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Abstract

This paper proposes a marginalized model for repeated or otherwise hierarchical, overdispersed
time-to-event outcomes, adapting the so-called combined model for time-to-event outcomes of
Molenberghs et al (2012), who combined gamma and normal random effects. The two sets of
random effects are used to accommodate simultaneously correlation between repeated measures
and overdispersion. The proposed version allows for a direct marginal interpretation of all model
parameters. The outcomes are allowed to be censored. Two estimation methods are proposed:
full likelihood and pairwise likelihood. The proposed model is applied to data from a so-called
comet assay and to data from recurrent asthma attacks in children. Both estimation methods
perform very well. From simulation results, it follows that the marginalized combined model
behaves similarly to the ordinary combined model in terms of point estimation and precision. It
is also observed that the pairwise likelihood required more computation time on the one hand
but is less sensitive to starting values and stabler in terms of bias with increasing sample size and
censoring percentage than full likelihood, on the other, leaving room for both in practice.

Some Keywords: Combined model; Marginalized multilevel model; Full likelihood; Pairwise
likelihood; Weibull distribution.

1 Introduction

Molenberghs et al (2010) presented a general framework for modeling (non-)Gaussian overdispersed
and hierarchical outcomes. To allow for both overdispersion and correlation simultaneously, they
combined conjugate random effects with normal random effects, the latter like in generalized linear
mixed models (GLMM; Engel and Keen, 1994; Breslow and Clayton, 1993; Wolfinger and O’Connell,
1993). This so-called combined model can flexibly handle all outcomes types commonly encountered
in a generalized linear models setting (McCullagh and Nelder, 1989). Here, we focus on time-to-
event outcomes, by means of a Weibull distribution with both gamma and normal random effects. A
distinctive feature is the potential occurrence of right-censoring, which needs to be incorporated. As
such, this model has been studied already in Molenberghs et al (2012). These authors fitted their
combined Weibull-gamma-normal model with censoring using both full likelihood as well as pairwise
likelihood (Molenberghs and Verbeke, 2005). The combined model here is different from the additive
frailty model, one of the proposals by Rondeau et al (2012), that embeds two correlated random
effects, intercept and slope, for proportional hazard models.
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The parameters in GLMM are known to have a subject-specific interpretation and not necessarily
a population-averaged one. This is perhaps best known for binary data, where often generalized
estimating equations (GEE; Liang and Zeger, 1986) are considered as a marginal counterpart to
the logistic-normal model. However, GEE lack a likelihood basis, which rules out certain inferential
routes and, at the same time, poses challenges when data are incomplete (Molenberghs and Verbeke,
2005). It is therefore useful to make available methodology that simultaneously allows for a marginal
as well as a subject-specific interpretation. Depending on the research question, one or the other
may be of interest, and sometimes even both. For example, apart from the marginal assessment
of treatment effect, one may have an interest in subject-specific effects such as empirical Bayes
predictions of random effects, etc. Thus, using both marginal and conditional models at the same
time can offer flexibility. Heagerty (1999) and Heagerty and Zeger (2000) proposed a so-called
marginalized multilevel model (MMM). These authors presented an alternative parameterization for
the multilevel model in which the marginal mean, rather than the mean conditional on random
effects, is regressed on covariates. An important feature of their approach is that marginal regression
parameters are adopted while still permitting individual-level predictions. Furthermore, Griswold and
Zeger (2004) reformulated the MMM to render the connection between marginal and conditional
models transparent, and then constructed marginalized models in terms of their conditional model
counterparts. These authors’ formulation did not capture overdispersion (Hinde and Demétrio ,
1998), important though it is for non-Gaussian hierarchical data, whereas the combined model
does. These considerations lead us to bring together the MMM idea and overdispersion for censored
time-to-event outcomes. A related development was made by Iddi and Molenberghs (2012) for
binary and count outcomes. As estimation strategies, we use full likelihood estimation with iterative
numerical quadrature methods, as well as pairwise likelihood (Molenberghs and Verbeke, 2005).
These techniques allow for easy implementation in standard statistical software packages.

The rest of this manuscript is organized as follows. In Section 2, two motivating case studies are
described, with their analyses reported in Section 5. The combined model, especially for time-to-
event outcomes, is reviewed in Section 3, where we also present our marginalized combined model
for time-to-event outcomes. Estimation strategies are the subject of Section 4. A simulation study
is reported in Section 6.

2 Motivating Case Study

2.1 Comet Assay Data

A comet assay refers to an easy-to-perform and sensitive technique for the detection of DNA damage
at the level of an individual eukaryotic cell. The data used here were collected in four groups of six
male rats that received a daily oral dose of a compound in one of three dose levels (low, medium, high)
or vehicle control. The treatments were randomized to the rats. On the day of necropsy, an extra
group of three animals received a single dose of a positive control (200 mg/kg ethyl methanesulfonate,
EMS, PC). The animals were sacrificed three hours after the last dose administration, their liver
removed, and processed for the comet assay. A cell suspension was prepared for each animal, from
each of which three replicate samples were prepared for scoring. There were 50 randomly selected
non-overlapping cells per sample, scored for DNA damage using a semi-automated scoring system.
A total of 150 liver cells per animal was scored. DNA damage was assessed through the software
system by measuring tail migration, percentage of tail intensity, and tail moment. We are focusing
in this paper on the tail-intensity percentage measurement, being the percentage of DNA fragments
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Table 1: Comet data. A part of 50 measurements within the first slide.

Slide Tail Intensity Treatment

1 0.0072 0

1 0.0080 0

1 0.0124 0

1 0.0160 0

1 0.0200 0

1 0.0247 0

1 0.0254 0

present in the tail. The resulting data present themselves in a multilevel structure where a cell
suspension or slide, containing three replicate samples, is nested within an animal. In this paper, we
use one cluster, slide. Extension is possible but would complicate the illustration aimed at here. In
addition, for simpler analysis and focusing on medium-level dose, we target two dose levels (low and
medium). As a result, 36 slides, each slide contains roughly 50 measurements, are entered into the
analysis. The first seven observation of the first slide can be seen in Table 1.

