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Abstract

Expert opinion plays an important role when choosing clusters of chemical com-

pounds for further investigation. Often in practice, the process by which the clusters

are assigned to the experts for evaluation, the so-called selection process, and the quali-

tative ratings given by them (chosen/not chosen) need to be jointly modeled in order to

avoid bias. This approach is referred to as the joint modeling approach. However, mis-

specifying the selection model may impact the estimation and inferences on parameters

in the rating model, which are of most scientific interest. We propose to incorporate the

selection process into the analysis by adding a new set of random effects to the rating

model and, in this way, avoid the need to model it parametrically. This approach is

referred to as the combined model approach. Through simulations, the performance of

the combined and joint models were compared in terms of bias and confidence interval

coverage. The estimates from the combined model were nearly unbiased and the derived

confidence intervals had coverage probability around 95% in all the scenarios consid-

ered. In contrast, the estimates from the joint model were severely biased under some

misspecifications of the selection model and fitting the model was often numerically

challenging. The results show that the combined model may offer a safer alternative

on which to base inferences when there are doubts about the validity of the selection

model. Importantly, due to its greater numerical stability, the combined model may

outperform the joint model even when the latter is correctly specified.

Keywords: Selection bias, Combined model, Shared parameter, Sensitivity.
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1 Introduction

Developing chemical compounds into effective drugs is an expensive and lengthy process.

Therefore, pharmaceutical companies need to carefully evaluate the amount of evidence sup-

porting their potential, before investing more resources on them [1]. Expert opinion is a

valuable tool for the assessment of these compounds at early stages in the drug discovery

process [2, 3]. In fact, in practice, similar compounds are grouped into clusters that are

qualitatively assessed by experts regarding their selection for future scrutiny. Further, with

appropriate statistical methods, these assessments can be quantified as a success probability

for each cluster, where success is defined as being selected for further investigation [4, 5].

The large number of clusters typically involved in these studies implies that a selection proce-

dure, by which every expert chooses or gets assigned a number of clusters for evaluation, needs

to be implemented. Alonso et al. [6] showed that some selection procedures may introduce a

selection bias in the rating process and lead to invalid conclusions. In these scenarios complex

joint hierarchical models, describing the selection and rating processes, are required to get

valid results. Actually, these authors demonstrated that, even in absence of selection bias, one

often needs to jointly model the rating and selection processes to get valid estimates. Ideally,

one would like to know all the factors influencing the selection process before hand. However,

in practice, such information is seldom available and making assumptions on the selection

process is then almost inescapable.

We shall consider two approaches to account for the selection process. In the first approach,

two generalized linear mixed models (GLMM) are used to describe the rating and selection

processes and it is assumed that, given some random effects, both processes are independent.

We shall refer to this approach as the joint modeling approach. The joint modeling approach

is closely related to the shared parameter (SP) and generalized shared parameter (GSP) mod-

eling frameworks, used to describe a Missing Not At Random (MNAR) mechanism in missing

data analysis [7, 8]. In addition, the assumption of conditional independence is at the core

of complex hierarchical models developed to described, for instance, the joint evolution of

longitudinal and survival outcomes and, in the present work, it simplifies the joint distribution

of the rating and selection processes, facilitating the joint fit of both models [9–11].

This approach hinges on the assumption that the distribution for the selection process is

correctly specified. In general, if the selection model is misspecified then the estimates of

the parameters in the rating model may be biased and inferential procedures, like obtaining

confidence intervals, may be affected as well. Therefore, a sensitivity analysis to assess the

stability of the results is always highly recommended [12].

Our second approach is based on the so-called combined model introduced by Booth et al.

[13] and Molenberghs et al. [14] for members of the exponential family, where an extra set

of random effects is used to account for overdispersion in correlated outcomes. Similarly,
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in this work, we propose to take into account the selection process by adding a new set of

random effects to the rating model. We extensively study the performance of both approaches

via simulation. Our results show that the combined model could be a robust alternative to

the joint model when analyzing this type of data even when the selection model is correctly

specified. Therefore, we think that the combined model may serve two purposes: (i) it may be

a reliable tool for sensitivity analysis and (ii) when there are doubts regarding the performance

of the joint model, it may be a safer alternative on which to base inferences.

The paper is organized as follows; before presenting the two modeling approaches in Sections 3

and 4, respectively, we discuss the motivating case study in Section 2. The simulation study is

presented in Section 5 followed by the analysis of the case study in Section 6. Brief concluding

remarks in Section 7 wind up the paper.

2 Case study

The pharmaceutical company Johnson&Johnson carried out a study to evaluate the potential

of 22, 015 clusters of chemical compounds, in order to determine those that warrant further

screening. In total, 147 experts were asked to evaluate several of these clusters and their

assessments were coded as 1 if they recommended the cluster for further screening, −1 if

not recommended and 0 if indifferent. The response was dichotomized for the analysis. We

adopted a coding scheme where 1 corresponds to a positive recommendation and 0 otherwise.

However, the methodology presented can easily accommodate other coding schemes as well.

Experts carried out the evaluation of the clusters using the desk-top application Third Dimen-

sion Explorer (3DX) [15]. In a regular session a random subset of clusters, selected from the

entire set of 22, 015, was assigned to each expert for evaluation. Clusters were presented with

additional information that included their size, the structure of some of their distinctive mem-

bers like the compound with the lowest/highest molecular weight, and 1–3 other randomly

chosen members of the clusters. The application was designed to support multiple sessions

that would allow the experts to stop and resume the evaluation at their own convenience. A

new random subset of clusters, excluding the ones already rated, was assigned for evaluation

only when all the clusters in the previous subset were evaluated, or when the experts resumed

the evaluation after interrupting the previous session for a break. Clusters assigned but not

evaluated could, in principle, be assigned again in another session.

