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Abstract—This paper describes how optimized streaming
strategies, based on MPEG-DASH, can be employed to power
a new generation of interactive applications based on immer-
sive video. The latter encompasses ultra-high-resolution, omni-
directional and panoramic video. The goal is to deliver expe-
riences that are made up of multiple videos of short duration,
which can be joined at run-time in an order defined through
user interactions. Applications of the technology are widespread,
ranging from virtual walkthroughs to interactive storytelling, the
former of which will be featured in detail. The main technological
challenges tackled in this paper are to deliver these experiences
in a seamless fashion, at the highest quality level allowed by
network conditions and on a wide range of platforms, including
the Web. Besides these, the paper focuses on the two-tier software
architecture of the proposed framework, as well as a short
evaluation to substantiate the validity of the proposed solutions.

I. INTRODUCTION

Streaming video on-demand is currently handled by a va-
riety of technologies (Apple HLS, Microsoft Smooth), which
are slowly being superseded by MPEG-DASH. These solutions
offer major advantages to application developers and end-users
alike: semi-automatic adaptation to bandwidth conditions,
elimination of firewall issues and platform independence for
playout components. However, most application scenarios for
streaming video still focus on traditional (up to Full HD) use
cases where a video sequence is considered a monolithic entity.
Novel formats, referred to in this paper as immersive video,
include ultra-high-resolution (4K and up), omni-directional
(360°) and high-resolution panoramic video. Each of these is
characterized by the fact that the resolution is much higher
than the Full HD resolution typically employed by streaming
applications. Additionally, in the case of omni-directional and
panoramic video, only a part of the full video coverage
is actually required for display at user side (i.c. the view
frustum). Scalable solutions for delivering video in this way
rely on the client device to request the appropriate spatial
parts of the content from the server infrastructure — based on
user interactions like panning and zooming. To support these
application scenarios, tiled video transmission is typically used
as a solution, whereby only those tiles contained within the
user’s viewport are requested from the server, transmitted and
rendered on the end-user device. Although this technology is
not the focus of this paper, it is an integral part of the proposed
experience description framework.

Specifically in this paper, user interactivity is extended
beyond the ability to change the virtual camera direction, by
handing control of the entire flow of the immersive experience
over to the end-user. In practice, this is accomplished by
virtually ‘pasting together’ multiple video sequences, each of
short duration (referred to throughout this paper as chunks), in
such a way that choices can be presented to the user on how
to proceed. A simple analogy, which will be elaborated on
further in this paper, is that of a video counterpart to Google
Street View. Where in the Street View case, the user needs
to make decisions on how to proceed after each frame, video
chunks are now used as a replacement for still imagery.

Several contributions are presented in this paper. First, the
definition of a simple but flexible immersive experience graph
description that can cover a number of application scenarios
and technological challenges is discussed. The software ar-
chitecture for the system is described, which decouples the
streaming logic (back-end) from the presentation layer (front-
end), the latter of which can be implemented on a range of
platforms (e.g. native or Web-based). Finally, an evaluation
is provided that shows the validity of the claims made on the
flexibility as well as the real-world applicability of the system.

II. RELATED WORK

Interactive video has been studied at large in literature;
space limitations unfortunately compel us to include only the
most recent and relevant references in this section.

In their basic form, interactive video experiences — where
the user is in control over the sequencing — are sometimes
referred to in literature as Hypervideo or non-linear video. A
comprehensive overview of the distinction between these and
other related terms is provided in [4]. The authors describe a
system capable of defining the flow within such experiences
through a visual editor. For the playback part, in [3], pre-
fetching schemes are proposed that are similar to the ones that
will be presented in this paper. It is important to note that the
contribution and extension of the current publication should
be regarded in the fact that the concepts are applied to non-
traditional (immersive) video. This raises multiple additional
technical challenges (e.g. increased bandwidth demands, tiled
delivery, multi-depth-layer representations and increased in-
teractivity) for which practically applicable solutions are now
presented, mainly based on established standards.



Fig. 1: Example scene from the 360° walkthrough scenario

In [5], the extension of the concept of Hypervideo to
360° captured content is discussed. The authors mainly focus
on how to present the content to the user and not on the
underlying network aspects such as efficient delivery and
caching. The ideas presented however certainly also apply to
the cases described in the current paper. In particular, related to
the walkthrough scenario described in section III, in a follow-
up publication [6], the authors describe the extension of their
ideas towards geo-referenced 360° Hypervideo. More details
on tiled delivery of omni-directional video can be found in
[71, [8] and [10]. A system exploiting depth information for
enhanced playback purposes (see section V-C2) is Plenopticon
[1], where dynamic adaptive depth of field is applied to a video
sequence recorded using a plenoptic Lytro camera.

III. EXAMPLE USE CASE DESCRIPTION

To illustrate the capabilities of the proposed system as
experienced by end-users, a prototype application has been
developed. This technology demonstrator implements a spe-
cific usage scenario that will be elaborated on in this section.
Please note that the presented scenario represents just a
single, relatively straightforward example of how the proposed
streaming architecture can be applied to develop a concrete
immersive media experience. As said before, the technology
can adapt to support a number of applications in a broad
spectrum of application domains, with the main limitation
being the creativity and imagination of content producers.

