h h - * - *< <  (32) 
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or 

 

 ( ) ( )1 1h h h - * - *< <  (33) 

 

Proof: 

(31) follows from (28), (32) from (29) and (33) from (30) using that   and   are increasing 

functions.                     □ 

 

We will now show by example that Theorem III.2 (hence also Corollary III.3) is not true for 

the g-index. 

 

Example III.4 

Take Id= , the identity function (hence A b 1= =  and T T*= ) and let ( ) 2j j =  (hence 

B 1= , c 2= ). Let the original IPP be Lotkaian with 3.1=  (and 
m = ¥ ). We have 

1 1

3.1h T T= = , ( )

1 2.1
1 1

3.1
3.1 3.1

1 2.1
g h T 1.5496634T g

2 1.1








-

æ ö æ ö- ÷ ÷ç ç= = = =÷ ÷ç ç÷ ÷ç çè ø è ø-
, ( )

2.1
2 2

3.1
2 3.1

2.1
g g T

1.1


æ ö
÷ç= = ÷ç ÷çè ø

 

2

3.12.4014567T= . By (8) we have 
1

2




+
=  and 

1 1

11 1

2 3

 

  

 

- -

+æ ö æ ö- -÷ ÷ç ç=÷ ÷ç ç÷ ÷ç çè ø è ø- -
, so 

1
2

1
1

1
g T

3










-

+
* +

æ ö- ÷ç= ÷ç ÷çè ø-
 

(by (26) and the fact that T T*=  and B 1= ). Hence 

2.1
2 2

4.1
4.1 4.1

2.1
g T 4.7559171T

0.1

*
æ ö÷ç= =÷ç ÷çè ø

. It is now 

clear that ( ) ( )g g <  and ( )g g* >  if 
2 2

4.1 3.14.7559171T 2.4014567T>  which is true for 

T 76.896529< . So in all these cases 

 

 ( ) ( )g g , g * ù éÏ û ë 

 

proving that Theorem III.2 is not true for the g-index. By interchanging   and   we also see 

that the other inequalities in Theorem III.2 are also not true for the g-index. Note that in the 

above example 

 

 ( ) ( )h h , h * ù éÎ û ë 
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since  

 

 
2 1 2

4.1 3.1 3.1T T ,T
ù é
ú êÎ
ú ê
û ë

 

 

; in fact, for all   

 

 
2 1 2

1T T ,T  +
ù é
ú êÎ
ú ê
û ë

 

 

since 1> , illustrating Theorem III.2. So we see that the factor 

 

 

1

1

2







-

æ ö- ÷ç ÷ç ÷çè ø-
 

 

is responsible for allowing (in some cases) g*  not to belong to ( ) ( )g , g ù é
û ë. One can readily 

verify that, if 10=  in the above example we now have that ( ) ( )g g , g * ù éÎ û ë showing that 

this case can happen too. Indeed, for   and   as above we have 

 

 
0.9

0.19
g T

8

æ ö
÷ç= ÷ç ÷çè ø

 

 

 ( )
1.8

2 0.2 0.29
g g T 1.2361596T

8


æ ö
÷ç= = =÷ç ÷çè ø

 

 

 ( ) 0.1g g 1.1118271T = =  

 

 

9
2 2

11
11 11

9
g T 1.2282875T

7

*
æ ö÷ç= =÷ç ÷çè ø

 

 

which obviously shows that ( ) ( )g g , g * ù éÎ û ë. 
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We can also give an example where 

 

 ( ) ( )g g g * ¹ =  

 

showing that also (28) in Theorem III.2 is false for the g-index. Indeed, take ( ) 2j j = , 

( ) 2r r =  for all j, r. We know that in this case  =  (since b c 2= =  and see (8)). Hence 

 

 

1
1

1
g T

2










-

æ ö- ÷ç= ÷ç ÷çè ø-
 

 

 

1
1

1
g T

2










-

*
*

æ ö- ÷ç= ÷ç ÷çè ø-
 

 

But ( ) 2T T T* = = , so 

 

 

1
2

1
g T

2










-

*
æ ö- ÷ç= ÷ç ÷çè ø-

 

 

But 

 

 ( ) ( )

( )2 1
2

1
g g T

2







 



-

æ ö- ÷ç= = ÷ç ÷çè ø-
 

 

 g .*¹  
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IV.  Conclusions and suggestions for further 

research 

 

We considered a very general double transformation on an IPP: ( )j j®  for the items and 

( )r r®  for the sources such that the rank-frequency function F*  of the transformed IPP 

relates to the rank-frequency function F of the original IPP as follows 

 

 ( ) ( )( ) ( )( )F r F r F r * * *= =  

 

for [ ]r 0,TÎ . 