The histogram in Figure 1 displays the distribution of the number of clusters evaluated by the

experts. Clearly, the distribution is positively skewed, indicating that, as one would expect,

many experts opted to evaluate few clusters. Indeed, 25% of the experts evaluated less

345 clusters, 50% less than 1200 and 75% of the experts evaluated less than 2370 clusters.

Evidently, the large differences in the number of clusters evaluated by the experts are not the
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Figure 1: Histogram for the number of clusters rated by the experts. The height of a bar
indicates the number of experts whose number of rated cluster fall within the range given
by the width of the bar.

result of the random allocation, but rather are dictated by the number of evaluation sessions

each expert found convenient. Actually, the possibility of interrupting and reassuming the

evaluation session at will allowed the experts to influence the selection process and, hence,

standard models that assume complete randomization may not be appropriate.

Alonso et al. [6] explored how such a design may lead to biased results and discussed a method

for correcting the problem. Basically, these authors carried out two different analyses: One that

completely ignored the selection process and another one that accounted for it using the joint

modeling approach. The results from these two analyses were staggeringly different. These

differences and the information available about the study design clearly call for a cautious

analysis of these data.

3 The joint modeling approach

To facilitate the decision making process, Milanzi [4], Milanzi et al. [5] and Alonso et al. [6]

proposed to summarize the large number of qualitative assessments given by the experts into

a single probability of success for every cluster. Denoting by Y i = (Yij)j∈Λi
the vector of

ratings associated with expert i, where Λi is the subset of all clusters evaluated by the expert
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and i = 1, . . . , n, these authors considered the following logistic-normal model

logit [P (Yij = 1|bi)] = βj + bi, (1)

where βj is a fixed parameter characterizing the effect of cluster Cj with j ∈ Λi and the bis are

independent expert effects with bi ∼ N(0, σ2
b ). Based on model (1), the marginal probability

of success for cluster Cj can be calculated by integrating over the random effect, i.e.,

P (Yj = 1) =

∫
exp (βj + b)

1 + exp (βj + b)
φ(b|0, σ2

b ) db, (2)

where φ(b|0, σ2
b ) denotes a normal density with mean zero and variance σ2

b .

Notice that the likelihood associated with model (1) suffers from a severe dimensionality

problem. Indeed, the vector of fixed effects β = (β1, . . . , βN)T has dimension N = 22, 015 and

the dimension (Ni) of the response vector Y i ranges from 20 to 22, 015. As a consequence,

serious computational issues can emerge when fitting model (1) with the most commonly

available computing resources. Milanzi [4] and Milanzi et al. [5] developed an algorithm that

allows to handle these issues with a very small loss of efficiency and in the present work the

dimensionality problem will not be discussed further.

Alonso et al. [6] pointed out that model (1) actually quantifies the probability that expert

i would rate cluster j as 1, given that he actually evaluates it and introduced two GLMM

P (Xij = xij|ai, αj) and P (Yij = yij|Xij = xij, bi, βj) to describe the selection and rating

procedures respectively, where Xij = 1 if expert i evaluates cluster j and 0 otherwise. Further-

more, they assumed that the vectors of expert-specific random effects (ai, bi)
T are independent

and follow a bivariate normal distribution with mean zero and covariance matrix Σ.

These authors stated that there is selection bias in the rating process if P
(
Yij = yij|Xij =

1, bi
)
6= P

(
Yij = yij|Xij = 0, bi

)
and showed that absence of selection bias is equivalent to

the validity of the following conditional independence assumption

P (Yij = yij, Xij = xij|ai, bi) = P (Yij = yij|bi)P (Xij = xij|ai) . (3)
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Essentially, (3) states that for every expert the rating and selection procedures are independent

and governed by different, although possibly marginally correlated, random effects. In the most

general scenario, the potential of cluster j can be quantified as

P (Yj = 1) =

∫ ∫
P (Yij = 1|ai, bi) φ(ai, bi|0,Σ) daidbi, (4)

where φ(·|0,Σ) denotes a bivariate normal density with mean zero and covariance matrix Σ

and

P (Yij = 1|ai, bi) = EX [P (Yij = 1|Xij = xij, bi)] (5)

= P (Yij = 1|Xij = 1, bi)P (Xij = 1|ai) + P (Yij = 1|Xij = 0, bi)P (Xij = 0|ai) .

Clearly, there is information about how the experts rated the clusters they evaluated and, there-

fore, P (Yij = 1|Xij = 1, bi) can be estimated from the data using model (1). Furthermore,

there is also information about which clusters every expert evaluated and this information could

be used to estimate P (Xij = 1|ai). However, the events {Yij = yij|Xij = 0, bi} are coun-

terfactual and we do not have information about how the experts would have rated a cluster

they did not evaluate if, contrary to fact, they had evaluated it. As a result, the probabilities

P (Yij = 1|Xij = 0, bi) are not identifiable from the data without additional assumptions.

Importantly, under conditional independence, one has that P
(
Yij = yij|Xij = 1, bi

)
=

P
(
Yij = yij|Xij = 0, bi

)
and (4) simplifies to (2). Like Alonso et al. [6] in the rest of

this section we will assume conditional independence and that the components of the vectors

Y i,X i ∈ {0, 1}N are also independent conditionally on the random effects, with X i denoting

the vector of selection-indicators for expert i.

The parameters of interest are estimated based on the complete data {Y i,X i}. The vector

of ratings can be decomposed as Y i = (Y T
0i,Y

T
1i)

T , where Y 1i ∈ {0, 1}Ni is the sub-vector

associated with the clusters the expert actually evaluated, Y T
0i is the obvious complement and

Ni = 1TX i. Alonso et al. [6] showed that, under conditional independence, the marginal

likelihood takes the form

L (β,α,Σ) =
n∏
i

P (Y 1i = y1i,X i = xi|β,α,Σ) , (6)

where

P (Y 1i = y1i,X i = xi|β,α,Σ) =

∫ ∫
P (Y 1i = y1i|bi,β)P (X i = xi|ai,α) φ(ai, bi|0,Σ) daidbi,

(7)
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and P (Y 1i = y1i|bi,β) =
∏Ni
j P (Y1ij = y1ij |bi, βj), P (Xi = xi|ai,α) =

∏N
j P (Xij = xij |ai, αj)

[4, 6].

