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Abstract 

Covariate adjusted and unadjusted implementations of the following methods were compared in analyzing incomplete repeated binary 

data when the outcome at the study endpoint is of interest: logistic regression with the last observation carried forward (LOCF), 

generalized estimating equations (GEE), weighted GEE (WGEE), generalized linear mixed model (GLMM), and multiple imputation 

with analyses via GEE (MI).  Incomplete data mimicking several clinical trial scenarios were generated using missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR) mechanisms.  Across the various analytic methods 

and scenarios covariate adjusted analyses generally yielded larger treatment effect estimates and larger standard errors compared with 

their unadjusted counterpart.  The net result of these factors was increased power from the covariate adjusted analyses without 

increasing type I error rates.  Although all methods were biased in at least some of the MNAR scenarios the type I error rates from 

LOCF exceeded 30% whereas the highest rate from any other method in any scenario was 10%.  LOCF also yielded biased results in 

MCAR and MAR data whereas the other methods where not biased or had smaller biases than LOCF.  These results support 

longitudinal modeling of repeated binary data over LOCF logistic regression of the study endpoint only.  These results also support 

covariate adjustment for baseline severity in these longitudinal models.  

 

Key words:  Missing Data, binary data, covariate adjustment  
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1. Introduction 

Binary outcomes derived from underlying continuous measures are commonly evaluated in clinical trials.  For example, in diabetes 

clinical trials glycated haemoglobin (HbA1c) is a continuous measure that reflects average plasma glucose for several months (Sacks 

2002). It is commonly used as the primary efficacy outcome measure.  However, a clinically meaningful outcome is whether the 

endpoint HbA1c reaches the target of <7.0% (ADA 2013).  Therefore, comparing the probabilities of reaching HbA1c target of <7.0% 

between treatments based on a binary outcome is an important objective in diabetes trials.   

In longitudinal clinical trials patients are treated over a period of time and are evaluated at multiple time points.  Usually, the primary 

efficacy evaluation is based on the measurement at the last scheduled time point.  However, patients may withdraw before completing 

the study and the measurement at the last scheduled time point will be missing.  Missing data occur commonly in longitudinal studies 

for various reasons, including lack of efficacy, safety, re-location, etc.  An historically common approach to handle missing data was 

to impute the missing observations with the last available observation of the patient, i.e., the last observation carried forward (LOCF) 

method.   However, LOCF requires restrictive assumptions that are unlikely to hold in practice and this approach is generally not 

acceptable (NRC, 2010) 

Other analytic approaches for repeated binary data that do not require imputation include generalized estimating equations (GEE) 

(Liang and Zeger, 1986; Zeger and Liang, 1986).  Under the missing completely at random mechanism (MCAR) (Rubin, 1976), GEE 

provides unbiased and consistent parameter estimates even when the working correlation matrix is mis-specified.  However, under the 
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missing at random mechanism (MAR) (Rubin, 1976) parameter estimates based on GEE can be biased.  A weighted generalized 

estimating equations approach (Robins et al. 1995; and Fitzmaurice et al. 1995) extends conventional GEE and provides consistent 

parameter estimates under MAR when the dropout model is correctly specified.  In this approach, an individual’s contribution is 

weighted by the inverse probability of dropout at the given time. 

Likelihood-based generalized linear mixed model (GLMM) analyses of the available cases have also been widely used for the analysis 

of repeated binary data, generally under the assumption of MAR although some approximations to direct-likelihood require the more 

stringent MCAR assumtion (Wolfinger and O’Connell, 1993).   

Multiple imputation approaches (Rubin, 1987; Schafer 1999; Shieh 2003; Li et al., 2006) are commonly applied to continuous 

incomplete longitudinal data and can therefore be used to impute the continuous outcome from which the binary responses are derived 

without some of the restrictive assumptions that limit LOCF.  After imputation, the resulting complete data sets can be analyzed with 

either GEE or likelihood-based methods.   

Lipkovich et al. (2005) compared the performance of MI followed by GEE analysis with GLMM and GEE analyses of available cases 

in estimating treatment differences for binary outcomes derived from underlying continuous responses.  The MI-based approach 

performed better than GEE and GLMM in terms of precision, power, and type I error rate under MAR.  However, under the missing 

not at random (MNAR) mechanism, all three methods yielded biased results.  Liu and Zhan (2011) also conducted simulations to 

compare GLMM, GEE, and several MI approaches for the analysis of repeated binary responses with missing data in evaluating the 
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treatment effect at study endpoint.  Results indicated that GLMM performed better than GEE and MI approaches in terms of 

controlling type I error rate under MAR. 

In many clinical settings the baseline severity is linked to the probability of achieving a target level of symptom severity.  For 

example, in diabetes baseline HbA1c levels influence whether the patient can achieve the HbA1c target of <7.0%.  Therefore, 

adjusting for baseline severity may improve analytic performance in these situations.  However, little research has been done to 

evaluate the effect of adjusting for initial disease severity in the analysis of repeated binary data with missing values.  The present 

research evaluates the performance of the covariate adjusted and unadjusted analyses of repeated binary outcomes in terms of type I 

error rate, power, precision, and bias across several common statistical approaches.  Focus is on evaluating the treatment effect at the 

study endpoint. 

