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In mammals, the central nervous system (CNS) is the most cholesterol rich organ by weight. 

Cholesterol metabolism is tightly regulated in the CNS and all cholesterol available is synthesized 

in situ. Deficits in cholesterol homeostasis at the level of synthesis, transport, or catabolism result 

in severe disorders featured by neurological disability. Recent studies indicate that a disturbed 

cholesterol metabolism is involved in CNS disorders, such as Alzheimer’s disease (AD), multiple 

sclerosis (MS), and amyotrophic lateral sclerosis (ALS). In contrast to circulating cholesterol, 

dietary plant sterols, can cross the blood-brain barrier and accumulate in the membranes of CNS 

cells. Plant sterols are well-known for their ability to lower circulating cholesterol levels. The 

finding that they gain access to the CNS has fueled research focusing on the physiological roles of 

plant sterols in the healthy and diseased CNS. To date, both beneficial and detrimental effects of 

plant sterols on CNS disorders are defined. In this review, we discuss recent findings regarding the 

impact of plant sterols on homeostatic and pathogenic processes in the CNS, and elaborate on the 

therapeutic potential of plant sterols in CNS disorders.  
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Introduction 

 
Plant sterols and plant stanols, collectively known as phytosterols, are naturally occurring 

compounds that structurally and functionally resemble cholesterol in mammals. Over the last 

decades, more than 260 different phytosterols (derivatives) have been described [1]. The chemical 

structure of phytosterols consists of a sterol-derived core that is decorated with divergent ring 

and/or C17 side-chain modifications. Plant stanols are saturated plant sterols, without double bonds 

in the sterol ring moiety (figure 1). Mammals are unable to synthesize phytosterols and therefore 

can only obtain them from their diet. Food rich in phytosterols include vegetables, fruits, nuts, 

cereals, vegetable oils, and phytosterol-enriched diary spreads. Typically, the daily intake of plant 

sterols and stanols in humans is estimated on 300 mg and 20 mg, respectively [2, 3]. Interestingly, 

whilst the daily intake of cholesterol approaches that of phytosterols, plasma levels of plant sterols 

(7-24 µmol/L) and stanols (0.05-0.3 µmol/L) are markedly lower than those of cholesterol (~5 

mmol/L) [4, 5]. In the jejunum, both phytosterols and cholesterol are incorporated into mixed 

micelles and are subsequently absorbed at the apical site of enterocytes via the Niemann Pick C1 

Like 1 (NPC1L1) transporter [6]. However, in contrast to cholesterol, phytosterols are poor 

substrates for the esterifying enzyme acetyl-sterol O-acyltransferase 2 (SOAT2/ACAT2) in 

enterocytes [7]. Due to incomplete or inefficient esterification, the bulk of phytosterols is 

transported back into the intestinal lumen. Moreover, phytosterols that enter the circulation are 

quickly excreted into the bile by hepatocytes [7]. The obligatory heterodimeric complex ATP-

binding cassette co-transporter G5 and G8 (ABCG5/G8) exerts a crucial role in the selective 

excretion of phytosterols by enterocytes and hepatocytes, and thereby contributes to the relatively 

low plasma and tissue levels of phytosterols [8-10].  

 

Elevated levels of total cholesterol, and in particular low density lipoprotein (LDL)-cholesterol, are 

important risk factors for cardiovascular diseases (CVD), such as coronary heart disease (CHD) 

[11, 12]. Phytosterols are well-known for their ability to lower plasma cholesterol levels and the 

FDA has approved this health claim of phytosterols as cholesterol lowering agent. A recent meta-

analysis of 44 studies and 2084 individuals defined that phytosterol intake (~ 1.6 g/d) decreases 

total- and LDL-cholesterol by 0.36 mmol/L (5.9%) and 0.33 mmol/L (8.5%), respectively [13]. 

This drop in circulating cholesterol levels is achieved at the expense of higher serum phytosterol 

levels [14]. In spite of the cholesterol-lowering impact, the use of phytosterols as functional food 

in the prevention of CVD is a current topic of debate [5, 15]. Patients homozygous for 

phytosterolemia, a rare autosomal inherited disorder characterized by dramatically heightened 

circulating phytosterols, demonstrate premature tissue deposition of phytosterols and signs of 

accelerated atherosclerosis [15-17]. The latter suggests that in excess phytosterols or phytosterol 

metabolites may promote CVD. Moreover, no relevant clinical endpoint studies showing a survival 

benefit of phytosterols in CVD have been published to date [15, 18, 19]. Consequently, in July 

2014, the 2013 American College of Cardiology/American Heart Association (ACC/AHA) Task 

Force on practice guidelines removed the recommendation of phytosterol use to prevent 

atherosclerotic CVD events from their guidelines [20]. Preceding this retraction, an international 

consensus panel of basic researchers and clinical investigators with expertise in the cholesterol 

metabolism and phytosterol biology already limited the recommendation of phytosterols 

consumption to (1) patients with elevated cholesterol levels that have a low to intermediate risk on 

CVD and do not qualify for pharmacotherapy, (2) statin-intolerant patients with high cholesterol 

levels, and (3) familiar hypercholesterolemic patients receiving a combination therapy with statins 
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[5]. Collectively, multiple studies show that phytosterols lower plasma cholesterol levels, however, 

the underlying mechanisms and long-term perspectives of phytosterol use remain poorly 

understood. Therefore, prospective studies are mandatory to validate the therapeutic applicability 

of phytosterols to treat hypercholesterolemic patients.  

 

Phytosterols are biochemically heterogeneous, undergoing diverse structural modifications. For 

instance, in contrast to plant stanols and similar to cholesterol, plant sterols can undergo steroid 

ring and side chain oxidation to form plant sterol oxidation products (oxyphytosterols) [21, 22]. 

Oxyphytosterols are present in plasma of healthy subjects and are markedly elevated in 

phytosterolemic patients [23, 24]. However, controversy exist as to whether normo-

phytosterolemic subjects treated with plant sterol enriched margarine have elevated levels of 

oxidized phytosterols [25, 26]. The source of oxyphytosterols in the body is dual. Oxyphytosterols 

are present in phytosterol-enriched dairy products, which indicates that intestinal absorption likely 

contributes to the presence of oxyphytosterols in serum [27]. However, only trace amounts of 

oxyphytosterols are found in these spreads [28]. Alternatively, systemic oxyphytosterols can be 

formed from plant sterols that undergo autoxidation or enzymatic conversion in the body [21, 22]. 