Using the maximum likelihood estimators β̂n, α̂n, σ̂2
bn obtained from (6), one can estimate

the probabilities of success by substituting β̂n, σ̂2
bn into (2). Note, however, that to estimate

β, σ2
b , one may need to explicitly model the selection process using, for example, GLMM.

An important special instance where the selection mechanism can be ignored is when the

selection and rating processes are also marginally independent, i.e, when φ(ai, bi|0,Σ) =

φ(ai|0, σ2
a)φ(bi|0, σ2

b ) and have a disjoint parametric space. In fact, under these assumptions

(7) simplifies to

P (Y 1i = y1i,X i = xi|β,α, σ2) =

∫
P (X i = xi|ai,α) φ(ai|0, σ2

a) dai

∫
P (Y 1i = y1i|bi,β) φ(bi|0, σ2

b ) dbi.

Consequently, regarding the parameters of interest β and σ2
b , the contribution of expert i to

the likelihood becomes

∫
P (Y 1i = y1i|bi,β) φ(bi|0, σ2

b ) dbi,=

∫ [∏
j∈Λi

P (Y1ij = y1ij|bi, βj)

]
φ(bi|0, σ2

b ) dbi.

The previous expression is the contribution of expert i to the likelihood when the selection

mechanism has been discarded. Therefore, in this scenario, if conditional independence holds,

the selection procedure can be fully ignored. This setting will result, for instance, if a fully

random allocation of the cluster to raters is implemented, so that the raters have no influence

whatsoever on the selection process. However, if the raters can influence the selection process

then a selection model will need to be incorporated into the analysis to guaranty valid results,

even if selection bias is not present.

4 Combined model approach

In this section a new modeling framework for quantifying expert opinion will be introduced.

To this end, let us assume that there exists independent latent selection traits θij for ev-

ery expert-cluster combination. Further, we will denote by f (yij, θij, bi) the distribution of

the vector (yij, θij, bi)
T and it will be assumed that, conditional on θi = (θi1, θi2, . . . , θiN)T

and bi, the components of Y i are independent. More specifically, it will be assumed that

P (Y i = yi|bi,θi) =
∏N

j P (Yij = yij|bi, θij). Basically, the latter assumption states that

conditional on the selection traits, the ratings of expert i are independent. Similarly, it will be

assumed that the random variables θij and bi are independent as well. Under all the previous
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assumptions one has

f (Y i = yi,θi, bi) =P (Y i = yi|bi,θi) f (θi) f(bi)

=

[
N∏
j

P (Yij = yij|bi, θij) f (θij)

]
f(bi). (8)

In expression (8), P (Yij = yij|bi, θij) describes the rating process conditional on the latent

selection trait and the rater effect bi. It is important to point out that, although θij and bi are

independent, the rating and selection processes are not independent if P (Yij = yij|bi, θij) 6=
P (Yij = yij|bi). Essentially, unlike in the joint model where the association between the

selection and rating processes is implicitly captured by the correlation between ai and bi, in

the combined model this association is explicitly given in P (Yij = yij|bi, θij).

The new model is completed by making parametric assumptions for the distributions in (8).

For practical reasons that will become clear later we have chosen

Yij|bi, θij ∼Bernoulli(θijπij), πij =
exp(βj + bi)

1 + exp(βj + bi)
,

θij ∼Beta (λ, τ), bi ∼N(0, σ2
b ).

In this framework, the probability of success for compound Cj is given by

P (Yj = 1) =

∫ ∫
P (Yij = 1, θij, bi) dθij dbi =

λ

λ+ τ
Eb (πij) . (9)

Notice that if a larger selection trait is associated with a higher probability of selection, then

evaluated clusters have a higher probability of being chosen for further investigation than

unevaluated ones. Indeed, to fix ideas let us assume that Xij = 1 if θij ≥ γij and zero

otherwise, where the γijs are the threshold values at which the latent selection traits are

manifested. It can be easily shown that

P (Yij = 1|bi, Xij = 1) =πij

∫ 1

γij
θijf(θij) dθij∫ 1

γij
f(θij) dθij

,

P (Yij = 1|bi, Xij = 0) =πij

∫ γij
0

θijf(θij) dθij∫ γij
0

f(θij) dθij
.

Using some properties of the beta and the incomplete beta distributions one can show that,

as expected, P (Yij = 1|bi, Xij = 0) ≤ P (Yij = 1|bi, Xij = 1) if γij ∈ (0, 1). Alonso et al.
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[6] called this inequality the monotonicity assumption and showed that, under monotonicity,

the use of likelihood (6) in combination with (2) will produce an upper bound for the proba-

bilities of success in presence of selection bias. The flexibility of the combined model allows

to accommodate monotone and non-monotone settings, however, the validity of the results

obtained from it relies on several untestable assumptions, like the multiplicative effect of θij
on πij and the use of a convenient conjugate distribution for θij.

Considering the previously introduced partition Y i = (Y T
0i,Y

T
1i)

T and the corresponding

counterpart θi = (θT0i,θ
T
1i)

T , expression (8) takes the form

f (Y 0i,Y 1i,θ0i,θ1i, bi) = P (Y 0i|θ0i, bi)P (Y 1i|θ1i, bi) f (θ0i,θ1i) f(bi),

and after marginalizing out the subvectors Y 0i, θ0i one gets

f (Y 1i,θ1i, bi) = P (Y 1i|θ1i, bi) f (θ1i) f(bi).