 

2. Statistical Methods 

For the analysis of only the outcome at study endpoint, not repeated measures, logistic regression with LOCF was used.  For repeated 

binary outcome analyses GEE, WGEE, GLMM, and MI approaches were used and the study endpoint contrast was derived from the 

repeated measures analysis.  Details of each analysis are described below. 

Logistic regression: 
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For the analysis of a single binary outcome at study endpoint, let Yi=1 represent that the ith patient achieved HbA1c target of <7.0% at 

the study endpoint, and Yi=0 otherwise.  Let β be a vector of regression coefficients; Xi be a vector of covariates such as treatment 

indicator and baseline HbA1c; and pi = pr(Yi=1| Xi, β)=E (Yi | Xi, β).  Then the logistic regression model can be expressed as: 

                                              logit (pi )= log � 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

� =  𝑿𝑿𝒊𝒊′ β                                         (1) 

With LOCF there is no missing data and the key assumption is that patients’ observations would not have changed had they stayed in 

the trial.  Logistic regression was implemented in the present study is SAS PROC Logistic (SAS, 2008). 

 

Generalized Estimating Equations (GEE) 

For the analysis of repeated binary outcome, let Yit=1 represent that the ith patient achieved HbA1c target of <7.0% at time t, and Yit 

=0 otherwise; Xit be the vector of covariates for the ith patient at time t; let Yi = (𝑌𝑌𝑖𝑖1, 𝑌𝑌𝑖𝑖2 , … , 𝑌𝑌𝑖𝑖𝑖𝑖 )′,  Xi= (Xi1 , Xi2 ,…, XiT ), and T is the 

number of scheduled study visits at which the data are collected. Let  β be the vector of regression coefficients;  and pi (β)= pr(Yi=1| 

Xi, β)=E (Yi | Xi, β). Then, the GEE proposed by Liang and Zeger (1986) and Zeger and Liang (1986) takes the form 

                                              U(β) = ∑ 𝑫𝑫′
𝒊𝒊

𝑵𝑵
𝒊𝒊=𝟏𝟏 𝑽𝑽𝒊𝒊−𝟏𝟏�𝒀𝒀𝒊𝒊 − 𝒑𝒑𝒊𝒊(𝜷𝜷)� = 𝟎𝟎                                   (2) 
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where 𝑫𝑫𝑖𝑖 = 𝜕𝜕𝒑𝒑𝒊𝒊(𝜷𝜷)/𝝏𝝏𝝏𝝏 and 𝑽𝑽𝒊𝒊 is a “working” covariance matrix. SAS PROC GENMOD (SAS, 2008) was used to implement GEE in 

the present study.   The key missing data assumptions for GEE is that the missing data arise from a MCAR mechanism (Molenberghs 

and Kenward, 2007).  

 

Weighted Generalized Estimating Equations (WGEE) 

The WGEE method proposed by Robins et al. (1995) and Fitzmaurice et al. (1995) is less restrictive than standard GEE in that the key 

missing data assumption is that the missing data arise from an MAR mechanism - given that the probabilities of dropout for each 

subject are correctly specified (Molenberghs and Kenward, 2007).  In the approach proposed by Robins et al (1995) equation (2) is 

modified as: 

                               U(β) = ∑ 𝟏𝟏
𝝅𝝅𝒊𝒊
𝑫𝑫′

𝒊𝒊

𝑵𝑵
𝒊𝒊=𝟏𝟏 𝑽𝑽𝒊𝒊−𝟏𝟏�𝒀𝒀𝒊𝒊 − 𝒑𝒑𝒊𝒊(𝜷𝜷)� = 𝟎𝟎                                                    (3) 

where 𝝅𝝅𝒊𝒊 is the vector of the probability of dropout for the ith subject.  So an individual’s contribution is weighted by the inverse 

probability of dropout at each assessment time; that is, a different weighting is applied to each visit.  In contrast, the approach of 

Fitzmaurice et al. (1995) uses a single weight for each patient that is applied to all assessment times.  In the present study WGEE was 

implemented using proc logistic (SAS, 2008) to estimate the dropout probabilities and PROC Genmod (SAS, 2008) was used to 

incorporate the weightings and conduct analysis. 

7 
 



 
 

Generalized Linear Mixed Model (GLMM) 

The GLMM extends the generalized linear model by incorporating normally distributed random parameter for individual subjects 

(Breslow and Clayton, 1993). The fixed-effect inference is conditional on random parameters and has a subject-specific interpretation.  

The form of GLMM based on the logit link function to fit the response probability, pit, at time point t is as 

                                 logit (pit )=  𝑿𝑿𝒊𝒊𝒊𝒊′  β +  𝒁𝒁𝒊𝒊𝒊𝒊′  𝒃𝒃𝒊𝒊                                                                       (4) 

where β is the vector of the fixed-effect parameters, 𝒃𝒃𝒊𝒊 is the vector of random subject parameters and 𝒃𝒃𝒊𝒊~ 𝑵𝑵(𝟎𝟎, 𝑽𝑽), and 𝑿𝑿𝒊𝒊𝒊𝒊 and 𝒁𝒁𝒊𝒊𝒊𝒊 and the 

vectors of known covariates.  In the present study GLMM was implemented using PROC GLIMMIX in SAS (SAS, 2008). 