Of note, plant sterol oxidation products found in human plasma are typically 10-100 times lower 

than those of cholesterol oxidation products [29]. To date, little is known about the physiological 

and pathological role of oxyphytosterols. The general impression is that they represent a health 

problem due to their structural similarity with cholesterol oxidation products. However, other 

studies indicate that oxyphytosterols have beneficial properties as well, such as counteracting 

inflammation and anti-tumor activity [21, 22, 30, 31]. Apart from oxidation, phytosterols are found 

in glycosylated forms, such as phytosterol glycosides and acyl phytosterol glycosides. The 

hydroxyl group at C3 is linked to a hexose or a 6-fatty-acyl hexose moiety for phytosterol 

glucosides and acyl glucosides, respectively [32]. Glycosylated phytosterols are present in 

particular foods and plants, and efficiently lower plasma cholesterol levels [33-37]. It is unclear to 

what extent phytosterol glucosides are formed from non-modified phytosterols within the body. 

Irrespective of their origin, low amounts of phytosterol glucosides have been demonstrated in 

serum of humans [38]. In addition, animals fed β-sitosterol β-D-glucoside have significantly higher 

serum-sterol glucoside levels [39]. Biologically, studies defined both toxic properties and anti-

inflammatory properties of a number of glycosylated phytosterols [36, 39-42]. In summary, 

phytosterols undergo diverse modifications that may alter their biological impact. 

 

Recent studies indicate that dietary phytosterols stably accumulate in the CNS [43-45]. This finding 

has prompted research focusing on the physiological roles of phytosterols in the healthy and 

diseased CNS. In this review, we summarize and discuss findings regarding the impact of 

phytosterols on homeostatic and pathogenic processes in the CNS, and elaborate on the therapeutic 

potential of phytosterols in CNS disorders. The scope of our review is limited to the most prevalent 

phytosterols in the Western diet and to those phytosterols which have been described to modulate 

CNS metabolism: sitosterol, campesterol, brassicasterol, fucosterol, spinasterol, stigmasterol, 

24(S)-saringosterol, and schottenol [4, 5, 46]. Nevertheless, future purification and analyses of 

other, less prominent dietary phytosterols may reveal novel physiological roles of phytosterols. 

 

Phytosterols in the healthy CNS  
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The consumption of phytosterol-enriched functional foods over five years roughly doubles 

circulating plant sterol and stanol levels [47]. Moreover, phytosterols accumulate in peripheral 

tissues, such as aortic valves, liver, and the CNS [48-50]. Quantitative data on temporal and spatial 

plant sterol accumulation in the human brain parenchyma is rather scarce. One study measured 

plant sterols in non-demented and demented brain samples [50]. Herein, Saeed and colleagues 

found that sitosterol and campesterol are present in the “5 to 10 ng/mg wet tissue”-range in the 

temporal and parietal cortex. These concentrations were comparable to the oxysterol concentrations 

in these regions (24(S)OHcholesterol: 15-25ng/mg; 27OHcholesterol: 1-3ng/mg). In contrast, we 

found that the concentration of the most prominent plant sterol in the cerebrospinal fluid (CSF), 

sitosterol (2.48 µg/dl), was 10-fold higher than the major CNS cholesterol metabolite in the CSF, 

24(S)OHcholesterol (0.264µg/dl) [48, 51]. Moreover, in an animal study, it was shown that a 2% 

plant sterol-enriched diet over six weeks resulted in a stable doubling of plant sterols in the CNS 

of mice [45]. Based on the accumulation in the CNS and the structural similarity to cholesterol, 

phytosterols may interfere with cholesterol metabolism in the CNS. In this section, we elaborate 

on sterol metabolism in the CNS and the impact of phytosterols hereon, and speculate on 

mechanisms involved in the transport of sterols across the BBB. 

 

Although the brain only accounts for 2.1% of the total body weight, Dietschy and Turley estimated 

it to contain about 23% of all free cholesterol in the body [52]. Remarkably, virtually all cholesterol 

within the CNS is synthesized in situ [53, 54]. In the CNS, cholesterol plays a pivotal role in 

synapse formation, cell-cell interactions, and intracellular signaling [52, 55]. A steady cholesterol 

turnover is needed to maintain these homeostatic processes. Overall, cholesterol turnover in the 

brain is rather slow and far more stable than that in the rest of the body [56]. Cholesterol in the 

brain resides in three compartments. The majority (70-80%, or ~260 mg/g of the total ~330 mg/g 

dry weight) of lipids is present in the myelin sheaths surrounding the axons and has a slow turnover 

rate, displaying half-replacement times of 359 days or ~0.3%/day [57-59]. The remaining 70 mg/g 

cholesterol resides within neurons (~7 mg/g) and glial cells (~63 mg/g) [60-63]. In contrast to the 

sturdy myelin cholesterol pool, cholesterol turnover in the neuronal membranes is high. To 

illustrate, pyramidal cells of the cortex and Purkinje cells of the cerebellum have a cholesterol 

turnover of more than 20%/day, whereas whole body cholesterol turnover is 0.7%/day [52, 64, 65]. 

The high cholesterol turnover rate in neurons facilitates their ability to adapt efficiently and quickly 

to dynamic structural changes during synaptic plasticity [62, 66]. Locally in the CNS, cholesterol 

is metabolized into the more polar CNS-specific 24(S)-hydroxycholesterol, which is more easily 

released from the CNS than cholesterol [54]. In contrast to the periphery, cholesterol is hardly 

metabolized into 27-hydroxyocholesterol in the CNS. The conversion of cholesterol to 24(S)-

hydroxycholesterol in neurons accounts for over 60% of cholesterol efflux from the CNS [62, 67-

70]. Interestingly, as opposed to cholesterol, desmosterol, 7α-hydroxycholesterol, 25-

hydroxycholesterol, and 27-hydroxycholesterol, the predominant plant sterol sitosterol cannot be 

metabolized into 24(S)-hydroxysitosterol [71]. In line herewith, in animals fed a plant sterol-

enriched diet over six weeks, the concentration of sitosterol, as well as campesterol, was shown to 

be unaltered in the CNS upon six months of plasma plant sterol depletion [45]. This finding 

indicates that phytosterols, such as sitosterol and campesterol, stably accumulate in the CNS and 

suggests that an inability to be catabolized into 24(S)-hydroxysterol underlies this accumulation. 

Collectively, these studies imply that sterol turnover is precisely regulated in divergent 

compartments in the CNS, and differs between cholesterol and phytosterols. However, more 

research is warranted to validate this hypothesis.  
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The recruitment of circulating sterols across an intact BBB is very limited [45, 72]. Although 

discrepancies in the literature exist [73], several in vivo studies defined a flux of sterols into the 

CNS [66, 74, 75]. For instance, terminally ill patients that are daily dosed with 4-C14-cholesterol 

(ranging from 1 to 226 days) reveal an average cerebral cholesterol accumulation of 3.2% [66]. 