The parameter estimates are derived using the marginal likelihood obtained after integrating

out the random effects bi and θ1i. This process is carried out in two steps, first after analytically

integrating over θ1i the likelihood contribution for each expert follows as

L∗c(β, λ, τ, bi) =

∫
f (Y 1i,θ1i, bi) dθ1i, (10)

=

Ni∏
j=1

{
1

λ+ τ
(πijλ)yij [(1− πij)λ+ τ ]1−yij

}
,

and, eventually, in the second step the marginal likelihood can be obtained by numerically

integrating over the normal random effect bi, using readily available statistical software, i.e.,

the parameter estimates follow from maximizing

Lm(β, λ, τ, σ2) =
n∏
i

∫
L∗c(β, λ, τ, bi)φ(bi|0, σ2) dbi. (11)

5 Simulation Study

To numerically evaluate the performance of the combined and joint models a simulation study

was designed. The data were generated by mimicking the case study introduced in Section 2.

This notwithstanding, the size of the simulated data sets were chosen so that model (1) could

be fitted using maximum likelihood. This minimizes the numerical noise and provides a clearer

idea regarding the performance of both approaches. Two hundred data sets were generated,
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with the following parameters held constant across data sets: (1) number of clusters N = 30,

chosen to ensure tractability of maximum likelihood estimation for the whole data, (2) number

of experts n = 147, and (3) the fixed-effects βj, αj, sampled one time from a N(0, 2) and

N(0, 1) respectively and then held constant in all data sets. Factors varying across the data

sets were: (1) the number of ratings per expert Ni and (2) a set of 147 expert random-effects

bi. The random rater specific effects bi were sampled from N(0, 10), and in the original data

we assumed that all experts rated all clusters, i.e., Ni = N = 30. The actual clusters evaluated

by each rater (Ni) were then defined using the selection process Xij|bi ∼ Bernoulli (ρij) with

logit(ρij) = αj + bi. Conceptually, each generated data set represents a replication of the

evaluation study in which a new set of experts rates the same clusters. Therefore, varying Ni

and bi from one data set to another resembles the use of different groups of experts in each

study, sampled from the entire experts’ population.

For the selection probabilities two settings were consider. In a first scenario selection bias was

not present and the ratings Yij|bi were generated from a Bernoulli(πij) with

πij =
exp(βj + bi)

1 + exp(βj + bi)
.

In the second scenario there was a selection bias in the rating process and the rating proba-

bilities were generated as

logit [P (Yij = 1|Xij = xij, bi)] =

{
βj + bi if xij = 1,

βj + bi − 0.223 if xij = 0.
(12)

Basically, (12) implies that, for every expert i, the odds of rating a cluster as 1 is 25% larger

when the cluster is evaluated than when it is not.

Notice that the scenarios used in the simulations are a special case of the general modeling

framework introduced in Section 3. In fact, to simplify the computational burden and improve

numerical stability, we considered the situation in which the selection and rating procedures

shared a common random effect. This is the so-called shared parameter model (SPM), for

which corr(ai, bi) = 1 [8].

5.1 Results in absence of selection bias

In this scenario three analyses were carried out for each data set and the main results are

summarized in tables 1–4. In these tables, the column True gives always the true value of the

corresponding parameter, the column Combined refers to results obtained from the combined

model introduced in Section 4, the column J(·) displays the results obtained from fitting the
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joint model using the selection probability derived from the logit in brackets and, finally, the

column Naive presents the results obtained from fitting model 1 without accounting for the

different selection probabilities.

Notice that model J(αj + bi) assumes that the selection probabilities vary across clusters for

each rater, but the parameters governing the rating and selection processes are different. In

the present simulations this model correctly described the data generating mechanism. In

contrast, J(βj + bi) also postulates different selection probabilities for the clusters but now

the parametric space of the rating and selection processes are assumed to be equal. The last

model J(α + bi) presupposes equal selection probabilities for all the clusters a specific expert

rated.

The combined model is misspecified in this scenario since the selection model used in generating

the data is not equivalent to the one assumed in the combined model.

Tables 1–2 show that, the combined model performs well when compared to the true values.

Unfortunately the correctly specified joint model suffered heavily from lack of convergence

problems which led the highly biased point estimates and thus did not offer a good comparison

ground against the other models, the true values will mainly be used for comparison. A

total of 61 parameters had to be estimated from this model which when compared to the

number of experts (147), convergence problems would not be unusual. For smaller number

of clusters (15), this model produces almost unbiased point estimates but we preferred to use

as many clusters as most to be as close as possible to the case study. On the other hand

the bias of the point estimates from the misspecified joint model that assumes equal selection

probability for the clusters rated by the same expert, i.e J(α + bi) was reasonably small, this

is a special case of the correctly specified model. Only 32 parameters had to be estimated

and thus computationally lighter than the correctly specified model. Nonetheless, for the

other misspecified joint model, J(βj + bi), relative biases larger than 1000% appear. Similar

problems occur when the selection process is ignored. Indeed, as the results from the naive

analysis show, relative biases larger than 3000% can be obtained when the selection process

is incorrectly ignored.

In spite of being misspecified, the combined model always led to unbiased estimates of the

parameters as observed in Table 2 . The extra set of random effects in the combined model

probably absorbs the extra variation that results from the selection process despite the mis-

specification of the distribution. Recall that no specific assumptions are made on the mean

function of this distribution. The parameters can therefore be estimated such that the re-

sulting shape of the distribution is close to that of the extra variation in the data. While

this avoids misspecification of such parameters, the parameters are likely to be estimated with

a considerable degree of uncertainty since not a lot of information about them is given be-

forehand. This is evident in the largest standard errors observed for the estimates from the

combined model as seen in Table 1 and the wider confidence interval length in Table 3. On the
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other hand, in the misspecified joint model, mean function of the distribution for the selection

process is misspecified, this forces estimation of wrong parameters for the selection part which

in turn affects estimation of parameters for the rating part since the processes are marginally

dependent. As some information for the parameters of the distribution of the variation due to

the selection process is provided in this scenario, the wrong estimates are estimated with high

precision. As a result, the misspecified joint models exhibited in some settings large bias and

high precision, while the combined model had smaller bias and lower precision.