Multiple Imputation (MI): 

MI is an extension of single imputation where the missing data are imputed several times, say m times. Then each of the m completed 

data sets is analyzed with the standard methods and the results of the m analyses are combined according to Rubin’s rule [Rubin, 

1987].  The following process was implemented for the multiple imputation method. 

 1. Bayesian regression which included earlier values as predictors was used to impute the missing data with a separate 

predictive distribution for each treatment group [Rubin, 1987].  The missing continuous HbA1c values were imputed first with SAS 

MI procedure (SAS, 2008).  Next, the continuous outcomes were dichotomized into binary response data according to whether they 

were <7.0% or not.  We used m=30 times to generate m complete data sets. 
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 2. The GEE model as previously described was used to analyze each of the 30 imputed complete data sets for the repeated 

binary response, and 30 sets of parameter estimates were obtained. 

 3. The 30 estimates and associated standard errors were combined into the final estimates with SAS PROC MIANALYZE 

(SAS, 2008) according to Rubin’s rule. 

 

3. Simulation 

3.1 Simulation setting 

The continuous HbA1c values (%) at each visit were simulated based on a multivariate normal distribution with mean profiles (Table 

1) and variance-covariance matrix with elements σi,j=ρ σi σj, where ρ was the correlation between the repeated outcomes. The binary 

outcome was constructed based on whether the HbA1c value was <7.0% or not.  Data were simulated based on inputs obtained from 

actual diabetes clinical trials.  A compound-symmetry correlation matrix was used, with ρ = 0.5, and the variance (σi
2) increasing over 

time from visit 1 (at baseline) to visit 4 (1.0, 1.0, 1.2, 1.4).  The sample size of 50 and 200 per treatment group were used to mimic 

phase 2 and phase 3 trial settings, respectively.   

 

Incomplete data sets were then generated from the complete data sets using 3 rates of missing data and 3 missing data mechanisms.  

Rates of missing data were either 45% in both treatments groups or 25% one treatment group and 45% of in the other.  Missingness 
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mechanisms were either MCAR, MAR, or MNAR.  In MCAR the outcomes did not differ for patients that completed compared with 

those who dropped out.  In MAR the probability a value (𝑦𝑦𝑖𝑖) being missing depended on the observed value at the previous visit 

(𝑦𝑦𝑖𝑖−1), expressed as logit (p (𝑦𝑦𝑖𝑖 missing | 𝑦𝑦𝑖𝑖−1)= 𝑎𝑎 + 𝑏𝑏 ∗ 𝑦𝑦𝑖𝑖−1.  The value 𝑏𝑏 =1.5 was used in the dropout model and the value 𝑎𝑎 was 

chosen for each treatment group to achieve the desired rates of missing data.  In MNAR the probability of a value (𝑦𝑦𝑖𝑖) being missing 

depended on the value itself (𝑦𝑦𝑖𝑖), expressed as 

logit (p (𝑦𝑦𝑖𝑖 missing | 𝑦𝑦𝑖𝑖)= 𝑎𝑎 + 𝑏𝑏 ∗ 𝑦𝑦𝑖𝑖.  The value 𝑏𝑏 =0.4 was used in the dropout model and the value 𝑎𝑎 was chosen for each treatment 

group to achieve the desired rates of missing data.  For simplicity, only monotone missingness was considered.  For each scenario 

2000 data sets were simulated. 

 

Performance of different analysis methods was evaluated based on bias (𝛽̂𝛽 -𝛽𝛽𝑇𝑇) in scenarios when there was no difference between 

treatments at endpoint, relative bias (𝛽𝛽
� −𝛽𝛽𝑇𝑇
𝛽𝛽𝑇𝑇

×100) in scenarios where treatments did differ at endpoint.  Methods were also compared 

based on 95% confidence interval (CI) coverage (using normal theory approximation), standard errors (SE) (average of  SEs from the 

2000 simulations), and type I error rate for scenarios with no difference between treatments and power for scenarios where treatments 

differed. 𝛽̂𝛽 is the estimate of log odds ratio for unadjusted or adjusted analysis. 𝛽𝛽𝑇𝑇 is the “true” log odds ratio for the unadjusted or 

adjusted analysis which is based on estimate from the values obtained by averaging results from the corresponding complete data sets.   
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Table 1. Mean treatment profiles in simulation model 

Hypothesis  visit1  
HbA1c (%) 

visit2  
HbA1c (%) 

visit3  
HbA1c (%) 

visit4  
HbA1c (%) 

No treatment effect Treatment 8.5 7.6 7.3 7.0 
 Comparator 8.5 7.6 7.3 7.0 

Moderate treatment 
effect 

Treatment 
8.5 7.6 7.3 7.0 

 Comparator 8.5 7.8 7.5 7.2 
 

3.2. Simulation Results 

Table 2 shows the simulation results under MCAR.  LOCF appreciably inflated type I error when rates of missing data differed 

between treatments.  All analyses yielded the anticipated nominal type I error rate when rates of missing data were equal for the two 

treatments, except for slight inflations with Unadj.logit and Adj.GEE with the small sample size.  MI analyses yielded the lowest type 

I error rate (<3%).  