However, a treatment- or disease-induced impairment of the BBB integrity in these patients may 

contribute to cholesterol accumulation in the CNS. Yet, in agreement with these data, 

administration of deuterium-labeled cholesterol-d6 in different rodent models results in a ~1% 

cerebral cholesterol accumulation [74, 75]. In parallel to cholesterol, transport of plant sterols 

towards the CNS is also limited under physiological conditions. However, a dysfunctional BBB 

may disturb the balanced exchange of sterols between the CNS and the circulation. For instance, 

pdgfbret/ret mice, which are characterized by an increased permeability of the BBB, show a 

significant flux of phytosterols into the brain [73]. Additionally, it has been shown in an BBB 

model and in a dietary mouse study that sterol accumulation in CNS cells depends on the molecular 

complexity of the sterol side chain [45]. Sterols with a lower molecular side-chain complexity such 

as cholesterol and campesterol cross an endothelial barrier more easily as compared to phytosterols 

that contain a more complex hydrophobic side chain such as sitosterol and stigmasterol [45, 73, 

76]. Interestingly, sitosterol and campesterol crossed a brain endothelial monolayer less efficient 

than cholesterol. Whether cholesterol and plant sterol use similar transport mechanisms to cross 

the BBB remains to be elucidated. Compared to wild type mice, Abcg5-/- and ApoE-/- mice display 

up to 12-fold increased levels of phytosterols in their circulation. Remarkably, only Abcg5-/-, but 

not ApoE-/- mice, show increased phytosterol levels in the CNS [44]. Importantly, the Abcg5/g8 

transporters are not detectable within the brain [44]. Therefore, it is unlikely that the Abcg5/g8 

transporter complex modulates phytosterol transport across the BBB. In addition, whereas in wild 

type and Abcg5-/- mice phytosterols are predominantly located in high density lipoproteins (HDL), 

phytosterols are mainly incorporated in very low density lipoproteins (VLDL) in ApoE-/- mice [44]. 

Although it remains speculative, the latter supports a role for HDL-mediated transport of sterols 

across the BBB. Interestingly, the scavenger receptor class B member 1 (SR-BI) is the major 

receptor for HDL and is expressed at the apical membrane of BBB endothelial cells [72]. 

Collectively, these studies make us speculate that, although limited in quantity, sterols may be 

transported across the BBB into the CNS via HDL/SR-BI-dependent mechanism (figure 2). 

 

Once dietary sterols have entered the CNS, in particular upon increased dietary intake, they tend 

to accumulate within lipid rafts of CNS parenchymal cells [44, 45]. The incorporation of sterols in 

biological membranes can result in structural and functional changes in membrane properties. The 

majority of lipid membrane bilayers occur as a homogeneous liquid-disordered (ld) phase. 

However, transient lateral heterogeneities coexist in a liquid-ordered (lo) phase, so called lipid rafts 

(figure 3a) [77]. Raft domains are enriched in free sterols, mostly cholesterol, and saturated lipids, 

including sphingomyelin, glycosphingolipids, cerebrosides, and gangliosides. The main membrane 

phosphopholipids – phosphatidylcholine, and phosphatidylethanolamine - are mostly excluded 

from the lipid rafts [78]. Cholesterol increases the lipid order and rigidity of the lipid rafts at the 

cytofacial leaflet of the membrane [79]. Moreover, cholesterol is essential to promote the 

separation between the ld and lo phase, allowing lipid raft-specific cell signaling [80, 81]. Lipid 

rafts are integral membrane scaffolds, acting as a movable platform for processes involved in 

membrane trafficking and signaling, and regulation of the activity of membrane proteins [78, 82, 

83]. Incorporation of less compact lipids reduces the rigidity of lipids rafts and alters their function. 

Indeed, phytosterols reduce the molecular order of membranes and therefore alter the membrane 

fluidity and functionality [84, 85]. It was demonstrated that the magnitude of the lipid order in 



6 
 

membranes depends on the geometry of the side chain (cholesterol >> campesterol > sitosterol 

>stigmasterol) [84]. Interestingly, we found that feeding mice a 2% w/w plant sterol enriched diet 

for six weeks, resulted in a two-fold increase in lipid raft-associated plant sterol concentration (~3.5 

ng/mg protein to ~7 ng/mg protein), whereas cholesterol concentration in the lipid raft remained 

stable (~2,300 ng/mg protein) [45]. It remains to be defined whether this 1:300 plant sterol-to-

cholesterol ratio is sufficient to functionally modulate membrane and/or raft properties. However, 

most of the sterols in the CNS are trapped in the sturdy oligodendrocyte myelin pool. The actual, 

biological active sterol pool in the CNS is limited and consequently more vulnerable for changes 

in their micro-constitution. Although speculative, the “plant sterol-to-cholesterol balance” is 

expected to shift more towards the plant sterol side of the balance in those metabolic more active 

cells. Furthermore, incorporation of 15µM sitosterol in HT22 hippocampal cells improved 

mitochondrial function by lowering the liquid order in mitochondrial membranes [86]. Despite the 

physiological concentration applied, the use of the methyl--cyclodextrin sterol-loading method 

may confound the neuronal functional outcome [87]. Yet, in vivo antioxidant activity of sitosterol 

is suggested to be mediated via lipid raft related ER-PI3K-GSK3β signaling, leading to an 

increased expression of antioxidant proteins such as glutathione-transferase A1/A2, glutathione 

peroxidase, and γ-glutamyl cysteine ligase [88-90].  

 

Upon incorporation in biological membranes in the CNS, sterols are shuttled by astrocytes into 

HDL-like particles, supplying neurons with sterols [91, 92]. Remarkably, it was shown that the 

efflux of sterols from a neuronal cell line is only poorly enhanced by adding external HDL as 

acceptor [45]. This finding indicates that dietary plant sterols may accumulate more efficient in 

neurons. Also, a diet rich in cholesterol and fatty acids (predominantly saturated and 

monounsaturated fatty acids) ameliorated neurological deficits caused by a defective astrocyte lipid 

metabolism. In these mice the sterol regulatory element-binding protein (SREBP) cleavage-

activating protein (SCAP) was deleted from astrocytes, resulting in astrocytes lacking endogenous 

cholesterol synthesis [93]. These observations establish a critical role for astrocytes in brain lipid 

metabolism and demonstrated that dietary lipids, can rescue astrocyte-related lipid deficiency. 

Although the plant sterol campesterol was elevated in the astrocyte-SCAP knockout brains, 

reflecting the increased transfer of sterols towards the brain, it remains to be determined whether 

dietary plant sterol supplementation is beneficial to the reduce neurological deficits in this 

transgenic mouse model [93]. Plant sterol administration may be an interesting alternative to 

atherogenic cholesterol supplementation. However, at this stage, the translational relevance of 

these findings is lacking. Together, although it remains topic of debate whether physiologic 

relevant plant sterol concentrations are reached within the lipid rafts, a role for plant sterols in 

modulating lipid raft functioning is gaining support. 