It is important to point out that highly precise but incorrect estimates could lead to seriously

misleading inferences. In fact, as shown in Tables 2–3, the fixed effects parameters were

estimated with high precision when model J(βj + bi) was used, however, the confidence interval

coverage for eighteen of them was below 50% and it was approximately 0% for thirteen of

them. Similarly, the naive model also exhibited a poor performance with coverage probabilities

sometimes far below the pre-specified 95%. In contrast, the combined model always produced

confidence intervals with good coverage.

Finally Table 4 displays the true and estimated probabilities of success for every compound.

Here again the combined model led to estimated values that are almost equal to the true

probabilities despite the multiplicative factor in λ
λ+τ

in (9). This is because the estimated

τ/λ ≈ 0 implying λ
λ+τ
≈ 1, and it can be shown that this corresponds to values of θij ≈ 1.

However, the misspecified and naive models produced biased results with relative biases as

large as 40% in some scenarios.

5.2 Results in presence of selection bias

TO BE WRITTEN

6 Case Study Analysis

The case study introduced in Section 2 was analyzed by [6] using the naive and joint model

approaches. In the present work the combined model presented in Section 4 was also fitted to

these data. A summary of the analyses can be found in Table 5 where the cluster are ordered

according to the results obtained from the naive model. Remarkably, the three approaches

lead to strikingly different results. First, notice that the probabilities of success derived from

the joint model are substantially smaller than those obtained from the naive and combined

methods. Secondly, the ranks given to the cluster by the three approaches also differ in impor-

tant ways. For instance, the fourth best compound according to the naive approach (296443)

received ranks 911 and 80 from the joint and combined models respectively. Moreover, com-

pound 295061 ranked first by the naive and joint models was not among the top ten cluster
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according to the combined model.

Sensitivity of the results with respect to the modeling approach represents a clear dilemma

when analyzing this problem. Several strategies could be implemented here, for instance, one

could compute the average rank (probability of success) over the different approaches and

select those cluster with the largest average rank (probability). On the other hand, given

the results of the simulations one could argue that, unlike the naive and joint models, the

combined model seems to produced unbiased estimates in most circumstances and, therefore,

it should be the core of the decision making process. Whatever strategy is finally adopted a

careful discussion with the experts in the field would always be advisable in a situation like

this one. Eventually, weighting together the quantitative results obtained from the statistical

analysis and more field specific knowledge may help to make an optimal and thoughtful choice.

Given the complexity of the models used in the analyses of the case study and the high dimen-

sionality of the data, the marginal likelihood was computed using the Laplace approximation.

Unlike in the case study, the data used in the simulations had a relatively a lower dimension

and this allowed to approximate the marginal likelihood using adaptive Gaussian quadrature.

It has been shown that these choices may have a non-negligible impact on the results [17].

More complex models are often less biased, but they may require a cruder approximation of the

likelihood. Simpler models often allow a better approximation of the likelihood, but they may

also be more prone to serious bias. The optimal balance between complexity and precision is

difficult to determine in real examples where the true is unknown and this difficulty emphasizes

the importance of using all information available when interpreting the results in the decision

making process.

7 Conclusion

When quantifying expert opinion in the drug discovery process, one often needs to jointly fit

hierarchical models describing the selection and rating mechanisms in order to obtain valid

estimates. However, in the present work it has been shown that the joint modeling approach

may produce biased estimates of the relevant parameters when selection bias is present and/or

the selection model is misspecified.

We have introduced an alternative approach based on the so-called combined model that

accounts for the selection process using a new set of random effects. Simulation results clearly

showed that, unlike the naive and joint model approaches, the combined model seems to

produce nearly unbiased estimates in most settings. The loss of precision observed with the

combined model may be seen as the price to pay for the robustness achieved.

Given the robustness exhibited by the combined model we believe that, even when selection

bias is not suspected and the factors that drive the selection process are known and available,

one may still want to use the combined model as a sensitivity tool for the analysis.
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Obviously, more theoretical developments, simulations and the analysis of case studies will

be needed to fully understand the potential and limitations of the approaches studied in this

paper. For instance, Bayesian methods are particularly suited to handle situations where a

large number of sources of uncertainty need to be taken into account and their computational

flexibility can allow the use of non conjugate distributions for the latent selection traits in the

combined model. Even though the implementation of a Bayesian approach clearly overpasses

the scope of this work exploring this alternative is certainly worth pursuing.
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Table 1: Point estimates and (standard errors) for different models fitted to data
generated under conditional independence assumption. True: true cluster-effect value
Comb:combined model cluster-effect estimate and (standard error), J(αj + bi):joint mode
where logit[P (xij = 1|bi)] = αj + bi, J(βj + bi): joint model where logit[P (xij = 1|bi)] =
βj + bi, J(α + bi): joint model where logit[P (xij = 1|bi)] = α + bi, Naive: Naive model
cluster-effect estimate. logit[P (xij = 1|bi)] = αj + bi was used in selecting the clusters.

βj True Comb J(αj + bi) J(βj + bi) J(α + bi) Naive

β1 3.60 3.60 (0.93) 6.83 (0.47) 0.20 (0.34) 3.72 (0.76) 5.06 (0.85)

β2 -1.98 -1.97 (0.82) -0.15 (0.22) -0.29 (0.27) -1.74 (0.36) -1.09 (0.36)

β3 4.33 4.33 (0.93) 3.46 (0.59) 2.10 (0.34) 4.32 (0.73) 5.43 (0.84)

β4 0.58 0.58 (0.77) 2.18 (0.43) -0.47 (0.32) 0.79 (0.52) 1.77 (0.57)

β5 0.11 0.11 (0.74) 1.63 (0.36) -0.49 (0.32) 0.37 (0.47) 1.18 (0.50)

β6 -0.53 -0.52 (0.75) 1.34 (0.34) -0.74 (0.31) -0.29 (0.45) 0.54 (0.47)

β7 1.70 1.70 (1.03) 2.90 (0.72) -0.99 (0.34) 1.88 (0.74) 2.91 (0.81)