All analyses yielded relatively unbiased estimates with the absolute bias <0.05 for the no treatment effect case, and relative bias <11% 

for the moderate treatment effect case, except for the LOCF, which had biases 7-18 times greater than other methods for the no 

treatment effect case with unequal missing proportions, and relative bias up to 62% for the moderate treatment effect case.  All 

analyses produced CIs with coverage close to their nominal level except for LOCF analysis which was associated with coverage lower 

than nominal level, with the MI analysis exceeding the nominal level.  For the moderate treatment effect case, adjusted analyses 
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yielded greater treatment effect estimates, but also larger SEs compared to the unadjusted analyses, resulting in increased power with 

the large sample size.  However, slightly lower power of the adjusted analyses was observed with the small sample size. 

Simulation results under MAR are displayed in Table 3.  Unadj.GEE, Unadj.GLMM, WGEE, and LOCF methods inflated type I error 

with unequal missing data rates.  All analyses preserved type I error rate with the equal missing proportion case except for WGEE and 

Adj.GEE with the small sample size.  MI analyses had the lowest type I error rate, <4%.  All analyses yielded relatively unbiased 

estimates with the absolute bias <0.09 for the no treatment effect case, except for LOCF and WGEE, and relatively unbiased estimates 

for moderate treatment effect case with equal missing data rates (relative bias<=8%).  However, for the moderate treatment effect case 

with unequal missing data rates LOCF and WGEE yielded significantly biased estimates with relative bias up to 114%.  In general, 

adjusted analyses had less bias than their unadjusted counterparts.  All analyses produced CIs with coverage close to the nominal level 

except for LOCF and WGEE, which yielded coverage lower than nominal level, while MI analysis exceeded their nominal level.  For 

the moderate treatment effect case, adjusted analyses yielded greater treatment effect estimates and SEs compared to the unadjusted 

analyses, but resulted in increased power in general.  

Simulation results under MNAR are reported in Table 4.  All analyses inflated type I error rate except for MI.  For the moderate 

treatment effect case with equal missing data rates all analyses produced relatively unbiased estimates (relative bias <=10%). 

However, for the moderate treatment effect case with unequal missing data rates all analyses yielded significantly biased estimates 

with relative bias up to 57%.  
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Table 2: Simulation results under MCAR 

  No treatment effect Moderate treatment effect 
  (45%, 45%)* (25%, 45%)* (45%, 45%)*  (25%, 45%)*  (45%, 25%)* 
 

N 
 

Bias SE 
Cov 
(%)  

Rej. 
(%)  Bias SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

50 Unad.logit -0.02 0.41 94 6.1 0.15 0.41 92 7.6 0.29 12 0.42 95 10.6 0.13 -50 0.41 94 6.6 0.42 62 0.42 93 18.1 
 Adj.logit -0.02 0.45 95 4.8 0.18 0.45 93 7.0 0.35 8 0.46 95 11.2 0.16 -51 0.45 94 5.6 0.50 57 0.46 93 18.9 
 Unad.GEE -0.02 0.53 95 5.5 0.02 0.50 95 5.3 0.28 9 0.54 95 8.9 0.26 2 0.50 95 7.3 0.28 7 0.51 94 9.3 
 Adj.GEE -0.01 0.60 94 6.2 0.01 0.57 95 5.3 0.34 8 0.61 95 8.8 0.32 1 0.57 94 8.3 0.33 3 0.57 94 9.1 
 Unadj. 

GLMM -0.02 0.53 95 5.2 0.01 0.50 95 5.1 0.28 8 0.54 95 8.0 0.27 2 0.50 95 6.9 0.27 5 0.51 94 8.7 
 Adj. GLMM -0.01 0.61 94 5.6 0.01 0.57 95 5.0 0.35 9 0.62 95 8.5 0.33 3 0.58 95 8.0 0.33 3 0.58 94 8.6 
 Unadj.MI -0.04 0.50 97 2.7 0.01 0.48 98 2.3 0.29 11 0.50 98 5.2 0.28 6 0.48 97 5.2 0.28 10 0.48 96 6.9 
 Adj. MI -0.04 0.57 98 2.2 0.00 0.54 97 2.6 0.35 9 0.58 98 4.5 0.33 4 0.55 98 5.2 0.34 7 0.55 97 6.7 
 Unadj. 

WGEE -0.01 0.56 95 5.0 0.02 0.52 95 4.7 0.28 7 0.56 96 7.5 0.26 0 0.52 96 6.6 0.28 8 0.52 95 8.0 
 Adj.WGEE -0.02 0.62 95 5.1 0.01 0.58 95 5.1 0.35 8 0.63 95 7.7 0.32 0 0.58 95 7.9 0.33 4 0.58 95 8.7 

200 Unadj.logit 0.01 0.20 95 5.1 0.15 0.20 89 11.2 0.28 8 0.21 95 26.4 0.13 -51 0.20 90 9.6 0.42 61 0.21 89 53.0 
 Adj.logit 0.01 0.22 95 4.8 0.18 0.22 88 11.8 0.33 3 0.22 95 30.9 0.15 -54 0.22 87 10.6 0.49 54 0.22 89 60.3 
 Unadj.GEE 0.01 0.26 94 5.6 0.01 0.25 95 4.6 0.28 6 0.26 95 17.2 0.27 3 0.25 95 19.2 0.27 3 0.25 96 18.8 
 Adj.GEE 0.00 0.30 95 5.4 0.01 0.28 96 4.3 0.33 3 0.30 96 19.9 0.32 0 0.28 94 20.8 0.32 0 0.28 95 20.1 
 Unadj. 

