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Abstract

Missingness in explanatory variables requires a model for the covariates even if
the interest lies only in a conditional model for the outcomes given the covariates.
An incorrect specification of the models for the covariates or for the missingness
mechanism may lead to biased inferences for the parameters of interest. Pre-
viously published articles either use semi-/non-parametric flexible distributions
for the covariates and identify the model via a MAR assumption, or employ
parametric distributions for the covariates and allow a more general non-random
missingness mechanism. We consider the analysis of binary responses, combining
a MNAR mechanism with a non-parametric model based on a Dirichlet process
mixture for the continuous covariates. We illustrate the proposal with simulations
and by analyzing a real dataset.

Keywords: Dirichlet process mixture, incomplete data, MNAR, non-ignorable
missingness mechanism.

1. Introduction

In many studies, data are missing for some explanatory variables (X), and in order
not to exclude either these sampling units or these variables from the analysis,
we need to specify a model for their marginal distribution, or at least, for the
conditional distribution of the explanatory variables that may be missing given
the explanatory variables that are always observed, even if the interest lies only
on the conditional distribution of the response variables (Y) given X.

In cases where at least one explanatory variable is continuous, we may not have a
priori any information for a plausible parametric model. Incorrect assumptions,
either for the missingness mechanism or for the distribution of the covariates,
may generate biased inferences for the conditional distribution of the responses
given the covariates. Therefore, we pragmatically adopt a Bayesian methodol-
ogy for the sensitivity analysis of the missingness mechanism allowing it to be
non-random and consider also a flexible distribution for X via a non-parametric
model based on a Dirichlet process mixture (Ishwaran and James, 2002). For
simplicity, we restrict ourselves to the case of a single missing continuous covari-
ate. In Section 2, we describe a semi-parametric model, which is to be compared
to alternative parametric models by means of a simulation study in Section 3. A
real dataset is analysed in Section 4 through a semi-parametric model that at-
tempts to particularly incorporate a few prior judgements about the missingness
mechanism.



2. A semi-parametric model for binary responses with a continuous
covariate subject to non-random missingness

Let Yi denote a binary response always observed, Xi, a continuous covariate with
potentially missing values, and Ri, an indicator variable assuming the value of 1
if Xi is observed or 0, if Xi is missing, i = 1, . . . , n. Although interest lies only
in the conditional distribution of Yi given Xi, it is necessary to consider a model
for Xi, as we do not want to discard the portion of the sample wherein Xi is
missing. As we admit that the missing data generating mechanism may depend
on the unobserved values, we also need to model Ri.

Employing the so-called selection model factorization, we consider the model

Ri|(Yi, Xi, δ0, δ1, δ2, δ3)
ind.∼ Bern(θi), logit(θi) = δ0 + δ1Xi + δ2Yi + δ3XiYi, (1)

Yi|(Xi, β0, β1)
ind.∼ Bern(πi), logit(πi) = β0 + β1Xi, (2)

Xi|(µi, V )
ind.∼ N(µi, V ), (3)

where Bern(θi) denotes the Bernoulli distribution with success probability θi,

i = 1, . . . , n, along with the prior distributions δj |(µδj , σδj )
ind.∼ N(µδj , σδj ),

j = 0, 1, 2, 3, βj |(µβj , σβj )
ind.∼ N(µβj , σβj ), j = 0, 1, (µ1, . . . , µn)|G i.i.d.∼ G,

G|α,G0,M ∼ TDP(α,G0,M), V |T ∼ Unif[0, T ], α|(λ1, λ2) ∼ Ga(λ1, λ2), G0

|(µ0, τ) = N(µ0, τ), µ0|(a,A) ∼ N(a,A), all mutually independent. The sym-
bol TDP means a truncated Dirichlet process where the truncation point M was
based on the argument put forward by Antoniak (1974), and Ishwaran and James
(2002).

The model is considered semi-parametric because it employs a non-parametric
structure for the marginal model of Xi and conventional parametric structures
for the conditional distributions of Yi given Xi and Ri given Yi and Xi.

The missingness mechanism (1) is non-random because it considers that the prob-
ability of having missing covariates may depend on their unobserved values. On
the other hand, if we include the missing at random assumption δ1 = δ3 = 0, the
missingness mechanism becomes ignorable under the viewpoint of Bayesian infer-
ences for β0 and β1 due to the assumed prior independence between (δ0, δ2) and
the other parameters (Little and Rubin, 2002). A subclass of the MAR model is
the missing completely at random (MCAR) mechanism that can be formulated by
setting δ1 = δ2 = δ3 = 0. In this setup with missingness in explanatory variables,
it is important to note that the so-called complete case analysis (CCA), where
units with missing data are discarded, commonly generates unbiased inferences
for β0 and β1 not only under the MCAR mechanism but also under any other miss-
ingness mechanisms that do not depend on the response Yi such as in the reduced
version of the missing not at random mechanism, MNARred : δ2 = δ3 = 0. A
CCA of data generated under the non-random missingness mechanism MNARred

results in biased inferences for the marginal distribution of Xi, but not for the
conditional distribution of Yi given Xi. Also, the CCA does not require to specify
a marginal model for Xi if the interest lies only in the conditional distribution of
Yi given Xi.