2.2 Recurrent Asthma Data

The asthma data have been studied in Duchateau and Janssen (2008); they take the form of repeated
time-to-event outcomes. Asthma occurs more and more frequently in very young children, i.e., be-
tween 6 and 24 months. Therefore, a new application of an existing anti-allergic drug is administered
to children who are at higher risk for developing asthma in order to prevent it. A prevention trial is
set up with such children randomized to placebo (standard application of the drug) or experimental
drug, and the asthma events that developed over time are recorded in a diary. Typically, a patient
has more than one asthma event. The intermittent events are thus clustered within a patient and
ordered in time. This ordering can be taken into account in the model. The data are presented in a
calendar time format, where the time at risk for a particular event is the time from the end of the
previous event (asthma attack) to the start of the next event (start of the next asthma attack). A
particular patient has different periods at risk throughout follow-up, which are separated either by
an asthmatic event that lasts one or more days, or by a period in which the patient was not under
observation. The start and end dates of each such risk period are required, together with the status
indicator to denote whether the end of the risk period corresponds to an asthma attack or not. Data
for the first patient are listed in Table 2.

3 Methodology

3.1 The Combined Gamma Frailty and Normal Random Effects Model

For non-Gaussian outcomes, standard exponential-family models are ubiquitous. However, many of
these models constrain mean-variance relationship, then raising extra-dispersion concerns. Hinde and
Demétrio (1998) provides a general treatment of extra-dispersion. At the same time, hierarchical
design, owing to, for example, repeated measures or clustering, have become common. The latter

3



Table 2: Asthma data for the first patient. The column labeled ‘Status’ refers to whether (1) or
not (0) censoring occurred.

Patient ID Drug Begin End Status Time

1 0 0 15 1 15

1 0 22 90 1 68

1 0 96 325 1 229

1 0 329 332 1 3

1 0 338 369 1 31

1 0 370 412 1 42

1 0 418 422 1 4

1 0 426 474 1 48

1 0 477 526 1 49

1 0 530 600 0 70

has been addressed, among others, by means of the generalized linear mixed model family (GLMM;
Engel and Keen, 1994; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993), which includes
normal random effects in the linear predictor. Taking both phenomena simultaneously into account,
Molenberghs et al (2010) proposed a so-called combined model that brings together normal random
effects in the linear predictor with a second set of random effects, usually of a conjugate type, in the
sense of Cox and Hinkley (1974, p. 370) and Lee, Nelder, and Pawitan (2006, p. 278).

Assume Yij is the jth outcome for the ith subject, measured at a time tij , (i = 1, . . . , N ; j =
1, . . . , ni) and assumed to follow an exponential-family distribution, conditional upon random effects
bi and θi = (θi1, . . . , θini)

′:

fi(yij |bi, ξ,θi, φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij , φ)

}
. (1)

Here, λij is the natural parameter, transforming to the conditional mean µc
ij = E(Yij |bi, ξi, θij) =

θijκij . The components θij are assumed independent of one another and follow a distribution

θij ∼ Gij(ϑij , σ
2
ij), (2)

with mean ϑij and variance σ2
ij . For generality of notation, all aspects of these distribution are

subscripted by i and j, whereas in practice one might choose all distributions to be common to a
particular measurement occasion j or even common over values of i and of j. In the latter case, for
example, the distribution simplifies to θij ∼ G(ϑ, σ2). Because θij enter the mean directly, they need
to satisfy the mean’s scale. For example, for time-to-event outcomes, θij must have support over
the positive half line. In contrast, the mean component κij = g−1(x′ijξ + z′ijbi) is a conventional
GLMM mean component, and hence a function of linear predictor ηij = x′ijξ + z′ijbi, with link
function g(·). For a Weibull distribution, g−1(η) = exp(η) is an obvious choice. Further, ξ is the
fixed- effects parameter vector and the random effects bi ∼ N(0, D). The advantage of a conjugate
choice for θij is that not only the range for the mean is respected, but also that closed forms for the
marginal mean and variance, and even for the entire marginal distribution, are possible, as shown in
Molenberghs et al (2010).
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Given our focus on time-to-event-outcomes, it is natural to select the Weibull distribution for (1),
and then the gamma distribution for (2), because of conjugacy. Assuming its mean ϑij ≡ ϑj and
variance σ2

ij ≡ σ2
j constant across subjects and measurements within subjects, and re-parameterizing

it using the conventional gamma-distribution parameters, we write θij ∼ Γ(αj , βj). This choice is
also strongly conjugate in the sense of Molenberghs et al (2010), taken to mean that conjugacy
still applies even after incorporating normal random effects. With these choices, the model can be
represented by its three densities:

f(yi|θi, bi) =
ni∏

j=1

λρθijy
ρ−1
ij ex

′
ijξ+z′

ijbie−λyρ
ijθije

x′
ij
ξ+z′

ij
bi
, (3)

f(θi) =
ni∏

j=1

1
β

αj

j Γ(αj)
θ

αj−1
ij e−θij/βj , (4)

f(bi) =
1

(2π)q/2|D|1/2
e−

1
2
bi

′
D−1bi , (5)

the conditional outcome, conjugate, and normal random effects, respectively. Here, λ and ρ are the
conventional additional Weibull scale and shape parameters, respectively. Setting ρ = 1 reduces the
Weibull to the exponential density. The ξ is fixed effect parameter. In addition, we assume that
both conjugate random effect θij and normal random effect bi are independent each other. Model
(3)–(5) extends both a GLMM for time-to-event data as well as the gamma frailty model.

3.2 The Marginalized Combined Model

In spite of the combined model’s flexibility in accommodating both overdispersion and hierarchical
data structures, the fixed-effects vector ξ in (3) is interpreted conditional upon the normal random
effects, not marginally, even though this is often desirable. Molenberghs et al (2010) show that the
model can be marginalized in closed form and in particular that an elegant closed-form exists for
the marginal mean function. Consistent with Zeger, Liang, and Albert (1988), they showed that
the marginal regression function does not alter, except for the marginal intercept, which depends
on the conditional intercept, the scale parameter λ, and the overdispersion parameters αj and βj .
For inferences regarding the intercepts, or a combination of covariate effects and intercepts, this is
cumbersome. While one could proceed by the delta method, its application would be ad hoc because
specific to every particular model and research question considered. It would require the user to write
a piece of code for every particular situation.