GLMM 0.01 0.26 94 5.6 0.01 0.25 96 4.4 0.27 5 0.26 95 17.0 0.27 3 0.25 95 19.4 0.27 3 0.25 96 18.5 
 Adj. GLMM 0.00 0.30 95 5.3 0.01 0.28 96 4.3 0.33 4 0.30 95 19.7 0.32 0 0.28 94 20.4 0.32 0 0.28 95 20.0 
 Unadj.MI 0.00 0.25 97 2.7 0.02 0.24 98 2.4 0.27 5 0.25 98 15.9 0.25 -4 0.24 97 15.6 0.28 6 0.24 98 18.1 
 Adj. MI 0.00 0.28 98 2.3 0.02 0.27 98 2.2 0.33 2 0.28 98 17.6 0.30 -7 0.27 97 16.3 0.33 3 0.27 97 19.0 
 Unadj. 

WGEE 0.01 0.27 95 5.2 0.01 0.25 96 3.9 0.27 5 0.27 95 15.8 0.26 0 0.26 95 17.4 0.27 6 0.26 96 17.8 
 Adj.WGEE 0.00 0.30 96 4.5 0.02 0.28 97 3.5 0.33 4 0.30 96 19.1 0.31 -2 0.28 95 19.1 0.33 2 0.28 96 19.6 

* Percentage of missing data for comparator and treatment, respectively; Cov: coverage of 95% CI; Rej: rejection rate; Rel Bias: 
relative Bias;  Est: - log odds ratio; Boldface font indicates that the type I error rate is beyond 2 SEs of simulations. 
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Table 3: Simulation results under MAR 

  No treatment effect    Moderate treatment effect 
  (45%, 45%)* (25%, 45%)*  (45%, 45%)*  (25%, 45%)*  (45%, 25%)* 
 

N 
 

Bias SE 
Cov 
(%)  

Rej 
%  Bias SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

50 Unadjlogit 
0.01 0.42 95 5.1 0.32 0.41 88 12.4 0.25 -5 0.43 96 8.1 

-
0.03 

-
111 0.42 90 5.2 0.53 105 0.42 90 23.9 

 Adj.logit 
0.00 0.47 95 5.3 0.38 0.46 87 13.0 0.31 -4 0.48 95 9.5 

-
0.03 

-
108 0.47 88 4.5 0.66 105 0.47 89 27.3 

 Unadj.GEE 
0.01 0.54 95 5.4 

-
0.05 0.50 94 6.3 0.25 -5 0.54 94 8.0 0.31 20 0.49 94 9.8 0.19 -26 0.50 94 6.4 

 Adj.GEE 
0.01 0.61 94 6.1 

-
0.04 0.56 94 5.9 0.31 -3 0.61 94 8.9 0.36 13 0.56 94 10.8 0.27 -15 0.56 94 8.4 

 Unad. 
GLMM 0.01 0.54 94 5.6 

-
0.09 0.50 93 6.1 0.25 -3 0.54 95 7.7 0.35 33 0.50 94 10.2 0.16 -40 0.50 93 5.8 

 Adj. 
GLMM 0.00 0.62 94 5.8 

-
0.06 0.57 94 5.6 0.32 0 0.61 94 8.4 0.38 20 0.57 94 10.4 0.26 -18 0.57 94 7.8 

 Unadj.MI 
-0.01 0.54 96 3.5 

-
0.02 0.50 97 3.2 0.27 3 0.53 97 5.1 0.29 7 0.49 96 6.7 0.25 -9 0.49 97 5.8 

 Adj. MI 
-0.02 0.62 97 2.8 

-
0.03 0.57 97 2.9 0.33 2 0.61 97 5.2 0.35 9 0.56 97 6.7 0.30 -5 0.56 97 6.2 

 Unadj.WG
EE 0.01 0.70 91 9.1 

-
0.22 0.62 91 9.1 0.28 6 0.68 92 9.7 0.48 79 0.60 91 14.4 0.05 -83 0.61 90 7.9 

 Adj.WGEE 
0.00 0.74 91 9.1 

-
0.11 0.66 93 7.1 0.34 6 0.72 92 11.0 0.45 39 0.65 92 12.5 0.22 -30 0.65 92 8.3 

200 Unadj.logit 
0.01 0.21 94 5.9 0.31 0.21 68 32.0 0.24 -7 0.21 95 21.0 

-
0.04 

-
115 0.21 69 5.8 0.51 98 0.21 78 70.3 

 Adj.logit 
0.00 0.23 95 5.5 0.37 0.23 63 37.5 0.29 -8 0.23 95 24.6 

-
0.04 

-
113 0.23 63 5.7 0.62 94 0.23 76 77.9 

 Unadj.GEE 
0.00 0.26 95 5.4 

-
0.07 0.24 93 6.8 0.24 -8 0.26 95 15.8 0.31 21 0.24 93 24.5 0.17 -33 0.25 94 10.3 