 

Based on this we show that the basic equation for the h-index h*  of the transformed IPP is 

 

 ( ) ( )( )
( )1

1

j' h
f j' ' F j' dj' h




- *

¥
- *

=
=ò  

 

or, equivalently, 

 

 ( ) ( )( )1 1h F h - * - *=  

 

For the g-index g*  of the transformed system we have the basic equation 

 

 ( )( ) ( )
( )1 g

2

0
F r ' r dr g



 
- *

*=ò  

 

These equations are then used to prove that 

 

 
1 1

h B T


 

-
*

* =  

 

if we have a Lotkaian system 
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 ( )
C

f j
j

=  

 

and where ( ) br Ar =  and ( ) cj Bj =  and where 

 

 
( )c 1 b

c




+ -
=  

 

For g*  we proved 

 

 

1
1 1

1
g B T

2





 





-
-

*
æ ö- ÷ç= ÷ç ÷çè ø-

 

 

for 2> . 

 

Finally we prove that 

 

 ( ) ( )h h h * = =  

 

or  

 

 ( ) ( )h h h *< <  

 

or  

 

 ( ) ( )h h h *< <  

 

for any IPP and we show that none of these inequalities or equalities are generally true for the 

g-index. 

 

The transformations   and   are generalizations of positive reinforcement of IPPs which 

belongs to linear three-dimensional informetrics theory (cf. Egghe (2005), Chapter 3 and 

Egghe (2004), Rousseau (1992)). We leave open to study linear three-dimensional 
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informetrics theory from the point of view of the h- and g-index. More in particular it would 

be interesting to see if conclusions around the h-index and the g-index of the composed IPP 

can be drawn based on the h- and g-indexes of the composing IPPs. 

 

Possibly also other transformations of IPPs can be studied and it would then be interesting to 

study the transformed h- and g-indexes based on the h- and g-indexes of the original IPP, as 

we studied here. 

 

One referee asked the question if these results are true in the discrete setting (after all, h- and 

g-indices are calculated from discrete tables). Certainly the transformation formulae cannot be 

proved in the discrete setting. The reason why we work in the continuous setting is the 

calculability of the formulae. To give a simple example: formula (23): 

 

 
1

h T=  

 

was proved first in Glänzel (2006b) in an approximative way but the continuous derivation, 

given in Egghe and Rousseau (2006a), is exact and more elegant. 

 

It remains an interesting problem to prove (or disprove) the validity of one of the formulae 

(28), (29) or (30) in the discrete setting. To be honest, I do not know if the same result is valid 

in this discrete case and I have to leave it as an open problem. 

 

Appendix A: Proof of Theorem II.1 

1. Using formula (13) 

Clearly, by (13), the analogously defining equation for h*  is 

 

 ( )' '

h
f j dj h

*

¥
* * * *=ò  

 

Using (4) yields 

 

 ( )
( )( )

( )

1

'

j ' h

' F j'
f j' dj h

' j'



* *

-
¥

* *

=
=ò  
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with ( )'j j'* = , hence 

 

 ( ) ( )( )
( )1

1

j' h
f j' ' F j' dj' h




- *

¥
- *

=
=ò  

 

 ( ) ( )( ) ( )( ) ( )
( )1

1 1 1

j' h
f j' ' F j' F' F j' d F j' h




- *

¥
- - - *

=

é ù=ê úë ûò  

 

 ( )( ) ( ) ( )
( )( )1 1k ' F h

f F k ' ' k ' F' k ' dk ' h



- - *

¥
*

=
=ò  

 

where ( )1k ' F j'-= , hence ( )j' F k '= . Finally: 

 

 ( )( ) ( ) ( )
( )( )1 1k ' F h

f F k ' ' k ' d F k ' h



- - *

¥
*

=

é ù=ë ûò  

 

 ( ) ( )( )
( )1

1

j' h
f j' ' F j' dj' h




- *

¥
- *

=
=ò  

 

This is the defining equation for h*  in terms of the size-frequency function f, the rank-

frequency function F and the transformations   and  . 

 

2. Using equation (12) 

For the transformed IPP we have the analogue of (12): h*  is defined as 

 

 ( )F h h* * *=  

 

which is, in terms of the functions of the original IPP and of the transformations, by (3): 

 

 ( )( )( )1h F h * - *=  (A1) 
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(note that, by (1), one is tempted to write ( )h h *=  but this is not true if h is the h-index of 

the original IPP – see further). Alternatively one can also use 

 

 ( ) ( )( )1 1h F h - * - *=  (A2) 

 

Appendix B: Proof of theorem II.2 

1. Using formula (19) 

Note that 

 

 ( )

1

c
1 h

h j
B


*

- *
æ ö

÷ç ÷= = ç ÷ç ÷çè ø
 

 

 ( )

1

1 E
F j

j


-

æ ö
÷ç ÷= ç ÷ç ÷çè ø

 

 

and  

 

 ( ) b 1' r Abr -=  

 

This gives in (19), using also (5): 

 

 1

c

b 1
1

h
j'

B

C E
Ab dj' h

j' j'




*

-

¥
*

æ ö÷ç ÷ç= ÷ç ÷ç ÷çè ø

é ù
æ öê ú÷çê ú÷ =ç ÷ç ÷çê úè ø
ê úë û

ò  

 

 1

c

b 1

b 1
h

j'
B

dj'
CAbE h

j'






*

-
¥

*

-
æ ö +÷ç ÷ç= ÷ç ÷ç ÷çè ø

=ò  

 