To avoid this, we proceed instead by specifying the regression function marginally, with the normal
random effects still entering the conditional mean function directly. To this effect, we formulate a
so-called marginalized multilevel model (MMM), in the tradition of Heagerty (1999), Heagerty and
Zeger (2000), and Griswold and Zeger (2004). It takes the form:

µm
ij = g−1

(
x′ijξ

m
)
, (6)

µc
ij = θijκij = θij · g−1

(
∆ij + z′ijbi

)
. (7)

The predictor on the right hand side of (7) replaces the conventional predictor in (3). The fixed-
effects parameter vector ξm is superscripted to emphasize its directly marginal interpretation. The
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dual mean specification (6)–(7) immediately leads to a defining equation for connector function ∆ij

(Griswold and Zeger, 2004):

g−1(x′ijξ
m) = µm

ij =
∫

b

∫
θ
θijg

−1(∆ij + z′ijbi)f(θij)f(bi) dθijdbi

= E(θij) ·
∫

b
g−1(∆ij + z′ijbi)f(bi) dbi. (8)

In the particular case of the Weibull-gamma-normal model, (8) admits a closed-form solution:

∆ij = − log(αjβj) + x′ijξ
m − z′ijDzij/2. (9)

This is in contrast to the binary case (Iddi and Molenberghs, 2012). Should there be no gamma
random effects, then the first term on the right hand side of (9) simply drops.

4 Estimation

4.1 Full Likelihood Estimation

To conveniently apply full likelihood routines, and given that strong conjugacy applies, we use so-
called partial marginalization, proposed in Molenberghs et al (2010). The idea is to integrate con-
ditional density (3) analytically over the gamma random effects, leaving the normal random effects
to numerical integration. The corresponding marginal-conditional density in the Weibull case is:

f(yij |bi) =
λeηijρyρ−1

ij αjβj

(1 + λeηijβjy
ρ
ij)

αj+1 , (10)

with ηij = x′ijξ + z′ijbi for the conventional formulation and ηij = ∆ij + z′ijbi for the MMM.

Furthermore, censoring can conveniently be accommodated. With focus on right-censored data, in
the spirit of (10), the partial marginalization of a censored component takes the form:

f(Cij |bi) =
∫ +∞

Cij

f(yij |bi)dyij =
1

(1 + λeηijCρ
ij)

αj
. (11)

Now, having only the normal random effects left, it is then straightforward to use numerical-
integration-based full likelihood estimation as implemented in a common statistical software package,
such as, for example, the SAS procedure NLMIXED. Indeed, given that the model expressions con-
ditional upon the normal random effect, i.e., (10) and (11), the likelihood function can easily be
programmed within the SAS procedure, using the so-called ‘general likelihood’ feature, which allows
for a user-defined model, given normal random effects. The code is provided in Appendix B.

4.2 Pairwise Likelihood Estimation

As an alternative to full likelihood, we also use so-called pairwise likelihood (Renard, Molenberghs, and
Geys, 2004). Such an approach can alleviate the cumbersome nature of the joint model expressions
needed for full likelihood, especially when there is a lot of within-cluster replication. It can also
stabilize computations and make the iterative process less dependent on starting values, even though
it may not always reduce computation time. le Cessie and van Houwelingen (1991) and Renard,
Molenberghs, and Geys (2004) replace the proper contribution of a vector of correlated binary data
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to the full likelihood, written as f(yi1, . . . , yini), by the product of all pairwise contributions f(yij , yik)
(1 ≤ j < k ≤ ni), to obtain a so-called pseudo-likelihood function. The contribution of the ith
cluster to the log pseudo-likelihood is:

p`i =
∑
j<k

ln f(yij , yik).

This is evidently only for units with more than one observation. Otherwise, p`i = f(yi1) is used
instead. Pairwise likelihood is a special case of pseudo-likelihood, studied in detail in Arnold and
Strauss (1991) and Molenberghs and Verbeke (2005), among others. When it comes to implemen-
tation, the ideas of full likelihood are used, but applied to the pairs rather than to the full set of
measurements for a particular unit. This leads to a consistent and asymptotically normal parameter
estimator, but to obtain valid precision estimates, an information sandwich is required (Molenberghs
and Verbeke, 2005).

5 Data Analysis

We consider two examples to which the proposed methodology can usefully be applied. One is
censored while the other is not. They exhibit different levels of overdispersion.

5.1 Comet Assay Data

Consider the (uncensored) tail-intensity outcome of the comet data, introduced in Section 2.1.
We consider the Weibull-gamma-normal model, i.e., the ordinary combined model, together with
its marginalized version. The fixed-effects structure is restricted to a treatment effect. Both full
likelihood and pairwise likelihood estimation were used in the model fitting. Parameter estimation
was effectuated using the SAS procedure NLMIXED.

Result are presented in Table 3. In line with our earlier comments, it is not surprising that parameter
estimates between the marginalized and ordinary combined model are virtually the same, except for
the variance of the conjugate random effects, which contributes to the intercept. The treatment
effect is highly significant. These considerations hold for both full likelihood and pairwise likelihood.

We see that that the pairwise-likelihood derived standard error estimates are larger than those with
full likelihood. This is expected given the well-known optimality of the likelihood estimates. Because
of this, and the complete absence of any convergence problems, it is sensible to prefer the full
likelihood approach for this data analysis.

5.2 Recurrent Asthma Data

We now turn to the recurrent asthma data, described in Section 2.2. For each of the 226 patients,
their treatment allocation and repeated time-to-event outcomes, the time between the end of the
previous to onset of the next attack, Yij is recorded; the outcome is subject to censoring. Also here,
the combined model and its marginalized version are considered. Regarding the normal random-
effects structure, a random intercept bi1 (with variance σ2

i ) and a random slope bi2 (with variance
σ2

e) is included. While this could be relaxed, both random effects are assumed to be independently
normally distributed. Model fitting is done using both full and pairwise likelihood. Parameter
estimates (standard errors) are presented in Table 4.
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Table 3: Comet assay: combined model and the marginalized combined model results. ‘WGN’ refers
to Weibull gamma normal model, the combined model, whilst ‘M’ means marginalized.

Effect Par WGN WGN-M WGN WGN-M

Full likelihood Pairwise likelihood

Estimate(s.e.) Estimate(s.e.) Estimate(s.e.) Estimate(s.e.)