 Adj.GEE 
0.00 0.30 94 6.1 

-
0.05 0.28 94 5.8 0.30 -6 0.30 95 18.1 0.35 11 0.27 94 25.2 0.25 -21 0.28 94 15.4 

 Unadj. 
GLMM 0.00 0.26 95 5.5 

-
0.09 0.25 93 7.3 0.24 -7 0.26 95 15.7 0.34 31 0.24 93 28.3 0.15 -42 0.25 93 8.7 

 Adj. 
GLMM 0.00 0.30 94 5.7 

-
0.06 0.28 94 5.9 0.30 -5 0.30 95 17.7 0.37 15 0.28 94 26.3 0.24 -24 0.28 94 14.1 

 Unadj.MI 0.00 0.26 96 3.9 0.02 0.24 96 3.5 0.27 -1 0.26 97 15.2 0.24 -10 0.24 96 14.5 0.27 -1 0.24 97 17.5 
 Adj. MI -0.01 0.30 97 3.2 0.02 0.28 96 3.8 0.32 1 0.30 97 16.4 0.30 -8 0.27 97 16.7 0.32 1 0.27 97 19.9 
 UnadjWGE

E 0.00 0.37 95 5.2 
-

0.21 0.31 89 10.6 0.26 -4 0.35 94 12.5 0.45 67 0.31 89 32.5 0.06 -78 0.31 90 5.5 
 Adj.WGEE 

0.00 0.39 95 5.1 
-

0.11 0.34 93 6.9 0.32 0 0.38 94 15.2 0.41 28 0.33 93 25.3 0.22 -31 0.33 93 11.4 

* Percentage of missing data for comparator and treatment, respectively; Cov: coverage of 95% CI; Rej: rejection rate; Rel Bias: 
relative Bias;  Est: - log odds ratio; Boldface font indicates that the type I error rate is beyond 2 SEs of simulations. 
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Table 4: Simulation results under MNAR 

  No treatment effect    Moderate treatment effect 
  (45%, 45%)* (25%, 45%)*  (45%, 45%)* (25%, 45%)*  (45%, 25%)* 
 

N 
 

Bias SE 
Cov 
(%)  

Rej. 
(%)  Bias SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

 
 

Est 

Rel 
Bias 
(%) SE 

Cov 
(%)  

Rej. 
(%)  

50 Unadj.logit 0.02 0.41 94 5.8 0.14 0.41 92 7.9 0.27 5 0.41 95 10.7 0.15 -44 0.41 93 7.0 0.41 57 0.41 94 18.2 
 Adj.logit 0.01 0.45 95 5.2 0.16 0.45 94 6.2 0.34 5 0.46 94 12.0 0.18 -43 0.45 94 6.4 0.50 55 0.46 93 19.4 
 Unadj.GEE 

0.02 0.53 95 5.5 
-

0.10 0.49 94 6.1 0.25 -3 0.53 95 7.7 0.39 48 0.50 94 11.7 0.15 -43 0.50 93 6.2 
 Adj.GEE 

0.01 0.60 94 6.4 
-

0.10 0.55 93 6.7 0.32 1 0.61 95 8.5 0.45 40 0.56 94 11.8 0.22 -33 0.56 94 7.0 
 Unadj.GLMM 

0.02 0.53 95 4.9 
-

0.11 0.49 94 5.9 0.25 -4 0.53 94 6.9 0.39 50 0.50 94 11.3 0.14 -47 0.50 93 5.6 
 Adj. GLMM 

0.01 0.61 94 6.3 
-

0.11 0.56 93 6.5 0.33 2 0.61 95 8.4 0.45 42 0.57 94 11.8 0.21 -33 0.57 94 6.6 
 Unadj.MI -

0.01 0.50 97 2.8 
-

0.09 0.47 97 3.4 0.27 4 0.50 98 4.9 0.36 40 0.47 96 9.0 0.19 -26 0.47 97 4.8 
 Adj. MI -

0.02 0.57 97 2.6 
-

0.11 0.53 97 3.3 0.33 3 0.57 98 5.2 0.44 39 0.54 97 9.9 0.24 -26 0.54 97 4.6 
 Unadj.WGEE 

0.01 0.56 95 4.6 
-

0.14 0.52 95 5.4 0.25 -3 0.56 96 6.9 0.41 59 0.52 94 11.5 0.11 -57 0.52 94 5.4 
 Adj.WGEE 

0.01 0.62 95 5.4 
-

0.11 0.57 94 6.3 0.32 2 0.62 95 7.6 0.45 40 0.57 94 11.8 0.21 -34 0.57 95 6.3 
200 Unadj.logit 0.00 0.20 95 4.7 0.13 0.20 89 10.6 0.29 10 0.20 95 27.3 0.14 -47 0.20 90 11.0 0.41 57 0.20 89 51.1 

 Adj.logit 0.00 0.22 94 5.6 0.16 0.22 88 11.6 0.34 7 0.22 95 32.6 0.17 -48 0.22 89 12.0 0.49 53 0.22 89 59.1 
 Unadj.GEE 

0.00 0.26 94 5.9 
-

0.10 0.24 93 7.5 0.26 0 0.26 95 17.2 0.37 41 0.24 93 32.1 0.14 -44 0.25 92 8.8 
 Adj.GEE 