3. Some results from a simulation study

We consider the following distributions for the explanatory variable

XN ∼ N(12, 32), (4)

XL ∼ Log-normal(2.45, 0.2462), (5)

XC = 0.8×XC1 + 0.2×XC2, (6)

XC1 ∼ Unif[8, 12], XC2 ∼ Log-normal(2.79, 0.6422),

where Log-normal(µ, σ2) denotes a log-normal distribution, and µ and σ are,
respectively, the mean and the standard deviation of the underlying variable on
the logarithmic scale. The mean and the standard deviation of XL and XC

coincide with the corresponding parameters of XN , although the densities are
very different.

In order to assess the impact of results obtained under different distributional
assumptions for the covariate, we generated a sample of X of size n = 10, 000
from each of the three distributions (4), (5) and (6); then, for each value generated
under each of the distributions of the covariates, we generated Y from (2) with
β0 = 6 and β1 = −0.5; finally, we generated R from (1) with δ0 = −3, δ1 = 0.5
and δ2 = δ3 = 0. For each of the three generated datasets (with XN , XL e XC),
we fitted the semi-parametric model of the previous section as well as normal and
log-normal parametric models. For normal and log-normal parametric models,
the non-parametric model (3) is replaced, respectively, by

Xi|µ0, τ
i.i.d.∼ N(µ0, τ), i = 1, . . . , n, (7)

Xi|µ0, τ
i.i.d.∼ Log-normal(µ0, τ), i = 1, . . . , n, (8)

provided with vague priors. For all models, we adopted vague prior distributions
for δj and βj employing the hyper-parameters µδj = µβj = 0 and σδj = σβj =
103, j = 0, 1. Furthermore, we always assumed the correct structure for the
missingness mechanism, i.e., δ2 = δ3 = 0, so that the only varying components
in the study are the distribution employed to generate the covariate and the
distribution adopted for the covariate in the analysis.

The samples obtained from the posterior distributions of the parameters β0 and
β1 indicate that the non-parametric model for the covariate generates results
very close to those obtained with the corresponding true parametric model under
either the normal or the log-normal distributions. In these cases, the credible
intervals contain the true values; this does not occur in the analyses under the
incorrect parametric models for XN and XL. On the other hand, in the case of
XC , only the credible intervals of the analysis under the non-parametric model
for the covariate contained the true values of β0 and β1.

4. Analysis of pulmonary embolism data

Wicki et al. (2001) analyzed data from 1,090 patients that were consecutively
admitted to the emergency ward of the University Hospital of Geneva for sus-
pected pulmonary embolism, i.e., blockage of the main artery of the lung or one
of its branches. The objective of their study was to develop a scoring system
that would indicate the probability of occurrence of this cardiovascular disease
based on diagnostic tests and other easily obtained information. For simplicity,
we consider here only some of the explanatory variables included in the final



model presented by these authors.

The indicator of the presence of pulmonary embolism (response variable) as well
as four explanatory variables (age, previous pulmonary embolism or deep vein
thrombosis, recent surgery, and pulse rate) were observed for all patients, while
two variables that indicate presence of certain characteristics (platelike atelectasis
and elevation of hemidiaphragm) had missing values for a single patient who, for
this reason, was removed from the data set. On the other hand, the partial
pressure of carbon dioxide (PaCO2), obtained from arterial blood gas analysis,
was missing for 103 (9%) patients.

Preliminary analyses allow us to show that the observed data for PaCO2 seem
to be better accommodated by the posterior predictive distribution of the non-
parametric model than by the corresponding densities of normal, log-normal and
gamma models. On the other hand, they showed no evidence of association
between PaCO2 and the other explanatory variables. Having this in mind, we
considered a marginal rather than a conditional non-parametric model for PaCO2.

Information obtained from authors of Wicki et al. (2001) allows us to come to a
missingness model for PaCO2 found appropriate in the light of the data. We have
considered a conditional model for the response indicating pulmonary embolism
given the covariates that followed the structure mentioned in Section 2.

Analyses of all available data based on the global model referred to above prove
to be more suitable than complete case analyses, because, by embedding as-
sumptions about missing data, they should provide less biased results on the
association between pulmonary embolism and PaCO2, and generate more precise
results for the other associations.
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