Treatment ξ -2.416(0.086) -2.464(0.087) -2.44(0.164) -2.438(0.162)

Shape λ 0.234(0.015) 0.252(0.017) 0.239(0.038) 0.239(0.041)

Conj. R.E. α 52.87(44.16) 20.00(7.115) 24.92(31.71) 27.16(35.84)

s.d. normal R.E. σ 0.198(0.036) 0.198(0.037) 0.098(0.215) 0.107(0.202)

-2log-lik 13272 13275 - -

Full likelihood estimates between the ordinary and marginalized models are similar. Treatment effect
is not significant. Because marginalization does not change the likelihood, the likelihood ratios
are invariant to this operation (Griswold and Zeger, 2004). Because we now include two normally
distributed random effects, the connector function (9) uses a different vector zij . This now implies
that the treatment effect estimate changes upon marginalization, although the change is minor.

Turning attention to results using pairwise likelihood estimation, it is found that the estimates
before and after marginalization are still similar. We also see that the estimate of the random slope
parameter is virtually zero in all cases, although more pronounced in the pairwise-likelihood case.
This does not contradict the results from full likelihood, where this component was non-significant,
although the numerical behavior is quite different.

In the four versions presented in the table, the conjugate random effect parameter is statistically
significant. This is important and underscores that neither the standard GLMM nor the available
marginalized model (Griswold and Zeger, 2004) fits the data adequately.

No convergence problems were encountered. This fact, together with the increased precision for full
likelihood in terms of treatment effect and conjugate random effect, it would be sensible here as
well to prefer full likelihood. The picture for the normal random effects is slightly different, but the
boundary estimate for the standard deviation of the random slope urges caution.

Of course, once should be careful not to over-interpret the results derived from a couple of data
analyses. Therefore, we turn to a simulation study.

6 Simulation Study

A simulation study was conducted to evaluate the performance of the Weibull-gamma-normal (WGN)
model, as well as its marginalization (WGN-M). We chose the following true parameter values to
generate data: ξ1 = 2, λ = 0.2, α = 2, and

√
d = 0.25. ξ1 is the effect of a covariate, generated

from N(0, 0.1). We set ρ = 1, turning the Weibull distribution into an exponential one. The design
is reminiscent of the asthma data. The true parameter is also used as starting values for model
fitting.

Various settings were considered to investigate the impact of different sample sizes (20, 40, 60, and 80
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Table 4: Asthma study. Original and marginalized combined model results. ‘WGN’ refers to
the Weibull-gamma-normal model, whilst ‘C’ and ‘CM’ means censored and censored-marginalized,
respectively.

Effect Par WGN-C WGN-CM WGN-C WGN-CM

Full likelihood Pairwise likelihood

Estimate(s.e.) Estimate(s.e.) Estimate(s.e.) Estimate(s.e.)

Treatment ξ -0.113(0.106) -0.111(0.102) -0.127(0.105) -0.127(0.105)

Shape λ 0.014(0.001) 0.017(0.001) 0.025(0.002) 0.027(0.003)

Conj.RE α 3.566(0.632) 3.566(0.632) 4.583(0.708) 4.584(0.708)

s.d. norm. R.int. σi 0.560(0.068) 0.560(0.068) 0.445(0.039) 0.445(0.039)

s.d. norm. R.eff. σe 0.077(0.734) 0.077(0.741) 11E-4(11E-4) 20E-6(20E-6)

-2log-lik 16649 16649

subjects), with 10 observations per subject, and different right-censoring percentages, i.e., 0, 10, 25,
or 50 percent of the simulated time-to-event outcomes. Of course, we could expand the simulation
settings to variable numbers of observations per subject, but this would considerably increase the
size of the simulation study. We assume independent censoring. This leads to 16 scenarios, for each
one of which 500 replications were generated. To each set of data, both the WGN and the WGN-M
were fitted, using both full likelihood and pairwise likelihood. In analogy with Molenberghs et al
(2012), we use the Mahalanobis distance to quantify the bias. Let ξ0 = (ξ1, λ, α,

√
d)′ represent the

true parameter vector and ξ̂0 = (ξ̂1, λ̂, α̂,
√̂

d)′ the estimates, then the Mahalanobis distance DM is:

DM (ξ̂0) =
√

(ξ̂0 − ξ0)TS−1(ξ̂0 − ξ0),

and S is the covariance matrix. This quantity is straightforward to evaluate because the covariance
matrix S follows as a by-product of the optimization process.

The simulation results are reported in Tables A.1–A.8. The average of the parameter estimates,
average of standard error estimate (s.e.), the standard error of the estimates (s.e.MC), bias, and
relative bias (Rbias) are reported. The bias of the estimates of the WGN are calculated from the true
parameters while the bias for the WGN-M are computed from the corresponding marginalization.

The percentage of non-convergence, unsurprisingly, increases with censoring but reduces with higher
number of sample sizes. Pairwise likelihood has a slight beneficial impact on convergence, at the
cost of increased computation time. Computation time further increases with sample size and with
censoring. Whereas the choice between standard or marginalized combined model has no impact
on the computation time. The times for fitting a set of data in Tables A.1, A.2, A.3, and A.4, on
average are approximately 5 seconds, 30 seconds, 10 seconds, and 1 minute, respectively, using a
VSC cluster computer device.

It also follows that the relative bias of the parameter estimates in all simulation settings is rather small,
except with the gamma-distributed conjugate random effect, though this disappears with increasing
sample size and decreasing censoring percentages. The model based and Monte Carlo standard
errors are in good agreement, as one would expect. Relative bias is rather insensitive to estimation
method. All of these observations are summarized visually in the Mahalanobis distance (Figure A.1).
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Indeed, while the pairwise likelihood produces a higher Mahalanobis distance, increasing the sample
sizes gradually removes this effect. We also see that the relative bias of all standard model settings
behaves similarly with different percentage of censoring. Finally, with increasing sample size and
censorship percentage, the Mahalanobis distance with full likelihood also tends to be higher whereas
with pairwise likelihood it appears to be stable.

Additionally, the Mahalanobis distance summarized in Figure A.2 was presented to investigate the
bias of the marginalized model from its standard form. It is shown that bias of models using pairwise
likelihood is higher than with full likelihood, but then the gap reduced with increasing sample size.
We also see that the bias increases with censoring. This behavior occurs in all four different sample
size settings.