 

To date, it is largely unclear whether the accumulation of phytosterols in the CNS leads to a 

functional cognitive phenotype. On one hand, long-term exposure to increased levels of 

phytosterols in the circulation and CNS in Abcg5-deficient mice did not lead to an overt cognitive 

pattern with respect to memory and anxiety [94]. Similar, a combined phytosterols and high 

fat/high energy diet, from gestation on, did not reveal a significant influence of phytosterols on 

spatial memory in mice [95]. In concordance, a randomized double-blind placebo-controlled 

dietary intervention study defined no negative influence of long-term plant sterol or stanol 

consumption on neurocognitive functioning and mood in hypercholesteromic patients receiving 

statin treatment [96]. On the other hand, studies demonstrated that plant extracts have anxiolytic-

like effects in animal models after intraperitoneal administration [97, 98]. In these studies, plant 
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sterols, and in particular sitosterol, was identified as the active anxiolytic compound [97, 98]. Of 

note, the anxiolytic role of sitosterol could not be confirmed in Abcg5-/- mice, which have a 12-fold 

increase in sitosterol concentration in the limbic system [94]. However, in these animals, plant 

sterol levels are chronically elevated from birth on. Besides the limited role of phytosterols in 

cognition, anti-nociceptive properties have been ascribed to the plant sterol -spinosterol after oral 

administration [99]. In contrast, in a scopolamine-induced memory impairment model, acute 

administration of stigmasterol to adult rats alleviated memory impairment by enhancing the 

cholinergic neurotransmission system [100]. Stigmasterol levels in brain were not measured 

directly but did affect the cerebral expression of memory-related proteins. It should be noted that 

the role of stigmasterol on acetylcholine esterase activity in vitro was found to be rather limited 

[101]. Together, phytosterols do not enhance cognition in normo-cognitive settings, whereas they 

do show a therapeutic potential during chemically induced and disease related cognitive 

impairment.  

 

Phytosterols and the endothelium in CNS disorders 

 

The BBB is one of the three CNS barriers and constitutes the largest interface for the exchange of 

constituents between the blood and the CNS [102]. Brain endothelial cells tightly regulate BBB 

function and are regarded as the gatekeepers of the CNS [102-104]. Dysfunction of brain 

endothelial cells may turn them into culprits for neurological disorders. For instance, endothelial 

dysfunction fuels the expression of adhesion molecules, chemotactic proteins, angiogenic factors, 

and reactive oxygen species (ROS), thereby promoting immune cell infiltration and 

neuroinflammation in CNS disorders such as MS and AD [105-109]. 

 

In the last decade, both beneficial and detrimental effects of phytosterols on endothelial function 

have been reported. Weingärtner and colleagues demonstrated that a 2% plant sterol ester-enriched 

diet impaired endothelium-dependent vasorelaxation in wild type mice. Moreover, cerebral lesion 

size was significantly increased on this diet in a mouse stroke model with induced middle cerebral 

artery occlusion [49]. ApoE-/- mice on a Western-type diet supplemented with plant stanol 

esters significantly decreased vascular superoxide release from the intact aortic ring. In contrast, a 

plant sterol-enriched diet did not affect vascular superoxide release in these mice, suggesting that 

the type of phytosterol or its structural modification defines as to whether it modulates the 

production of superoxides by endothelial cells [110]. In concordance with this hypothesis, a rather 

high amount of the oxidized form of sitosterol (72µM) boosts ROS production in rat aortic 

endothelial cells [111]. Furthermore, it was shown that sitosterol-induced ROS in turn elevates the 

expression of cyclooxygenase-2, resulting in an altered prostanoid profile, and ultimately 

endothelial dysfunction and angiogenesis [111]. In contrast, another study found stigmasterol to 

have a strong superoxide anion scavenging capacity, However, in this study, a supra-physiological 

concentration of stigmasterol was used (242µM) [101]. Phytosterols have also been reported to 

possess anti-apoptotic properties in a endothelial cell line. Both hydroxylated and glycosylated 

phytosterol analogues inhibit serum deprivation-induced apoptosis of human umbilical venous 

endothelial cells (HUVECs) [112]. At the level of immune cell migration, mainly anti-

inflammatory effects of plant sterols are reported; they reduce the expression of adhesion molecules 

and thereby prevent the migration of immune cells across the BBB. For instance, sitosterol inhibits 

the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemotactic protein-

1 (MCP-1) in stimulated HUVECs and human aortic endothelial cells (HAECs) [113, 114]. 
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Consequently, sitosterol blocks the adhesion of neutrophils to an endothelial monolayer [115]. 

However, supra-physiological concentrations of sitosterol were used in this study (100µM). 

Collectively, these studies indicate that phytosterols can modulate diverse endothelium-dependent 

processes, such as vasorelaxation, oxidative stress, ischemia-reperfusion, and neuroinflammation. 

These biological processes are key in the development and progression of CNS disorders. 

Therefore, depending on the nature, concentration, and target cell of the phytosterol applied, 

phytosterols may have a crucial impact on neurodegenerative disorders and stroke. 

 

Phytosterols in Alzheimer’s disease  
 

AD is the most prevalent progressive neurodegenerative disorder in elderly. It is 

neuropathologically characterized by extracellular deposition of amyloid-β (Aβ) in senile plaques, 

the appearance of intracellular neurofibrillary tangles, neuronal loss, synaptic damage, and 

cholinergic deficits [116]. In AD, Aβ peptides are released by sequential proteolytic cleavage of 

APP, a large neuronal type I transmembrane protein [117]. APP is processed via two alternative 

pathways, the non-amyloidogenic pathway involving α-secretase mediated cleavage, and the 

amyloidogenic pathway involving sequential cleavage of APP by β-secretase and γ-secretase [118]. 

The latter pathway results in the secretion of the insoluble amyloidogenic Aβ. The amyloidogenic 

pathway is predominantly associated with lipid rafts, whereas the non-amyloidogenic pathway is 

correlated with non-lipid rafts [119, 120]. Accumulating evidence suggests a key role for a 

disturbed CNS cholesterol homeostasis in the development and progression of AD [121-127]. In 

this section, we elaborate on the impact of sterol metabolism on the development and progression 

of AD, and discuss how phytosterols may impact AD pathology.  

 

Diverse studies point towards a role for cholesterol metabolism in the pathophysiology of AD. 

First, case-control studies defined that AD patients display an impaired cholesterol turnover [50, 

125, 126, 128]. Correspondingly, suppression of cholesterol biosynthesis was demonstrated to 

reduce the production of Aβ species both in vitro and in an AD mouse model [129]. Second, a diet 

high in cholesterol was found to accelerate Aβ generation in APP transgenic mice [130, 131]. Third, 

stimulation of cholesterol turnover in the CNS, through the activation of liver X receptors (LXRs), 

significantly improved cognitive performance in animal models of AD [132-134]. Notably, 

discrepancy exist as to whether a reduced Aβ plaque load underlies the improved cognitive 

performance in an AD mouse model upon LXR agonist [132-134]. Differences in the treatment 

regime and animal models used may explain discrepancies between the studies. On the neuronal 

level, a cholesterol-mediated relocation of APP from the non-lipid raft part of the membranes to 

the lipid rafts may underlie the stimulatory impact of cholesterol on Aβ generation [135]. This 

relocation increases the accessibility of β-secretase to its substrate APP and thereby promotes the 

amyloidogenic cleavage of APP. These studies indicate that sterol metabolism plays a key role in 

the progression of AD [136].  