0.00 0.29 94 5.8 
-

0.10 0.27 93 6.6 0.32 0 0.30 95 19.4 0.42 31 0.27 94 32.2 0.21 -34 0.27 92 11.5 
 Unadj.GLMM 

0.00 0.26 94 6.0 
-

0.11 0.24 92 7.5 0.26 0 0.26 95 17.2 0.37 41 0.24 93 32.1 0.14 -46 0.25 92 8.2 
 Adj. GLMM 

0.00 0.29 94 5.8 
-

0.10 0.27 93 6.6 0.32 0 0.30 95 19.3 0.42 31 0.27 94 32.0 0.21 -35 0.28 93 11.2 
 Unadj.MI 

0.00 0.25 97 2.8 
-

0.06 0.23 96 4.1 0.27 3 0.25 97 16.2 0.32 23 0.23 96 25.4 0.19 -26 0.23 96 10.1 
 Adj. MI -

0.01 0.28 97 2.7 
-

0.07 0.26 95 4.5 0.32 1 0.28 98 17.9 0.39 21 0.26 96 28.8 0.23 -27 0.27 96 11.0 
 Unadj.WGEE 

0.00 0.27 95 5.0 
-

0.13 0.25 92 7.9 0.26 0 0.27 96 15.7 0.39 50 0.25 92 33.4 0.12 -53 0.25 91 6.6 
 Adj.WGEE 

0.00 0.30 95 5.1 
-

0.10 0.28 94 6.4 0.32 0 0.30 96 18.9 0.42 31 0.28 94 31.0 0.21 -33 0.28 94 10.8 
* Percentage of missing data for comparator and treatment, respectively; Cov: coverage of 95% CI; Rej: rejection rate; Rel Bias: 
relative Bias;  Est: - log odds ratio; Boldface font indicates that the type I error rate is beyond 2 SEs of simulations. 
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5. Clinical Trial Examples 

The methods tested in the simulation study were also applied to data from five diabetes clinical 

trials in which an active drug (treatment) was compared with different comparators over 52 

weeks. The missing data proportions for the treatment and comparators were 12.5%, 10.2%; 

6.6%, 9.3%; 18.0%, 19.5%; 15.6%, 12.8%; and 7.3%, 6.4% for study 1 to 5, respectively. The 

analyses were conducted on proportion of patients whose 52-week endpoint HbA1c was <7.0%.  

The LOCF analyses were implemented using logistic models with a factor for treatment only 

(Unadj.Logit) and with baseline HbA1c (Adj.Logit).  The models for the GEE, WGEE, GLMM, 

and MI analyses included treatment, visit, and treatment by visit interaction, with or without 

baseline HbA1c. An unstructured covariance matrix or working correlation matrix was used 

except for WGEE where an independent working correlation matrix was used which was 

considered as a best fit.  Results are displayed in Table 5 and Figure 1.  As in the simulated data, 

covariate adjusted methods yielded larger treatment effects compared to their unadjusted 

counterparts; and, standard errors were larger and p values smaller from adjusted analyses for all 

all studies except for study 4, where adjusted and unadjusted methods yielded comparable effects 

and standard errors.  The possible reason is that the baseline HbA1c was not well balanced in 

study 4 with the treated group associated with a slightly lower value, while the baseline HbA1c 

was quite well balanced between groups in other studies. 

 

 

 

 

Comment [CHM1]: Was the really the 
best fit?  Seems unlikely. 
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Table 5. Analysis results from five diabetes clinical studies 

 
Study 

 
Estimates 

Unadj. 
Logit 

Adj. 
Logit 

Unadj. 
GEE 

Adj. 
GEE 

Unadj. 
GLMM 

Adj. 
GLMM 

Unadj.  
MI 

Adj. 
MI 

Unadj. 
WGEE 

Adj. 
WGEE 

1 Log odds 
ratio 0.90 1.20 0.84 1.21 0.84 1.26 0.78 1.06 0.80 1.01 

 SE 0.18 0.21 0.19 0.24 0.19 0.25 0.19 0.23 0.20 0.24 
 LL 0.54 0.77 0.46 0.73 0.46 0.77 0.41 0.60 0.41 0.54 
 UL 1.27 1.62 1.22 1.69 1.22 1.76 1.16 1.53 1.19 1.48 
 P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
2 Log odds 

ratio 0.95 1.23 0.93 1.22 0.94 1.23 0.93 1.22 0.91 1.22 
 SE 0.18 0.21 0.18 0.22 0.19 0.22 0.18 0.21 0.19 0.22 
 LL 0.59 0.82 0.56 0.79 0.57 0.80 0.56 0.79 0.53 0.78 
 UL 1.31 1.64 1.30 1.65 1.31 1.66 1.29 1.64 1.30 1.65 
 P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
3 Log odds 

ratio 0.47 0.64 0.43 0.70 0.42 0.98 0.44 0.67 0.45 0.78 
 SE 0.18 0.20 0.19 0.27 0.19 0.38 0.18 0.26 0.20 0.27 
 LL 0.12 0.24 0.06 0.16 0.04 0.22 0.08 0.15 0.05 0.24 
 UL 0.82 1.05 0.81 1.24 0.80 1.75 0.81 1.19 0.85 1.31 
 P 0.007 0.002 0.021 0.010 0.026 0.011 0.016 0.010 0.026 0.004 
4 Log odds 