7 Concluding Remarks

For time-to-event outcomes, we have shown that the combined model (Molenberghs et al , 2010,
2012) can be reformulated such that the parameters maintain a marginal interpretation. For this, we
proposed a marginalized combined model, for hierarchically organized, overdispersed time-to-event
outcomes. The marginalized combined model not only can capture the hierarchical structure in the
data and accommodate overdispersion, it also admits a marginal interpretation. Such interpretation
is what is needed in many studies set up to answer a (sub)population level question.

Practically, the marginalized multilevel model idea (Heagerty, 1999; Heagerty and Zeger, 2000) is
adapted to this context. It is based on specifying marginal and conditional means separately and
then linking them by a so-called connector function. Iddi and Molenberghs (2012) followed a similar
approach for binary data. Censoring is also allowed for.

The model fitting for the marginalized combined model is straightforward and can be done easily
through common statistical software. We made use of the SAS procedure NLMIXED. Both the
standard and marginalized versions are easy to fit. Full likelihood and pairwise likelihood were
considered, implemented, used for data analysis, and put to the test in a simulation study. The two
model versions show similar behavior, across a range of sample sizes, censoring percentages, and
estimation methods. In line with findings in Molenberghs et al (2012), the pairwise likelihood gives
stabler bias than full likelihood, when censoring percentages and sample sizes increase.

Regarding censoring, we restricted attention to right-censored outcomes, but extension of the pro-
posed methodology to left-censoring and interval-censoring is immediate.
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Figure A.1: Mahalanobis distance for different sample size and censoring percentage
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Figure A.2: Mahalanobis distance for different sample size and censoring percentage for marginalized
models
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Table A.1: Simulation results. The combined model and the marginalized combined model with
N=20, Full likelihood estimation.

WGN WGN-M

Cens. Par. True Est. s.e. s.e.MC Bias Rbias Est. s.e. s.e.MC Bias Rbias

00 ξ1 2 1.9973 1.0118 0.9601 0.0027 0.0014 1.9877 1.0112 0.9612 0.0096 0.0048

λ 0.2 0.1991 0.0279 0.0273 0.0009 0.0046 0.2075 0.0300 0.0284 0.0084 0.0424

α 2 2.2673 0.5935 0.6095 0.2673 0.1336 2.2762 0.5976 0.6078 0.0089 0.0039

σ 0.25 0.2621 0.2302 0.1241 0.0120 0.0482 0.2618 0.2261 0.1241 0.0003 0.0010

% convergence 73.42 73.64

10 ξ1 2 2.0671 1.0402 1.0359 0.0671 0.0336 2.0611 1.0412 1.0406 0.0061 0.0029

λ 0.2 0.1993 0.0295 0.0288 0.0007 0.0034 0.2086 0.0318 0.0302 0.0093 0.0468

α 2 2.3655 0.8368 1.0250 0.3655 0.1828 2.3642 0.8373 1.0327 0.0014 0.0006

σ 0.25 0.2747 0.2344 0.1244 0.0247 0.0987 0.2770 0.2217 0.1220 0.0023 0.0085

% convergence 70.72 70.32

25 ξ1 2 2.0379 1.0835 1.0497 0.0379 0.0189 2.0403 1.0828 1.0476 0.0024 0.0012

λ 0.2 0.1975 0.0315 0.0304 0.0026 0.0127 0.2067 0.0337 0.0325 0.0093 0.0469

α 2 2.6583 1.7714 1.9091 0.6583 0.3292 2.6083 1.5240 1.4658 0.0500 0.0188

σ 0.25 0.2761 0.2314 0.1222 0.0261 0.1044 0.2737 0.2362 0.1245 0.0024 0.0088

% convergence 67.11 67.84

50 ξ1 2 2.1097 1.2593 1.1990 0.1097 0.0549 2.1129 1.2580 1.2013 0.0032 0.0015

λ 0.2 0.2041 0.0395 0.0347 0.0041 0.0207 0.2163 0.0426 0.0377 0.0121 0.0593

α 2 3.8012 14.9733 5.7834 1.8012 0.9006 3.8481 15.1684 5.8047 0.0469 0.0123

σ 0.25 0.2998 0.3007 0.1447 0.0498 0.1993 0.3018 0.2978 0.1427 0.0019 0.0065

% convergence 59.67 59.17
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Table A.2: Simulation results. The combined model and the marginalized combined model with
N=20, Pairwise likelihood estimation.

WGN WGN-M

Cens. Par. True Est. s.e. s.e.MC Bias Rbias Est. s.e. s.e.MC Bias Rbias

00 ξ1 2 2.0061 0.9939 0.9611 0.0061 0.0031 1.9866 0.9931 0.9666 0.0196 0.0098

λ 0.2 0.1973 0.0275 0.0271 0.0027 0.0134 0.2079 0.0303 0.0287 0.0106 0.0535

α 2 2.3374 0.5694 0.6684 0.3374 0.1687 2.3342 0.5824 0.6587 0.0032 0.0014

σ 0.25 0.2790 0.2008 0.1386 0.0290 0.1161 0.2692 0.2815 0.1458 0.0099 0.0354

% convergence 72.57 75.19

10 ξ1 2 2.0552 1.0153 1.0339 0.0552 0.0276 2.0653 1.0175 1.0168 0.0102 0.0049

λ 0.2 0.1987 0.0292 0.0288 0.0013 0.0066 0.2086 0.0320 0.0306 0.0100 0.0501

α 2 2.4078 0.7957 0.9836 0.4078 0.2039 2.3835 0.7818 0.9731 0.0243 0.0101

σ 0.25 0.2677 0.2011 0.1425 0.0177 0.0709 0.2678 0.2074 0.1435 0.0001 0.0003

% convergence 74.74 74.63

25 ξ1 2 2.0356 1.0470 1.0571 0.0356 0.0178 2.0308 1.0488 1.0569 0.0048 0.0024

λ 0.2 0.1982 0.0314 0.0305 0.0018 0.0089 0.2068 0.0337 0.0328 0.0085 0.0431

α 2 2.7170 1.9355 2.1193 0.7170 0.3585 2.7079 1.9091 2.1047 0.0090 0.0033

σ 0.25 0.2586 0.2144 0.1468 0.0086 0.0343 0.2536 0.2136 0.1490 0.0049 0.0191

% convergence 71.12 72.15

50 ξ1 2 2.1303 1.2336 1.1879 0.1303 0.0651 2.1306 1.2354 1.1747 0.0004 0.0002

λ 0.2 0.2032 0.0392 0.0352 0.0032 0.0162 0.2143 0.0420 0.0384 0.0111 0.0546

α 2 3.6153 11.3361 4.8598 1.6153 0.8076 3.6605 10.9005 4.8266 0.0452 0.0125

σ 0.25 0.2762 0.2443 0.1586 0.0262 0.1046 0.2706 0.2366 0.1621 0.0056 0.0202

% convergence 63.53 64.60
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Table A.3: Simulation results. The combined model and the marginalized combined model with
N=40, Full likelihood estimation.