 

Phytosterols have been shown to beneficially modulate molecular processes involved in AD, such 

as APP processing and amyloid beta plaque formation in several in vitro and in vivo experimental 

setups [137-139]. In the next paragraphs, we discuss three theoretical models on how plant sterols 

may modulate AD on the molecular level. 
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It has been shown that plant sterols reduce Aβ generation in vitro by affecting the expression, 

activity, and availability of secretases involved in the amyloigenic processing of the toxic Aβ 

peptide (10µM) [137]. In particular stigmasterol decreased β-secretase activity, reduced the 

expression of all γ-secretase components, and decreased BACE1 internalization into endosomal 

compartments. In parallel, γ-secretase activity was significantly and dose-dependently decreased 

in the CNS of mice fed a 0.39% stigmasterol-enriched diet, as compared to vehicle treated mice 

[137]. However, at this stage, it cannot be concluded whether stigmasterol treatment is a 

translational therapeutic option since the transfer of stigmasterol to the CNS is limited. 

 

LXR are ubiquitously expressed sensors for cholesterol metabolites, such as oxysterols [140]. Upon 

activation, LXRs regulate cholesterol turnover and suppress the severity of diverse 

neurodegenerative diseases [110, 132, 133, 141]. In line herewith, LXR activation has recently 

been shown to be essential for motor neuron survival [142]. With respect to AD, LXR-induced 

expression of ApoE mediates the proteolytic degradation of A by microglia [132]. In addition, 

LXRs transrepress inflammatory pathways in CNS infiltrating and resident immune cells via 

SUMOylation-dependent pathways (figure 3) [143]. SUMOylation is required for the suppression 

of STAT1-dependent inflammatory responses by LXRs in IFN-γ-stimulated brain astrocytes [144-

146]. Based on these studies, activation of LXRs represents an interesting therapeutic option for 

neurodegenerative and neuroinflammatory disorders, such as AD. However, synthetic LXR 

agonists show severe side-effects such as hepatic hypertriglyceridemia, resulting in liver steatosis 

[147]. By using cell-free and cell-based assays, multiple studies defined that plant sterols, such as 

sitosterol, fucosterol, stigmasterol, schottenol, 24(S)-saringosterol, and spinasterol, bind and 

activate LXR and/or LXR [46, 53, 148-151]. Interestingly, in contrast to synthetic LXR agonists 

such as T0901317 and GW3965 [152-154], phytosterols do not induce hypertriglyceridemia and 

hepatic steatosis [152-158]. A reduced concentration of phytosterols in the liver, likely due to 

ABCG5/G8-mediated excretion into the bile, may explain why phytosterols do not induce the 

hepatic side effects as seen upon treatment with synthetic LXR agonists. It should be noted that 

plant sterols only mildly activate LXRs. Whereas highly specific synthetic agonists increased LXR 

activation up to 80-fold, a maximum 15-fold increase in LXR activation was observed when 

divergent plant sterols were used [46]. The rate in which plant sterols activate LXRs is likely 

dependent on (1) the concentration of plant sterols applied, (2) the type of plant sterol tested, (3) 

the purity of the plant sterol, and (4) the cell type transfected with the reporter-construct. For 

instance, Yang et al. published a 5-fold increase in LXR activation by 60 µM stigmasterol, using 

a luciferase reporter assay in CHO-7 cells [53]. However, the concentration stigmasterol applied 

(60µM) is supra-physiologic for non-phytosterolemic patients (±0.3µM) [48]. Plat et al. applied a 

cell-free ligand-sensing assay, initially developed to analyze the structural requirements of 

activating LXRα and LXRβ, to evaluate the potential LXR-activating capacity of various plant 

stanols/sterols [148]. In this study, fucosterol, sitostanol, and campestanol potently activated LXRα 

and LXRβ at concentrations ranging from 10nM to 10mM. By using a luciferase reporter assay 

(100-200µM) and a TR-FRET assay (1nm to 100µM), Hoang and colleagues confirmed the LXR-

agonizing capacity of fucosterol [149]. Although fucosterol appears a strong LXR activator, it 

remains speculative whether concentrations of fucosterol in this range can be reached via 

nutritional supplementation. A recent study of Chen et al. showed a 4 to 15-fold LXR activation 

upon administration of 24(S)saringosterol (10 and 30µM ) [46]. The 10µM concentration is near 

the range of targetable circulating concentrations and may offer future nutritional perspectives. 

Strangely, although oxidized cholesterol forms are natural LXR agonists, oxyphytosterols are not 
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superior LXR agonists as compared to non-modified phytosterols [21]. Collectively, a phytosterol-

mediated activation might prove to be an interesting therapeutic option for AD in the future. 

However, more research is warranted to define if plant sterols mediate their neuroprotective effects 

exclusively via LXRs, and whether the capacity of plant sterols to activate LXRs is sufficient to 

control neuroinflammation and neurodegeneration. Moreover, to date, translational studies 

verifying the exclusive LXR activating potential of plant sterols are lacking. Finally, despite the 

large number of studies supporting an anti-inflammatory role for LXR activation [159], few studies 

point towards a pro-inflammatory role of LXRs [160-162]. Consequently, caution should be taken 

when extrapolating LXR as target in AD to the clinic.  

 

Finally, phytosterols may disturb APP processing in lipid rafts. Similar to plant cell membranes, 

we demonstrated that phytosterols accumulate in lipid rafts of neuronal membranes upon dietary 

supplementation [45, 163-165]. As such, phytosterols may reduce the molecular order in 

membranes. Phytosterols interact less efficiently with saturated phospholipids compared to 

cholesterol and, therefore, may alter membrane fluidity [84, 85]. Consequently, substitution of 

membrane cholesterol with sitosterol disrupts lipid raft integrity and promotes the relocalization of 

APP to non-raft regions, thereby suppressing amyloidogenic processing of APP (figure 3a/c) [166]. 

Moreover, in a platelet-model for Aβ production, sitosterol inhibits high cholesterol-induced Aβ 

release, likely through maintenance of membrane cholesterol homeostasis [139]. Similarly, it was 

found that stigmasterol significantly reduces cholesterol and presenilin distribution in lipid rafts. 

This redistribution has been implicated in amyloidogenic APP cleavage and subsequent Aβ 

production (figure 3a) [137]. However, as stated above, it remains to be determined in vivo whether 

the plant sterol-to-cholesterol ratio in the lipid rafts is sufficient to functionally modulate membrane 

properties in the CNS parenchymal cells. 