β8 -0.10 -0.10 (0.67) 1.34 (0.30) -0.11 (0.31) 0.03 (0.41) 0.86 (0.43)

β9 1.51 1.51 (0.89) 2.84 (0.59) -0.43 (0.33) 1.80 (0.67) 2.79 (0.73)

β10 1.29 1.29 (0.74) 2.66 (0.51) 0.06 (0.32) 1.42 (0.53) 2.33 (0.58)

β11 0.88 0.88 (1.02) 2.74 (0.73) -1.47 (0.34) 1.11 (0.75) 2.14 (0.79)

β12 -3.52 -3.52 (1.05) -0.84 (0.26) -1.19 (0.27) -3.19 (0.41) -2.51 (0.41)

β13 0.60 0.60 (0.68) 1.85 (0.37) -0.03 (0.31) 0.69 (0.46) 1.60 (0.48)

β14 1.89 1.89 (1.06) 3.06 (0.73) -1.01 (0.34) 2.06 (0.78) 3.18 (0.83)

β15 0.68 0.69 (0.67) 1.55 (0.32) 0.19 (0.31) 0.77 (0.44) 1.68 (0.47)

β16 0.05 0.05 (0.67) 1.18 (0.28) -0.04 (0.31) 0.14 (0.41) 1.07 (0.43)

β17 0.11 0.12 (0.58) 0.78 (0.21) 1.01 (0.29) 0.22 (0.36) 0.94 (0.36)

β18 -4.01 -4.01 (1.08) -1.28 (0.26) -1.05 (0.25) -3.74 (0.42) -3.06 (0.42)

β19 0.27 0.27 (0.67) 1.35 (0.29) 0.19 (0.31) 0.40 (0.41) 1.23 (0.43)

β20 -1.79 -1.79 (0.77) -0.11 (0.21) -0.03 (0.27) -1.57 (0.36) -0.92 (0.35)

β21 1.03 1.03 (0.66) 1.60 (0.31) 0.50 (0.31) 1.10 (0.45) 1.99 (0.47)

β22 0.03 0.03 (0.70) 1.38 (0.32) -0.34 (0.31) 0.19 (0.44) 1.08 (0.47)

β23 -0.05 -0.05 (0.72) 1.47 (0.34) -0.34 (0.31) 0.15 (0.44) 1.04 (0.46)

β24 -0.95 -0.95 (0.71) 0.43 (0.22) 0.00 (0.28) -0.81 (0.37) -0.07 (0.37)

β25 0.10 0.10 (0.75) 1.66 (0.37) -0.57 (0.32) 0.38 (0.48) 1.22 (0.51)

β26 0.87 0.88 (0.68) 1.78 (0.34) 0.27 (0.32) 0.98 (0.46) 1.86 (0.48)

β27 2.13 2.13 (1.24) 6.42 (0.65) -1.40 (0.35) 2.55 (0.81) 3.60 (0.89)

β28 -3.03 -3.03 (0.94) -0.79 (0.23) -0.69 (0.26) -2.80 (0.38) -2.20 (0.38)

β29 -0.34 -0.33 (0.68) 0.92 (0.25) 0.11 (0.30) -0.16 (0.39) 0.63 (0.40)

β30 2.06 2.06 (0.85) 2.84 (0.57) 0.31 (0.33) 2.02 (0.62) 3.13 (0.69)

σ̂2 10.00 10.16 (6.97) 10.42 (1.53) 7.81 (1.12) 7.81 (1.12) 5.80 (1.19)
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Table 2: Relative bias for different models fitted to data generated under condi-
tional independence assumption. Comb: combined model,J(αj + bi):joint mode where
logit[P (xij = 1|bi)] = αj + bi, J(βj + bi): joint model where logit[P (xij = 1|bi)] = βj + bi,
J(α+bi): joint model where logit[P (xij = 1|bi)] = α+bi, Naive: Naive model cluster-effect
estimate.logit[P (xij = 1|bi)] = αj + bi was used in selecting the clusters.

βj Comb J(αj + bi) J(βj + bi) J(α + bi) Naive

β1 0.00 0.90 0.94 0.03 0.40

β2 0.00 0.93 0.85 0.12 0.45

β3 0.00 0.20 0.52 0.00 0.25

β4 0.00 2.74 1.80 0.35 2.04

β5 0.02 14.28 5.63 2.48 10.02

β6 0.01 3.55 0.40 0.45 2.03

β7 0.00 0.71 1.58 0.11 0.71

β8 0.03 14.31 0.06 1.28 9.56

β9 0.00 0.89 1.28 0.20 0.85

β10 0.00 1.06 0.95 0.10 0.80

β11 0.00 2.12 2.68 0.27 1.44

β12 0.00 0.76 0.66 0.10 0.29

β13 0.00 2.07 1.05 0.14 1.66

β14 0.00 0.62 1.54 0.09 0.68

β15 0.00 1.26 0.72 0.12 1.46

β16 0.06 22.19 1.75 1.68 19.96

β17 0.03 5.85 7.89 0.97 7.20

β18 0.00 0.68 0.74 0.07 0.24

β19 0.01 4.06 0.29 0.51 3.64

β20 0.00 0.94 0.98 0.12 0.48

β21 0.00 0.55 0.51 0.06 0.93

β22 0.09 51.51 14.02 6.24 39.83

β23 0.06 31.51 6.00 4.11 22.56

β24 0.00 1.45 1.00 0.15 0.92

β25 0.02 15.20 6.61 2.69 10.93

β26 0.00 1.04 0.69 0.12 1.13

β27 0.00 2.02 1.66 0.20 0.69

β28 0.00 0.74 0.77 0.08 0.28

β29 0.01 3.74 1.32 0.54 2.88

β30 0.00 0.38 0.85 0.02 0.52

σ 0.02 0.04 0.22 0.22 0.42
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Table 3: Confidence interval coverage and (length of confidence interval) for different mod-
els fitted to data generated under conditional independence assumption. Comb: combined
model, J(αj + bi):joint mode where logit[P (xij = 1|bi)] = αj + bi, J(βj + bi): joint model
where logit[P (xij = 1|bi)] = βj + bi, J(α + bi): joint model where logit[P (xij = 1|bi)] =
α + bi, Naive: Naive model cluster-effect estimate.logit[P (xij = 1|bi)] = αj + bi was used
in selecting the clusters.