WGN WGN-M

Cens. Par. True Est. s.e. s.e.MC Bias Rbias Est. s.e. s.e.MC Bias Rbias

00 ξ1 2 1.9943 0.7185 0.6984 0.0057 0.0028 1.9966 0.7182 0.6990 0.0023 0.0012

λ 0.2 0.1999 0.0196 0.0187 0.0001 0.0007 0.2075 0.0210 0.0203 0.0076 0.0382

α 2 2.1060 0.3553 0.3792 0.1060 0.0530 2.1067 0.3553 0.3778 0.0007 0.0003

σ 0.25 0.2575 0.1502 0.1018 0.0074 0.0298 0.2552 0.1551 0.1046 0.0023 0.0088

% convergence 84.32 85.32

10 ξ1 2 1.9968 0.7318 0.6996 0.0032 0.0016 1.9993 0.7313 0.7016 0.0025 0.0013

λ 0.2 0.1987 0.0203 0.0204 0.0013 0.0067 0.2062 0.0215 0.0211 0.0075 0.0377

α 2 2.1706 0.4641 0.5055 0.1706 0.0853 2.1688 0.4631 0.5059 0.0018 0.0008

σ 0.25 0.2486 0.1577 0.1013 0.0014 0.0055 0.2461 0.1590 0.1046 0.0025 0.0102

% convergence 80.91 82.10

25 ξ1 2 1.9765 0.7655 0.7519 0.0235 0.0117 1.9795 0.7651 0.7564 0.0030 0.0015

λ 0.2 0.2008 0.0224 0.0238 0.0008 0.0038 0.2088 0.0236 0.0250 0.0081 0.0401

α 2 2.2665 0.7167 0.7417 0.2665 0.1333 2.2622 0.7142 0.7455 0.0044 0.0019

σ 0.25 0.2574 0.1663 0.1044 0.0074 0.0297 0.2537 0.1685 0.1086 0.0038 0.0146

% convergence 78.49 79.74

50 ξ1 2 2.0210 0.8655 0.8579 0.0210 0.0105 2.0073 0.8657 0.8549 0.0137 0.0068

λ 0.2 0.1995 0.0265 0.0249 0.0005 0.0023 0.2082 0.0279 0.0264 0.0086 0.0432

α 2 3.1267 4.4612 3.2731 1.1267 0.5634 3.1353 4.4796 3.2758 0.0086 0.0027

σ 0.25 0.2658 0.2156 0.1220 0.0158 0.0633 0.2633 0.2292 0.1235 0.0025 0.0094

% convergence 76.22 76.92
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Table A.4: Simulation results. The combined model and the marginalized combined model with
N=40, Pairwise likelihood estimation.

WGN WGN-M

Cens. Par. True Est. s.e. s.e.MC Bias Rbias Est. s.e. s.e.MC Bias Rbias

00 ξ1 2 1.9999 0.7119 0.6986 0.0001 0.0001 2.0009 0.7151 0.6926 0.0010 0.0005

λ 0.2 0.1995 0.0194 0.0188 0.0005 0.0027 0.2077 0.0211 0.0201 0.0082 0.0411

α 2 2.1189 0.3420 0.3862 0.1189 0.0594 2.1155 0.3403 0.3831 0.0034 0.0016

σ 0.25 0.2533 0.1578 0.1242 0.0033 0.0132 0.2557 0.1566 0.1226 0.0024 0.0094

% convergence 84.89 84.32

10 ξ1 2 2.0117 0.7211 0.6925 0.0117 0.0059 2.0016 0.7213 0.7023 0.0101 0.0050

λ 0.2 0.1984 0.0204 0.0202 0.0016 0.0081 0.2069 0.0219 0.0209 0.0085 0.0430

α 2 2.1915 0.4676 .5126 0.1915 0.0957 2.1823 0.4664 0.5144 0.0092 0.0042

σ 0.25 0.2542 0.1555 0.1140 0.0042 0.0169 0.2515 0.1657 0.1165 0.0027 0.0108

% convergence 81.17 81.97

25 ξ1 2 1.9492 0.7516 0.7326 0.0508 0.0254 1.9575 0.7536 0.7434 0.0083 0.0043

λ 0.2 0.2009 0.0223 0.0232 0.0009 0.0044 0.2089 0.0238 0.0246 0.0080 0.0397

α 2 2.2589 0.6978 0.7260 0.2589 0.1294 2.2699 0.7082 0.7445 0.0110 0.0049

σ 0.25 0.2447 0.1602 0.1263 0.0053 0.0212 0.2491 0.1621 0.1227 0.0044 0.0181

% convergence 83.33 81.97

50 ξ1 2 2.0202 0.8564 0.8603 0.0202 0.0101 2.0179 0.8546 0.8607 0.0023 0.0011

λ 0.2 0.2010 0.0267 0.0254 0.0010 0.0049 0.2093 0.0279 0.0268 0.0083 0.0415

α 2 3.0683 4.6202 3.4117 1.0683 0.5342 3.0393 4.5169 3.3723 0.0290 0.0094

σ 0.25 0.2522 0.1691 0.1339 0.0022 0.0090 0.2504 0.1729 0.1354 0.0019 0.0075

% convergence 80.52 81.04
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Table A.5: Simulation results. The combined model and the marginalized combined model with
N=60, Full likelihood estimation.