 

In addition to their impact on the pathophysiology of AD, phytosterols function as biomarkers for 

AD. Recently, brassicasterol and to a lesser extend sitosterol were identified as clinically relevant 

cerebrospinal fluid (CSF) biomarkers for early AD (mini-mental state examination score: 21.3±4.6) 

[48]. Noteworthy, all plant sterols measured in this study were lowered in AD patients compared 

to the control population. However, only brassicasterol and to a lesser extend sitosterol reached 

significance [48]. In parallel to a reduced CSF-to-plasma ablumin quotient, the reduced CSF plant 

sterol concentrations likely reflect an impaired choroid plexus function, resulting in a decreased 

plant sterol secretion/leakage into the CSF [167]. Despite comparable plasma concentrations, 

brassicasterol and sitosterol were significantly lower in CSF of AD patients compared to non-

demented age matched controls. As stated in the limitation-section of the study, the relatively low 

sample size (n(AD)=67 and n(ctrl)=29) may explain why the other CSF plant sterols measured did 

not reach significance between the two groups in this multivariate analysis. Remarkably, the ratio 

among the different plant sterols differs within the CSF and within the plasma. Yet, the addition of 

CSF brassicasterol to the panel of established CSF biomarkers, Aβ42 and phospho-tau, resulted in 

significantly increased predictive power[48]. However, more studies are indispensable to confirm 

the clinical validity and replicability of these findings. The consensus in the field is that the findings 

reported should be replicated in new, independent studies [168]. The clinical applicability of 

brassicasterol as biomarker might be hampered by the lack of equipment and experience in central 

diagnostic laboratories. Additionally, the invasive nature of the required of the lumbar punctures 

might raise ethical questions concerning routine screening [168].  
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In conclusion, numerous studies point towards plant sterols being interesting nutritional modulators 

in the prevention of AD. However, studies focusing on the long term side-effects of high dose plant 

sterol intake and the subsequent CNS accumulation are warranted. While initial low concentrations 

of selected plant sterols in the CNS can be beneficial, long-term, extensive accumulation may prove 

harmful in CNS disorders and peripheral tissues. 
 

Phytosterols in Multiple Sclerosis 

 
MS is an inflammatory, neurodegenerative disease affecting the CNS. It is regarded to be an 

autoimmune disease as autoaggressive lymphocytes and macrophages are pivotal in orchestrating 

the immunopathological processes involved in myelin sheath damage and axonal degeneration 

[169-171]. The impact of cholesterol metabolism on normal brain functioning and the 

pathophysiology of MS has been extensively scrutinized [140, 172-176]. Even more, cholesterol-

lowering statins reduce lesion relapse rate in early MS patients and have recently been found to 

curtail the annualized rate of whole-brain atrophy in secondary-progressive MS patients [177-179]. 

Remarkably, despite their immunomodulatory properties, ability to cross the BBB, and capacity to 

lower blood cholesterol levels, the effect that phytosterols have on the MS disease progression 

remains largely elusive. 

 

Numerous studies have reported immunomodulatory properties of phytosterols [38, 42, 114, 180-

183]. For instance, both non-modified and modified phytosterols suppress an inflammatory 

transcriptional profile in macrophages [42, 182-188]. Furthermore, plant sterols and plant stanols 

skew T cells towards a Th1 phenotype independently of their effect of antigen-presenting cells 

(APCs) and leaving the activity of Th2 cells unaffected [180, 189, 190]. With respect to MS, 

sitosterol has been reported to decrease the secretion of the inflammatory mediators TNFα and IL-

12 by PBMCs from MS patients at physiological relevant concentrations [181]. In line with this 

finding, daily administration of a mixture of sitosterol (60%), campesterol (25%), and stigmasterol 

(15%) inhibits inflammatory CNS demyelination in an animal model of MS, the experimental 

autoimmune encephalomyelitis (EAE) model [191]. Even more, this phytosterol mixture delays 

the onset and decreases disease severity in EAE. The protective effect of phytosterols on EAE 

severity was paralleled by a reduced infiltration of lymphocytes and macrophages into the CNS, 

and a dampened inflammatory activity of these immune cells. These findings indicate that 

phytosterols modulate the inflammatory and migratory activity of leukocytes in EAE-affected 

animals, thereby affecting neuroinflammation and neurodegeneration. Of note, the reduced 

infiltration of leukocytes into the CNS of EAE animals is in line with the fact that phytosterols 

decrease the chemotactic and docking properties of endothelial cells (see section “phytosterols and 

the endothelium in CNS disorders”). However, EAE only mimics the inflammatory aspects of MS 

pathology, not taking modifiable and genetic risk factors into account. In conclusion, the role of 

plant sterols in the prevention and treatment of MS holds promise, but caution should be taken 

extrapolating findings in animal models to the clinic.  

 

Apart from modulating the autoimmune response in MS, phytosterols may impact the 

pathophysiology of MS by affecting the viability and activity of parenchymal cells. It has been 

defined that phytosterols stably accumulate in the CNS, especially in glial cells, such as 

oligodendrocytes and astrocytes, and to a lesser extent in neurons [43-45]. This finding suggests 

that phytosterols can directly affect the integrity and functioning of these cells, and thereby MS 
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disease progression. Notably, incorporation of β-sitosterol in the cell membrane of hippocampal 

neurons prevents glucose oxidase (GOX)-induced oxidative stress and lipid peroxidation [88]. 

Thus, phytosterols may protect neurons, and likely also glial cells [43-45], from oxidative stress in 

MS lesions. On the other hand, oxides of β-sitosterol and campesterol are cytotoxic in vitro [192]. 

Similar, phytosterol β-D-glucosides are neurotoxic when administrated to astrocytes, neurons, 

cortical slices, and mice through glutamate excitotoxicity and their stimulatory effect on the 

generation of ROS [36, 39, 193]. In addition, microglia and astrocyte activation is apparent in β-

sitosterol β-D-glucoside treated mice, supporting a role for glial cells in β-sitosterol β-D-glucoside-

induced neurotoxicity [39]. To date, it is unclear if the neurotoxic properties of phytosterol 

glucosides at some point overwhelm the neuroprotective effects of free and esterified phytosterols 

in the healthy or diseased CNS. Moreover, considering that phytosterol glucosides also lower 

cholesterol levels in humans [35, 37], it is unknown whether the neurotoxic impact of glycosylated 

phytosterol outweighs their protective cholesterol-lowering effect in MS. The above studies 

indicate that the impact of phytosterols on CNS resident cells is dual and largely depends on 

structural modifications. 

 

Nuclear receptors play a key role in CNS repair processes and neuroinflammation. Activation of 

LXRs ameliorates EAE and signaling through retinoid X receptor gamma (RXR), a heterodimeric 

partner of LXRs, accelerates CNS remyelination [194-196]. Hence, a phytosterol-mediated 

activation of LXRs may suppress neuroinflammation and promote CNS repair processes in MS 

patients. Similar, sitosterol binds and activates the estrogen receptor (ER), particularly the ERβ 

subtype [88, 89, 197]. Activation of both ER subtypes provides disease protection in the EAE 

model and estrogens are currently being evaluated in clinical trials of MS [198, 199]. ERβ specific 

ligands have been reported to enhance endogenous remyelination by increasing the number of 

myelinating oligodendrocytes [200, 201]. It should be noted that, similar to LXR activation, 

phytosterols only mildly activate ERs as compared to synthetic compounds such as 17-β-Estradiol. 