Hence (since 
b 1

1


-
+ >  since 1>  and b 1> ) 
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b 1
1

b 1

cCAbE h
h

b 1 B
1









-
- -

-

*
*

æ ö÷ç ÷ =ç ÷ç ÷ç- è ø+ -

 

 

Hence 

 

 

b 1 b 1
1

1
c

b 1
1

c

CAbE
h

b 1
B 1


 







- -
- -

-
*

-
- -

=

æ ö- ÷ç + - ÷ç ÷ç ÷è ø

 (B1) 

 

Note that 

 

 
( )

b 1
1

c b 1
1

c c






-
- -

+ -
- = =  

 

by (11) and by notation (8). Further 

 

 
( )( )

( )

b 1

b 1 1 1

b 1
1

c

CAbE CAbE B

c 1
b 1

B 1

 









-

- - -

-
- -

=
-

æ ö- ÷ç + - ÷ç ÷ç ÷è ø

 

 

Hence we refound parameter D (see (7)): (B1) yields 

 

 
D

h
1





* =
-

 

 

But 

 

 1

B

D D
T dj B

j 1



 

¥
* * -

*
= =

-ò  (B2) 

 

(since ( ) cj j Bj B* = = ³  since j 1³ ). So 
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1

T
h

B





*
*

-
=  

 

Hence 

 

 
1 1

h B T


 

-
*

* =  

 

An equivalent calculation would be: follow the calculation of (6), (7), (8) in Egghe (2006a) 

and apply (23) with T*  and using (B2). 

 

We will now show how we can use (A1) (or (A2)). 

 

2. Using formula (A2) 

Note that 

 

 ( )

1

c
1 h

h
B


*

- *
æ ö

÷ç ÷= ç ÷ç ÷çè ø
 

 

 ( )

1

b
1 h

h
A


*

- *
æ ö

÷ç ÷= ç ÷ç ÷çè ø
 

 

and that F satisfies (9) with   as in (11). Hence (A2) gives 

 

 

1

c

b

h E

B
h

A



*

*

æ ö÷ç ÷ =ç ÷ç ÷çè ø æ ö÷ç ÷ç ÷ç ÷çè ø

 (B3) 

 

Use (10) to get 

 

 

1
1

1
1

C
E T

1






-
-

æ ö÷ç= =÷ç ÷çè ø-
 (B4) 
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since  

 

 ( )
1 1

C C
T f j dj dj

j 1 

¥ ¥

= = =
-ò ò  

 

since 1> , T being the total number of sources. But 

 

 ( ) bT T AT* = =  (B5) 

 

since   increases. (B5) and (B4) in (B3) yields 

 

 

( )

11
b 1c

1 1

c b c bh B T



 

-
*

+ +
* =  

 

which is readily seen to be the same as (22), using (11). 

 

Appendix C: Proof of Theorem II.3 

We have that  

 ( ) b 1' r Abr -=  

 

 ( )

1

b
1 g

g r
A


*

- *
æ ö

÷ç ÷= =ç ÷ç ÷çè ø
 

 

Hence we have the equation, based on (25) 

 

 ( )( )

1

b

2

g
c b 1A

0
B F r Abr dr g

*æ ö÷ç ÷ç ÷ç ÷ç - *÷çè ø =ò  

 

Using (9) gives 

 

 

1

b

2

g

c b 1 cA

0
E BAb r dr g

*æ ö÷ç ÷ç ÷ç ÷ç - - *÷çè ø =ò  
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For c 1 b 1 + - <  we have 

 

 
2

c
b cc b

b
E BbA

g g
b c






-
*

*=
-

 

 

Hence  

 

 

c
c cb1

b
BbA E

g
b c






* +

=
-

 

 

Now we use (11) and (B5) yielding 

 

 
( )

( )

( )

( )
( )

b 1
c

b 1 c
b 1 cBb 1

g T
b 1 c








-

- + *
- +*

æ ö- ÷ç ÷ç= ÷ç ÷÷ç - -è ø
 

 

hence, using notation (8) for   we find 

 

 

1
1 1

1
g B T

2





 





-
-

*
*

æ ö- ÷ç= ÷ç ÷çè ø-
 

 

Appendix D: proof of Theorem III.2 

(i) Let ( )h h* = . Then, by definition of the h-index in both systems and by Lemma III.1 

we have 

 

 ( ) ( )( )h F h F h* * * *= =  

     ( )( ) ( )F h h = =  

 

 proving (28). 
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(ii) Let ( )h h* < . Then, since F*  is defined on h*  and ( )h  (both belonging to 0,T*é ù
ê úë û

) 

and since F*  strictly decreases, we have 

 

 ( ) ( )( )h F h F h* * * *= >  

 

Again invoking the above lemma yields 

 

 ( )h h* >  

 

hence proving (29). 

 

(iii) Let ( )h h* > . By the same argument we have 

 

 ( ) ( )( )h F h F h* * * *= <  

 

Hence by the above Lemma: 

 

 ( )h h* <  

 

proving (30).                 □ 
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