WGN WGN-M

Cens. Par. True Est. s.e. s.e.MC Bias Rbias Est. s.e. s.e.MC Bias Rbias

00 ξ1 2 2.0015 0.5856 0.5839 0.0015 0.0007 1.9954 0.5856 0.5791 0.0061 0.0030

λ 0.2 0.1998 0.0159 0.0153 0.0002 0.0008 0.2067 0.0168 0.0162 0.0069 0.0343

α 2 2.0661 0.2774 0.2856 0.0661 0.0330 2.0665 0.2776 0.2866 0.0005 0.0002

σ 0.25 0.2486 0.1212 0.0890 0.0014 0.0056 0.2452 0.1293 0.0926 0.0034 0.0137

% convergence 90.42 91.41

10 ξ1 2 1.9960 0.5967 0.5957 0.0040 0.0020 1.9992 0.5970 0.6048 0.0032 0.0016

λ 0.2 0.1991 0.0166 0.0167 0.0009 0.0047 0.2060 0.0175 0.0177 0.0069 0.0348

α 2 2.1110 0.3542 0.3745 0.1110 0.0555 2.1098 0.3538 0.3775 0.0012 0.0006

σ 0.25 0.2469 0.1242 0.0898 0.0031 0.0123 0.2446 0.1293 0.0930 0.0023 0.0094

% convergence 89.29 90.09

25 ξ1 2 2.0156 0.6230 0.6234 0.0156 0.0078 2.0031 0.6229 0.6252 0.0125 0.0062

λ 0.2 0.1996 0.0180 0.0179 0.0004 0.0019 0.2066 0.0189 0.0189 0.0070 0.0351

α 2 2.1579 0.5193 0.5667 0.1579 0.0790 2.1619 0.5221 0.5818 0.0040 0.0018

σ 0.25 0.2420 0.1474 0.0969 0.0080 0.0322 0.2420 0.1422 0.0969 0.0000 0.0000

% convergence 86.06 86.06

50 ξ1 2 2.0186 0.7085 0.7017 0.0186 0.0093 2.0181 0.7083 0.7049 0.0005 0.0002

λ 0.2 0.1992 0.0215 0.0218 0.0008 0.0040 0.2069 0.0225 0.0227 0.0078 0.0389

α 2 2.5586 1.9445 1.9516 0.5586 0.2793 2.5689 1.9551 1.9535 0.0102 0.0040

σ 0.25 0.2522 0.1771 0.1128 0.0022 0.0087 0.2509 0.1788 0.1135 0.0013 0.0051

% convergence 81.57 81.97
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Table A.6: Simulation results. The combined model and the marginalized combined model with
N=60, Pairwise likelihood estimation.

WGN WGN-M

Cens. Par. True Est. s.e. s.e.MC Bias Rbias Est. s.e. s.e.MC Bias Rbias

00 ξ1 2 1.9914 0.5836 0.5755 0.0086 0.0043 1.9948 0.5837 0.5714 0.0034 0.0017

λ 0.2 0.1995 0.0158 0.0155 0.0005 0.0026 0.2072 0.0171 0.0166 0.0077 0.0385

α 2 2.0786 0.2737 0.2949 0.0786 0.0393 2.0800 0.2744 0.2958 0.0014 0.0007

σ 0.25 0.2461 0.1407 0.1166 0.0039 0.0155 0.2473 0.1403 0.1154 0.0012 0.0047

% convergence 87.72 87.41

10 ξ1 2 1.9844 0.5946 0.6053 0.0156 0.0078 1.9850 0.5942 0.6029 0.0006 0.0003

λ 0.2 0.1989 0.0165 0.0172 0.0011 0.0055 0.2063 0.0176 0.0180 0.0074 0.0373

α 2 2.1171 0.3557 0.3741 0.1171 0.0586 2.1095 0.3533 0.3757 0.0076 0.0036

σ 0.25 0.2455 0.1285 0.1067 0.0045 0.0180 0.2419 0.1266 0.1111 0.0036 0.0145

% convergence 87.72 89.45

25 ξ1 2 2.0108 0.6172 0.6193 0.0108 0.0054 2.0074 0.6170 0.6258 0.0035 0.0017

λ 0.2 0.1999 0.0181 0.0181 0.0001 0.0006 0.2067 0.0189 0.0189 0.0069 0.0344

α 2 2.1601 0.5265 0.6197 0.1601 0.0800 2.1576 0.5244 0.6134 0.0025 0.0011

σ 0.25 0.2372 0.1500 0.1092 0.0128 0.0513 0.2333 0.1492 0.1119 0.0039 0.0163

% convergence 87.87 89.13

50 ξ1 2 2.0083 0.7070 0.7107 0.0083 0.0041 1.9930 0.7058 0.7084 0.0153 0.0076

λ 0.2 0.1993 0.0215 0.0220 0.0007 0.0033 0.2070 0.0224 0.0227 0.0076 0.0384

α 2 2.5884 1.8619 1.7947 0.5884 0.2942 2.5426 1.7427 1.6735 0.0459 0.0177

σ 0.25 0.2425 0.1519 0.1227 0.0075 0.0302 0.2345 0.1575 0.1279 0.0080 0.0328

% convergence 84.32 86.96
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Table A.7: Simulation results. The combined model and the marginalized combined model with
N=80, Full likelihood estimation.