ratio 0.38 0.36 0.45 0.50 0.49 0.50 0.44 0.42 0.50 0.50 
 SE 0.17 0.18 0.18 0.19 0.18 0.19 0.17 0.19 0.19 0.20 
 LL 0.03 0.00 0.10 0.11 0.13 0.11 0.09 0.05 0.13 0.09 
 UL 0.72 0.72 0.81 0.88 0.86 0.88 0.79 0.79 0.88 0.90 
 P 0.028 0.047 0.011 0.010 0.007 0.011 0.012 0.025 0.008 0.014 
5 Log odds 

ratio 1.01 1.36 1.09 1.65 1.09 1.74 1.03 1.55 1.07 1.59 
 SE 0.17 0.20 0.18 0.23 0.18 0.25 0.17 0.23 0.19 0.23 
 LL 0.68 0.97 0.73 1.18 0.73 1.24 0.69 1.09 0.69 1.13 
 UL 1.35 1.75 1.45 2.12 1.45 2.24 1.38 2.00 1.45 2.06 
 P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 

SE: standard error; LL: lower limit of 95% confidence interval; UL: upper limit of 95% confidence interval;        

 P: p-value 
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Figure 1.  Log odds ratio and 95% CI by study and method 
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6. Summary and Discussion 

In longitudinal clinical trials it is often reasonable to assume missing data arise from an MAR 

mechanism (Verbeke and Molenberghs 2000; NRC, 2010).   Dichotomized continuous outcomes 

or other binary measures are often of interest.  Therefore, appropriate modeling of incomplete 

longitudinal binary clinical trial data is important.  

Simulations were conducted over a variety of scenarios to examine how including or not 

including baseline severity as a covariate influenced results across several methods for analyzing 

incomplete longitudinal binary responses.  The covariate adjusted analyses generally yielded 

larger treatment effect estimates and larger standard errors compared with their unadjusted 

counterpart.  The net result of these factors was increased power from the adjusted analyses 

without increasing type I.  Results from five phase 3 diabetes trials were consistent with the 

simulation findings.   

In regards to how the various methods handled missing data, with MNAR data all methods 

yielded biased results in at least some scenarios and all methods except MI inflated type I error 

rates in some scenarios.  With MCAR data LOCF yielded biased results, inflated type I error 

rates and had poor CI coverage, whereas results from other methods were not biased.  With 

MAR data, LOCF again yielded biased results.  MI and GLMM yielded unbiased results, as 

expected, because these methods assume MAR.  Results from GEE were biased, as expected, 

because it assumes MCAR.  Counter to expectation, results from wGEE were biased in the MAR 

scenarios where dropout rates differed but were not biased when dropout rates were equal.   

Recall the description in section 3.1 of the dropout mechanisms applied to delete data. 
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In MAR the probability a value (𝑦𝑦𝑖𝑖) being missing depended on the observed value at the 

previous visit (𝑦𝑦𝑖𝑖−1), expressed as logit (p (𝑦𝑦𝑖𝑖 missing | 𝑦𝑦𝑖𝑖−1)= 𝑎𝑎 + 𝑏𝑏 ∗ 𝑦𝑦𝑖𝑖−1.  The value 𝑏𝑏 

=1.5 was used in the dropout model and the value 𝑎𝑎 was chosen for each treatment 

group to achieve the desired rates of missing data. 

Thus, when the dropout rate was equal in the two treatments they shared a common intercept (𝑎𝑎), 

but when dropout rates differed the intercepts differed.  That is, there were separate dropout 

models for each treatment.  However, in the wGEE analyses a single model was used to estimate 

the weightings for both treatment groups.  Therefore, in scenarios where the dropout rates 

differed, the model used to estimate the weightings was not the same as the model used to 

generate the missing data.  In addition, for MAR logit (p (𝑦𝑦𝑖𝑖 missing | 𝑦𝑦𝑖𝑖−1)= 𝑎𝑎 + 𝑏𝑏 ∗ 𝑦𝑦𝑖𝑖−1.   

However, the weightings were estimated using logit (p (𝑦𝑦𝑖𝑖 missing | 𝑦𝑦𝑖𝑖−1)= 𝑎𝑎 + 𝑏𝑏 ∗ 𝑦𝑦𝑖𝑖. 

The issue of have the same or separate models by treatment group apply to the imputation model 

in MI.  In the present study MI was implemented with separate imputation models for each 

treatment, thereby accommodating different dropout models for each treatment in the scenarios 

where dropout rates differed.  

These results illustrate the potential importance of modeling considerations in the handling of 

missing data.  For methods that explicitly impute missing values or model dropout, it may be 

useful to consider separate models for each treatment or for groups of treatments (e.g., all doses 

of a drug in one group, placebo in the other), especially when rates, timing, and/or reasons for 

dropout differ.  
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Although these modeling considerations are important, they should not be taken as motivation to 

return to use of ad hoc methods.  For example, in the MAR scenarios where wGEE yielded type I 

error rates of 7% – 10%, the corresponding rates from LOCF were 32% - 37%. 

The present investigation focused on only one of these many modeling considerations, fitting a 

single covariate that describes baseline severity.  Results support including baseline severity as a 

covariate in analyses of incomplete longitudinal binary outcomes.    
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