βj Comb J(αj + bi) J(βj + bi) J(α + bi) Naive

β1 0.97 (15.18) 0.50 (2.10) 0.00 (1.32) 0.60 (2.85) 0.82 (3.67)

β2 0.92 (10.32) 0.06 (0.90) 0.00 (1.06) 0.91 (1.43) 0.31 (1.44)

β3 0.96 ( 9.01) 0.72 (2.64) 0.00 (1.34) 0.87 (2.99) 0.93 (3.59)

β4 0.92 ( 8.34) 0.06 (1.81) 0.06 (1.27) 0.98 (2.12) 0.48 (2.31)

β5 0.91 ( 8.01) 0.06 (1.48) 0.54 (1.25) 0.94 (1.92) 0.42 (2.02)

β6 0.93 ( 8.95) 0.06 (1.36) 0.90 (1.23) 0.90 (1.78) 0.34 (1.87)

β7 0.97 ( 9.59) 0.56 (2.77) 0.00 (1.32) 0.80 (2.90) 0.80 (3.30)

β8 0.91 ( 7.41) 0.06 (1.21) 0.96 (1.20) 0.95 (1.63) 0.37 (1.71)

β9 0.96 ( 7.66) 0.39 (2.14) 0.00 (1.30) 0.93 (4.57) 0.66 (3.03)

β10 0.95 ( 7.50) 0.33 (2.00) 0.01 (1.26) 0.97 (2.18) 0.57 (2.38)

β11 0.96 ( 9.18) 0.06 (2.92) 0.00 (1.33) 0.90 (3.57) 0.78 (3.28)

β12 0.93 (14.03) 0.06 (1.05) 0.00 (1.04) 0.85 (1.61) 0.35 (1.62)

β13 0.93 ( 6.68) 0.06 (1.53) 0.49 (1.23) 0.97 (1.81) 0.44 (1.95)

β14 0.97 ( 9.42) 0.89 (3.16) 0.00 (1.34) 0.81 (3.05) 0.79 (3.44)

β15 0.94 ( 6.74) 0.11 (1.35) 0.63 (1.23) 0.95 (1.76) 0.42 (1.88)

β16 0.95 ( 7.63) 0.00 (1.13) 0.97 (1.20) 0.94 (1.63) 0.40 (1.71)

β17 0.92 ( 6.36) 0.06 (0.90) 0.11 (1.13) 0.97 (1.40) 0.39 (1.43)

β18 0.95 (14.85) 0.11 (1.10) 0.00 (0.98) 0.88 (1.65) 0.41 (1.66)

β19 0.92 ( 5.87) 0.06 (1.23) 0.97 (1.21) 0.95 (1.65) 0.36 (1.73)

β20 0.92 ( 9.73) 0.00 (0.86) 0.00 (1.05) 0.93 (1.40) 0.35 (1.40)

β21 0.92 ( 6.12) 0.50 (1.28) 0.63 (1.23) 0.95 (1.77) 0.49 (1.90)

β22 0.92 ( 7.50) 0.06 (1.28) 0.80 (1.23) 0.92 (1.76) 0.43 (1.85)

β23 0.93 ( 7.12) 0.06 (1.33) 0.88 (1.22) 0.97 (1.74) 0.35 (1.85)

β24 0.92 ( 8.70) 0.06 (0.93) 0.09 (1.12) 0.92 (1.44) 0.36 (1.47)

β25 0.92 ( 8.09) 0.06 (1.47) 0.46 (1.26) 0.94 (1.90) 0.37 (2.03)

β26 0.94 ( 6.99) 0.11 (1.48) 0.50 (1.24) 0.96 (1.82) 0.49 (1.96)

β27 0.96 (10.88) 0.50 (2.18) 0.00 (1.38) 0.61 (4.86) 0.62 (3.33)

β28 0.96 (12.50) 0.06 (0.96) 0.00 (1.01) 0.91 (1.51) 0.40 (1.52)

β29 0.92 ( 7.29) 0.11 (1.05) 0.66 (1.17) 0.95 (1.52) 0.29 (1.57)

β30 0.97 ( 7.41) 0.89 (2.18) 0.00 (1.28) 0.98 (2.58) 0.78 (2.89)

σ 0.89 (94.32) 0.94 (6.27) 0.51 (4.47) 0.49 (4.49) 0.19 (4.74)
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Table 4: Probability estimates and (relative bias) ranked from the highest to the lowest
for different models fitted to data generated under conditional independence assumption.
True: true cluster-effect value Comb: combined model cluster-effect estimate and (stan-
dard error), J(αj + bi):joint mode where logit[P (xij = 1|bi)] = αj + bi, J(βj + bi): joint
model where logit[P (xij = 1|bi)] = βj + bi, J(α + bi): joint model where logit[P (xij =
1|bi)] = α + bi, Naive: Naive model cluster-effect estimate. logit[P (xij = 1|bi)] = αj + bi
was used in selecting the clusters.