WGN WGN-M

Cens. Par. True Est. s.e. s.e.MC Bias Rbias Est. s.e. s.e.MC Bias Rbias

00 ξ1 2 2.0010 0.5078 0.4875 0.0010 0.0005 2.0004 0.5077 0.4907 0.0006 0.0003

λ 0.2 0.2000 0.0136 0.0134 0.0000 0.0002 0.2065 0.0144 0.0138 0.0066 0.0328

α 2 2.0452 0.2345 0.2446 0.0452 0.0226 2.0470 0.2349 0.2432 0.0017 0.0009

σ 0.25 0.2400 0.1064 0.0827 0.0100 0.0399 0.2410 0.1045 0.0813 0.0010 0.0041

% convergence 93.81 93.46

10 ξ1 2 2.0143 0.5156 0.5048 0.0143 0.0071 2.0126 0.5155 0.5054 0.0017 0.0008

λ 0.2 0.1991 0.0143 0.0137 0.0009 0.0043 0.2056 0.0150 0.0142 0.0064 0.0322

α 2 2.0840 0.2971 0.2884 0.0840 0.0420 2.0843 0.2969 0.2874 0.0003 0.0002

σ 0.25 0.2398 0.1153 0.0852 0.0102 0.0408 0.2373 0.1152 0.0884 0.0025 0.0103

% convergence 92.94 93.81

25 ξ1 2 2.0195 0.5389 0.5383 0.0195 0.0098 2.0131 0.5389 0.5393 0.0064 0.0032

λ 0.2 0.2001 0.0155 0.0159 0.0001 0.0005 0.2060 0.0161 0.0163 0.0059 0.0297

α 2 2.1177 0.4270 0.4515 0.1177 0.0589 2.1232 0.4291 0.4527 0.0055 0.0026

σ 0.25 0.2284 0.1308 0.0901 0.0216 0.0866 0.2309 0.1282 0.0873 0.0025 0.0111

% convergence 90.25 89.29

50 ξ1 2 2.0389 0.6112 0.6097 0.0389 0.0194 2.0249 0.6106 0.6115 0.0140 0.0069

λ 0.2 0.2002 0.0186 0.0181 0.0002 0.0012 0.2070 0.0193 0.0188 0.0068 0.0337

α 2 2.5180 1.9344 2.4326 0.5180 0.2590 2.5312 1.9465 2.4326 0.0132 0.0052

σ 0.25 0.2406 0.1513 0.1056 0.0094 0.0374 0.2399 0.1515 0.1063 0.0008 0.0033

% convergence 87.26 87.41
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Table A.8: Simulation results. The combined model and the marginalized combined model with
N=80, Pairwise likelihood estimation.

WGN WGN-M

Cens. Par. True Est. s.e. s.e.MC Bias Rbias Est. s.e. s.e.MC Bias Rbias

00 ξ1 2 2.0027 0.5089 0.5035 0.0027 0.0014 2.0082 0.5090 0.5022 0.0055 0.0028

λ 0.2 0.1997 0.0136 0.0134 0.0003 0.0016 0.2064 0.0145 0.0141 0.0068 0.0338

α 2 2.0561 0.2344 0.2495 0.0561 0.0280 2.0561 0.2347 0.2489 0.0000 0.0000

σ 0.25 0.2402 0.1157 0.1014 0.0098 0.0392 0.2432 0.1200 0.0981 0.0030 0.0124

% convergence 90.09 89.13

10 ξ1 2 2.0195 0.5167 0.5046 0.0195 0.0097 2.0091 0.5157 0.5084 0.0104 0.0052

λ 0.2 0.1992 0.0144 0.0141 0.0008 0.0041 0.2059 0.0151 0.0144 0.0068 0.0339

α 2 2.0905 0.2995 0.2963 0.0905 0.0452 2.0935 0.3002 0.2961 0.0031 0.0015

σ 0.25 0.2441 0.1229 0.0997 0.0059 0.0238 0.2413 0.1194 0.1026 0.0027 0.0111

% convergence 90.42 92.08

25 ξ1 2 2.0366 0.5343 0.5510 0.0366 0.0183 2.0310 0.5342 0.5441 0.0056 0.0027

λ 0.2 0.2000 0.0155 0.0158 0.0000 0.0001 0.2060 0.0162 0.0162 0.0060 0.0300

α 2 2.1161 0.4294 0.4616 0.1161 0.0581 2.1167 0.4305 0.4618 0.0006 0.0003

σ 0.25 0.2220 0.1290 0.1037 0.0280 0.1121 0.2235 0.1427 0.1017 0.0015 0.0068

% convergence 90.74 90.42

50 ξ1 2 2.0252 0.6046 0.6041 0.0252 0.0126 2.0278 0.6043 0.6080 0.0025 0.0012

λ 0.2 0.2000 0.0187 0.0182 0.0000 0.0001 0.2072 0.0193 0.0191 0.0072 0.0360

α 2 2.4786 1.5215 1.7826 0.4786 0.2393 2.4789 1.5198 1.7800 0.0003 0.0001

σ 0.25 0.2344 0.1459 0.1143 0.0156 0.0626 0.2336 0.1458 0.1151 0.0008 0.0032

% convergence 88.50 88.97
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B Software Code

/*****************************************************************************
OBJECTIVE: To analyze the Asthma dataset using the Weibull model with Gamma
frailty and random normal effects and its marginalized form.
DATASET: Example 9 of Duchateau & Janssen (2008);
VARIABLE DESCRIPTION: Patid: Patient ID;
Begin and End: time interval between events for each patient;
Status: Right censoring indicator (1=Asthma Attack, 0=censored);
Drug: Treatment indicator (1=Drug, 0=Placebo).

Author: Achmad Efendi.
*******************************************************************************/

proc sort data=asma1; by Patid;run;

*Weibull-Gamma-Normal - right censoring;
proc nlmixed data=asma1 tech=quanew qpoints=50 maxit=1000;
bounds lambda>0, alpha>0;
parms Beta_1=-0.08 lambda=1 alpha=3.3 sigma1=1 sigma2=1;
rho=1;
eta = (Beta_1+b2)*(Drug=1)+ b1;
expeta = exp(eta);
c0 = 1/((1 + lambda*expeta*(Time**rho)*(1/alpha))**alpha);
c1 = log(lambda) + log(rho) +

(alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta
- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);
ll = (status=0)*log(c0) + (status=1)*c1;
model Time ~ general(ll);
random b1 b2 ~ normal([0,0],[sigma1**2,0,sigma2**2]) subject=Patid;
estimate ’Var of R.E1.s’ sigma1**2;
estimate ’Var of R.E2.s’ sigma2**2;
run;

*Weibull-Gamma-Normal - right censoring - MMM;
proc nlmixed data=asma1 tech=quanew qpoints=50 maxit=1000;
bounds lambda > 0, alpha > 0;
parms Beta_1=-0.08 lambda=1 alpha=3.3 sigma1=1 sigma2=1;
rho=1;
eta = (Beta_1+b2)*(Drug=1);
delta=eta-(sigma1*sigma1+sigma2*sigma2*(Drug=1)*(Drug=1))/2;
etas=delta+b1;
expeta = exp(etas);
c0 = 1/((1 + lambda*expeta*(Time**rho)*(1/alpha))**alpha);
c1 = log(lambda) + log(rho) +

(alpha+1)*log(alpha)+ (rho-1)*log(Time) + etas
- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);
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ll = (status=0)*log(c0) + (status=1)*c1;
model Time ~ general(ll);
random b1 b2 ~ normal([0,0],[sigma1**2,0,sigma2**2]) subject=Patid;
estimate ’Var of R.E1.s’ sigma1**2;
estimate ’Var of R.E2.s’ sigma2**2;
run;
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