Future studies should determine if phytosterols affect CNS repair processes and whether a 

phytosterol-mediated activation of ERs and LXR represents the biological foundation for their 

impact on CNS repair (figure 3d). 

 

Phytosterols in ALS-PDC 
 

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) is a 

neurodegenerative syndrome that shows a remarkable high prevalence in Guam, West New Guinea, 

and the Kii peninsula of Japan. It is a heterogeneous syndrome that manifests itself as 

parkinsonism, dementia, classical ALS, or a combination of these phenotypes. The high prevalence 

of ALS-PDC in populations in the pacific and its familial clustering point towards a genetic 

predisposition. However, the occurrence of ALS-PDC in immigrants in these areas and the 

consistent drop in the incidence over the last decades suggests that environmental risk factors are 

also imperative for disease development. Moreover, causative genetic and molecular markers that 

explain the isolated manifestation of ALS-PDC in these areas are yet to be determined [202, 203]. 

 

Many studies have attempted to define the environmental trigger that causes ALS-PDC. 

Disturbances in calcium, vitamin D, heavy metal metabolism [204], and neurotoxins present in 

cycad seeds, such as β-N-methylamino-L-alanine (BMAA) [205, 206], have been proposed as 

causal factors but were later on challenged [203, 207-209]. With respect to cycad seeds, few in 
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vitro studies defined that sterol-β-D-glucosides present in cycad seeds are also potential 

neurotoxins [36]. First, β-sitosterol-β-D-glucoside induces cell death in human fetal astrocytes and 

motor neuron cells [36, 39]. Second, in cortical slices and primary cortical cultures β-sitosterol-β-

D-glucoside, stigmasterol-β-D-glucoside, and campesterol/dihydrobrassicasterol-β-D-glucoside 

stimulate rapid depolarization and induce the release of lactate dehydrogenase, which is a marker 

for cellular apoptosis. Considering that sterol-β-D-glucosides promote the release of glutamate in 

cortical slices, glutamate excitotoxicity likely underlies the neurotoxic potential of the sterol-β-D-

glucosides [36]. In line with this hypothesis, glutamate excitotoxicity is related to the generation 

of free radicals and sterol-β-D-glucosides stimulate the generation of ROS by isolated brain 

mitochondria [193, 210]. Finally, acetylated sterol-β-D-glucosides accelerate the aggregation of α-

synuclein and promote α-synuclein-induced cytotoxicity in vitro [41]. Many α-synuclein positive 

intraneuronal inclusions are found in the CNS of ALS-PDC patients, primarily in the amygdala, 

and α-synuclein aggregation has been suggested to be involved in the process of tauopathy in CNS 

disorders [211, 212]. Collectively, these studies demonstrate that phytosterols-glucosides have 

neurotoxic properties in vitro. 

 

In agreement with the above-mentioned in vitro results, mice fed cycad flour (0.5 g/day up to 30 

days) containing the various sterol glucosides develop ALS-PDC-resembling motor and cognitive 

problems, and display neurodegeneration in CNS regions similar to those seen in ALS-PDC 

patients [36, 213]. In these studies, the cycad flour was washed several times and contained 

negligible amounts of the previously suspected cycad toxins, such as BMAA. Interestingly, cycad-

fed mice show a loss of glutamate transporters and an ionotropic glutamate receptor expression 

profile that suggests that glutamate excitotoxicity ensues and underlies neurodegenerative events 

in these mice [214]. In concordance with a neurotoxic role of glycosylated phytosterols in cycad 

seeds, β-sitosterol-β-D-glucoside feeding results in behavioral deficits, motor neuron degeneration, 

and activation of astrocytes and microglia. Moreover, similar to cycad-fed mice, β-sitosterol-β-D-

glucoside treated CD-1 mice have a decreased glutamate transporter expression in the CNS [39]. 

Conversely, Wilson and Shaw demonstrated that, although β-sitosterol-β-D-glucoside-treated mice 

develop ALS-PDC, the glutamate transporter density remained unchanged [215]. Experimental 

differences, like the mouse strain used and/or purity of glycosylated β-sitosterol, might explain this 

discrepancy in the expression of glutamate transporters. These studies indicate that phytosterol 

glucosides likely account for the neurotoxicity of cycad flour. To what extent glutamate 

excitotoxicity is involved remains to be clarified. 

 

Interestingly, as compared to wild type mice, cycad-fed ApoE-/- mice do not develop progressive 

behavioral deficits, whilst showing an increase in the number of apoptotic cells in the CNS [216]. 

This finding suggests that the ApoE isoform could possibly be a genetic susceptibility factor for 

cycad flour neurotoxicity. As ApoE deficiency also decreases the flux of phytosterols towards the 

CNS [44], the reduced neurological deterioration in cycad-fed ApoE-/- mice might merely represent 

a reduced presence and, as a consequence, cytotoxicity of glycosylated phytosterols in the CNS. 

Of note, specific ApoE isoforms have been associated with several neurodegenerative disorders 

including AD, ALS, and ALS-PDC [215, 217]. With respect to the latter, a follow-up study using 

transgenic mice with murine Apoe replaced by either human APOE2, APOE3, or APOE4 defined 

that the APOE2 isoform confers protection against motor deficits induced by cycad flour 

consumption [215]. On the other hand, mice expressing human APOE4 displayed an increased 

disease severity. If and how phytosterol glucosides in cycad seeds are associated with APOE 

http://nl.bab.la/woordenboek/engels-nederlands/negligible
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isoform specific neurotoxicity remains unclear. Differences in the capacity of divergent APOE 

isoforms to transport phytosterols into the CNS might explain the findings [218].  

 

The obvious question that remains is: why and how does glycosylation render phytosterols 

neurotoxic? A possible explanation may be that glycosylation hampers the binding and activation 

of nuclear receptors by phytosterols. In line with this hypothesis, β-sitosterol accelerates neuron 

degeneration in mice that are deficient for LXRβ [219], suggesting that LXRβ activation by non-

glucosylated sitosterol is neuroprotective. Furthermore, glycosylation may suppress the beneficial 

role that β-sitosterol has on mitochondrial function. Specifically, incorporation of β-sitosterol into 

the mitochondrial membrane enhances mitochondrial energy metabolism, possibly by promoting 

inner membrane fluidity [88]. An increase in mitochondrial energy metabolism has been proposed 

to be beneficial for neurodegenerative diseases. Interestingly, in contrast to non-modified 

cholesterol, cholesterol β-D-glucoside reduces the membrane fluidity by promoting the packing of 

the bulk membrane lipids [220]. This finding may underlie the negative role of glycosylation on 

the impact of cholesterol, and likely phytosterols, on mitochondrial function. On a structural level, 

molecular characteristics, such as the chiral orientation and the number of glucose ring structures 

attached to the sterols, have also been proposed to underlie the neurotoxic properties of sterol 

glucosides as compared to their non-modified counterparts [36]. Whereas it is clear that phytosterol 

glucosides are neurotoxic, further research is required to define the exact mechanism of action. 
 