βj True Comb J(αj + bi) J(α + bi) J(βj + bi) Naive

β3 0.88 0.88 (0.00) 0.83 (0.06) 0.74 (0.17) 0.90 (0.02) 0.96 (0.09)

β1 0.84 0.84 (0.00) 0.94 (0.12) 0.52 (0.38) 0.87 (0.04) 0.95 (0.13)

β27 0.72 0.72 (0.00) 0.92 (0.28) 0.34 (0.53) 0.78 (0.08) 0.88 (0.23)

β30 0.72 0.71 (0.00) 0.78 (0.09) 0.54 (0.25) 0.73 (0.02) 0.85 (0.19)

β14 0.70 0.70 (0.00) 0.81 (0.16) 0.38 (0.46) 0.73 (0.04) 0.85 (0.22)

β7 0.68 0.68 (0.00) 0.79 (0.16) 0.38 (0.44) 0.72 (0.05) 0.84 (0.23)

β9 0.66 0.66 (0.00) 0.78 (0.18) 0.45 (0.32) 0.70 (0.06) 0.82 (0.25)

β10 0.64 0.64 (0.00) 0.75 (0.18) 0.51 (0.21) 0.67 (0.05) 0.79 (0.23)

β21 0.61 0.61 (0.00) 0.67 (0.09) 0.56 (0.08) 0.63 (0.03) 0.75 (0.22)

β11 0.60 0.60 (0.00) 0.78 (0.30) 0.33 (0.45) 0.63 (0.05) 0.76 (0.28)

β26 0.60 0.59 (0.00) 0.68 (0.15) 0.53 (0.10) 0.62 (0.04) 0.73 (0.22)

β15 0.57 0.57 (0.00) 0.67 (0.16) 0.52 (0.09) 0.59 (0.03) 0.71 (0.23)

β13 0.57 0.57 (0.00) 0.69 (0.21) 0.50 (0.12) 0.58 (0.03) 0.71 (0.25)

β4 0.56 0.56 (0.00) 0.72 (0.28) 0.44 (0.21) 0.59 (0.06) 0.72 (0.28)

β19 0.53 0.53 (0.00) 0.65 (0.22) 0.52 (0.01) 0.55 (0.04) 0.66 (0.25)

β17 0.51 0.51 (0.00) 0.59 (0.14) 0.62 (0.21) 0.53 (0.03) 0.62 (0.22)

β5 0.51 0.51 (0.00) 0.67 (0.32) 0.44 (0.14) 0.54 (0.06) 0.66 (0.28)

β25 0.51 0.51 (0.00) 0.68 (0.32) 0.43 (0.16) 0.55 (0.07) 0.66 (0.29)

β16 0.51 0.51 (0.00) 0.62 (0.23) 0.50 (0.02) 0.52 (0.02) 0.64 (0.26)

β22 0.50 0.50 (0.00) 0.64 (0.27) 0.46 (0.09) 0.52 (0.04) 0.64 (0.27)

β23 0.49 0.49 (0.00) 0.66 (0.33) 0.46 (0.07) 0.52 (0.05) 0.63 (0.28)

β8 0.49 0.49 (0.00) 0.64 (0.31) 0.49 (0.01) 0.50 (0.03) 0.62 (0.26)

β29 0.46 0.46 (0.00) 0.60 (0.30) 0.51 (0.11) 0.48 (0.04) 0.59 (0.26)

β6 0.44 0.44 (0.00) 0.64 (0.45) 0.41 (0.07) 0.47 (0.05) 0.57 (0.30)

β24 0.40 0.40 (0.00) 0.55 (0.38) 0.50 (0.26) 0.40 (0.02) 0.49 (0.24)

β20 0.31 0.31 (0.00) 0.49 (0.57) 0.50 (0.60) 0.32 (0.03) 0.38 (0.22)

β2 0.29 0.29 (0.00) 0.48 (0.65) 0.46 (0.59) 0.30 (0.02) 0.36 (0.23)

β28 0.20 0.20 (0.01) 0.41 (1.05) 0.42 (1.07) 0.20 (0.02) 0.23 (0.17)

β12 0.17 0.17 (0.01) 0.41 (1.47) 0.36 (1.17) 0.17 (0.01) 0.20 (0.20)

β18 0.13 0.14 (0.01) 0.36 (1.66) 0.38 (1.80) 0.13 (0.03) 0.15 (0.14)
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Table 5: Estimated parameters (β̂), probabilities of success (P̂) and ranks for the top
20 clusters (according to the naive approach) from the case study. The models fitted
are: Combined model (Combined), mixed logistic regression (Naive), and joint model with
selection probability given by logit[P (xij = 1|ai)] = αj + ai [J(αj + ai)]. The column CID
gives the cluster id.

Naive J(αj + ai) Combined

CID β̂ P̂ Rank β̂ P̂ Rank β̂ P̂ Rank
265222 2.52 0.94 1 2.67 0.72 3 0.97 0.62 25
295061 3.83 0.92 2 2.61 0.71 4 1.69 0.71 1
359957 0.49 0.87 3 -0.25 0.48 330 0.71 0.59 88
69850 1.07 0.82 4 0.11 0.50 182 0.89 0.61 38
84163 5.24 0.77 5 1.83 0.65 9 1.34 0.67 6

296443 2.59 0.76 6 1.62 0.64 10 0.55 0.57 162
7451 1.28 0.74 7 0.66 0.56 55 0.61 0.57 147

277619 1.65 0.73 8 0.44 0.54 89 0.60 0.58 138
315928 2.04 0.72 9 1.47 0.62 14 1.26 0.66 9
296535 2.77 0.71 10 2.37 0.70 5 1.58 0.70 2
313914 2.18 0.70 11 2.06 0.68 7 1.47 0.68 4
277774 2.20 0.69 12 1.30 0.61 20 0.98 0.62 24
178994 1.85 0.68 13 1.57 0.64 11 1.14 0.65 13
296560 1.89 0.66 14 1.86 0.66 8 1.09 0.64 15
464822 1.21 0.66 15 0.56 0.55 72 0.90 0.61 40
265441 1.87 0.65 16 1.44 0.62 15 0.90 0.61 34
292805 1.47 0.65 17 1.20 0.61 19 1.06 0.64 20
432169 1.45 0.64 18 6.26 0.91 1 1.01 0.63 21
292579 1.85 0.64 19 1.50 0.63 13 1.23 0.65 11
278927 1.30 0.63 20 0.51 0.54 76 0.97 0.62 26

σ2 20.02 18.61 6.64
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