Therapeutic perspectives and conclusion 

 
Due to the cholesterol lowering properties, dietary phytosterols are steadily gaining both public 

and scientific attention. Interestingly, apart from their cholesterol-lowering properties, recent 

evidence indicates that phytosterols also modulate other biological processes and may play a role 

in a diverse set of disorders. For instance, functional foods enriched with phytosterols are 

chemopreventive and might hold promise for add-on treatment for particular cancers [221-223]. 

However, to date, no clinical endpoint studies are available to support plant sterols as functional 

food. Moreover, the mechanism underlying the severe atherosclerosis in phytosterolemic patients 

remains unclear.  

Considering phytosterols can cross the BBB and virtually irreversibly accumulate in the CNS, an 

increasing amount of studies is being published on the impact of phytosterols on the healthy and 

diseased CNS. In this review, we summarized and discussed the role of phytosterols and their 

metabolites in the growing field of nutritional neurosciences. Phytosterols have the potential affect 

neuroinflammation, neurodegeneration, and disease progression in experimental animal models for 

different CNS disorders. Even more, few studies points toward a role for phytosterols in CNS 

repair. Notably, phytosterols may also indirectly modulate CNS disease progression. For instance, 

diabetes is a risk factor for AD and cognitive decline in general [224]. Phytosterols, and in 

particular fucosterol, have been shown to be anti-diabetic and might therefore modulate cognition 

indirectly [225-227]. However, despite recent advances, longer-term prospective translational 

studies are mandatory to elucidate the applicability of phytosterols in CNS disorders. At the same 

time, future studies should determine whether the neuroprotective and neurodegenerative 

properties of phytosterols are disease-specific and which modifications render a particular 

phytosterol neuroprotective or neurotoxic. With respect to the latter, care should be taken to 

minimize the presence of neurotoxic phytosterol metabolites in functional foods, as well as to 

suppress the neurotoxic conversion of non-modified phytosterols in the body. Also, the role of 
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phytosterols in other CNS disorder related to a disturbed cholesterol homeostasis, such as 

Huntington disease, spinal cord injury, and Parkinson disease, remains to be investigated [228-

230]. We conclude that CNS disorders that are correlated with an altered cholesterol metabolism, 

such as AD, MS, and ALS-PDC, are especially interesting for further applied and mechanistic 

phytosterol research. Yet, the raised contra-indications, such as premature atherosclerosis in 

phytosterolemic patients and harmful side-effects of phytosterol metabolites underscore the caution 

with which plant sterol should be dealt with in practice. 
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Figure legends 

 

Figure 1. Chemical structures of sterol and its modifications. (A) On the left, an overview of 

the chemical structure of cholesterol with its numbered carbon atoms and side chain R. Sterols can 

be modified by hydrogenating the double bound between carbon 5 and 6 to obtain stanols, or sterols 

can be glycosylated or esterified to form sterol-β-D-glucosides and sterol esters, respectively. (B) 

On the left, an overview of the chemical structure of phytosterols and stanols. On the right, the 

chemical structures of all the phytosterols discussed in this review. Of note, all phytosterols 

depicted here have a stanol counterpart, with the exception of schottenol and spinasterol. (C) 

Sterol/stanol can be oxidized to form an oxysterol/stanol, such as 24(S)- or 27(S)-

hydroxycholesterol, depending on which carbon is oxidized (as showed by the oxidation points). 

 

Figure 2. Transport model of phytosterols across the intact BBB. (A) In the brain, cholesterol 

is almost entirely synthesized in situ. To maintain homeostasis, cerebral cholesterol is metabolized 

into the more polar 24(S)-hydroxycholesterol by CYP46A1. 24(S)-Hydroxycholesterol can cross 

the BBB resulting in cholesterol efflux from the brain. In contrast, most phytosterols cannot be 

converted to 24(S)-hydroxyphytosterol. Hence, there is no efflux of phytosterols to the blood 

resulting in a steady accumulation in the brain. (B) We suggest that the HDL-SR-B1 axis is playing 

a crucial role in the flux of phytosterols across the BBB into the CNS. Phytosterols are mainly 

located in HDL in the circulation and SR-B1, the main HDL receptor, is present at the apical side 

of cerebral endothelial cells. The release of phytosterols in the CNS is likely mediated by ATP-

binding cassette transporters, which are present on astrocytes and the basolateral side of the 

cerebral endothelium. CNS-HDL-like particles may function as acceptors for phytosterols in the 

brain. 

  

Figure 3. The impact of phytosterols on neurodegeneration, neuroinflammation, and CNS 

repair. (A) APP can be processed by the non-amyloidogenic and amyloigenic pathway. In the non-

amyloidogenic pathway, APP is cleaved by α- and γ-secretase in non-lipid raft regions. In contrast, 

in the amyloidogenic pathway, β- and γ-secretase cleave APP in lipid rafts, leading to the formation 

of neurotoxic Aβ peptides. Phytosterols promote the relocalization of APP from lipid rafts to non-

lipid raft regions and can directly inhibit β-secretase activity. Thus, phytosterols likely reduce the 

amyloidogenic cleavage of APP and the consequent formation of neurotoxic Aβ peptides, and may 

attenuate AD pathology upon accumulation in the CNS. (B) Apart from having neuroprotective 

properties, glycosylated forms of phytosterols are neurotoxic. Glutamate excitotoxicity and an 

increase in oxidative stress (ROS) likely underlie the neurotoxic properties of glycosylated 

phytosterols. (C) In neuroinflammatory disorders such as MS and AD, leukocytes infiltrate the 

CNS and release a plethora of inflammatory and toxic mediators. Phytosterols can reduce 

neuroinflammation by suppressing the inflammatory properties of immune cells, potentially 

through the ligation and activation of LXRs (SUMOylation-dependent pathway). Moreover, 

phytosterols can decrease leukocyte infiltration into the inflamed CNS, either by directly affecting 

the migratory properties of leukocytes and/or by altering the adhesive and chemoattractive 

properties of BBB endothelial cells. (D) Phytosterols ligate and activate nuclear receptors (LXRs 

and ERs) that play a crucial role in CNS repair processes. Cholesterol is an essential component of 

myelin and LXRs control cholesterol homeostasis in oligodendrocytes. Hence, a phytosterol-

mediated LXR activation may affect cholesterol homeostasis and remyelination. With respect to 
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the capacity of phytosterols to stimulate ERs, ERβ signaling increases the number of myelinating 

oligodendrocytes. 
 