The prototype application is designed to familiarize foreign
students and new employees with the Science Park grounds
of Hasselt University by offering a virtual walkthrough of
the site. The content consists of a set of chunks recorded
on campus using an omni-directional setup consisting of 7
GoPro Hero3+ Black cameras mounted in a 360Heros rig
(http://www.360heros.com/) and supported on a Steadicam
Pilot mount (http://www.tiffen.com/pilot.html). The recorded
video material includes a human guide who points out various
features along the way (see Figure 1). A typical usage scenario
involves users virtually moving along the roadways and choos-
ing the desired traveling direction at various intersections in or-
der to get a feel of the layout of the campus. While navigating
the streets, users can play/pause the video sequences, change
viewing direction or zoom in/out by manipulating the viewer
component (either through dragging when using a mouse, or
by using touch events when deployed on a tablet device).
Alternatively, in the same application scenario, one may opt to
display specific travel paths during different times of day (at
dawn, in the afternoon, at dusk, ...) or in different climatic
conditions (depending on content availability).

IV. IMMERSIVE EXPERIENCE GRAPH

As the proposed streaming solution is targeting non-linear
video consumption environments in which the end-user is
given substantial freedom in determining the course of the
media playback, a format is needed to capture the temporal
relationships between constituting media chunks. The reader
is reminded that the term chunk is used to refer to video
sequences of limited duration (composing a single logical
entity) which are concatenated to form complete experiences.
In practice, these chunks will consist of one or more segments
according to MPEG-DASH terminology.

An immersive experience graph representation is adopted
to semantically describe the logical flow of individual video
chunks. Based on this format, the system is able to present
the relevant interaction options to the user during the experi-
ence. The graph’s directed edges represent chunks (i.e., video
streams), whereas its composing nodes encode decision points
(two or more mutually-exclusive options) in the playback of
the experience. Referring back to the use case description, a
graph node would be used to implement a choice that needs to
be taken on a crossroad of paths on campus. Graph edges can
either refer to a single chunk or a collection of related chunks;
in the latter case, no formal restrictions are imposed on the
semantics of chunk clustering. In effect, such a chunk bundle
could correspond with a collection of video streams that need
to be visualized either simultaneously or between which may
be alternated during playback. The former can be used for e.g.
spatial tiling (see section V-C1) or multi-layer streaming (as
discussed in section V-C2), while the latter can represent a
section of street for which footage during different times of
day or meteorological seasons is available (see section III).

The immersive experience graph in Figure 2a describes the
experience of an alternative application scenario, namely the
exploration of a museum (simplified map shown in Figure 2b).
Note that, for the sake of comprehensibility, only a restricted
path is covered by the example graph and only a single
direction of travel is considered. In reality, a more elaborate
version of the same graph would likely be constructed and
used. When starting the tour, the path throughout the main hall
is followed (stream S1). Once decision point D1 is reached, the
user can opt to proceed either left or right (stream S2 or S3).
Note that the decision could be made either during playback
or when the current chunk has finished playing (end of S1).
Assuming that the user chooses to turn left, a similar scenario
plays out when reaching point D2 and any subsequent nodes
in the graph. When reaching D4, the user has the option to
visit the temporary exhibition hall. Edge G1 here represents
a chunk group consisting of three individual streams (S10,
S11 and S12), which each correspond with a video capture
of a distinct temporary exhibition as it was shown in the hall
at some specific point in time. During the playback of GlI,
users can freely and in real-time switch between each of its
composing chunks.

V. STREAMING OPTIMIZATIONS

In this section a number of concrete optimizations to the
amount of traffic being sent over the network, as well as the
user experience, will be discussed.



(b) Map view of museum walkthrough

Fig. 2: Use case example scenario

A. Content pre-caching

Since affording viewers a seamless experience (in terms of
playback smoothness) is an important objective of the pro-
posed system, the availability of intelligent client-side content
buffering schemes is highly advocated. Note that, due to the
non-linear nature of the immersive experiences targeted in this
paper, this task requires more sophisticated solutions than is
the case in traditional systems. Also note that the proposed
framework does not impose one single client-side caching
scheme; instead, it is designed to allow various (possibly
existing) approaches to be plugged into its implementation.

The immersive experience graph narrows down the set of
navigational decisions the user is able to make in the short
term. This facilitates client-side caching of relevant parts of
the content, to make sure that the user does not experience any
startup delay (caused by buffering) when switching between
individual chunks. Consider the scenario where a choice node
is encountered in the scene graph. The system is aware that the
user will select one of the streams that branch from this node;
however it cannot be sure which one will actually be chosen
at run-time. Depending on the installed pre-caching strategy,
the system will automatically start pre-fetching (some initial
segments of) the future chunks associated with the outgoing
edges of the choice node. Variations in the start time of the
pre-caching process are supported. It is also likely in actual use
cases that users will indicate their branching decision ahead
of time. If so, the caching strategy can adapt by rejecting the
undesired option(s) and by increasing the bandwidth resources
dedicated to the chunk that is associated with the selected path.

The ultimate choice on the pre-caching strategy to use is
dependent on multiple factors, including output device charac-
teristics, network connection, type of experience targeted and
possibly even user profiling. Thus far, two relatively straight-
forward pre-caching strategies have been proposed that define

the point in time when the system has to start downloading
the chunk(s) corresponding with the subsequent part(s) of the
immersive experience graph. The first scheme downloads the
primary (i.e. currently visualized) and pre-caching chunks at
the beginning of the playback of the primary stream. This
approach is clearly only suited for those usage conditions
where bandwidth is abundantly available; it will enable the
user to navigate freely throughout the experience, even skip-
ping over chunks while still experiencing minimal buffering
delays. When bandwidth is more scarce, an alternative strategy
may be preferred, which takes a parametric approach by
postponing the download of the pre-caching chunks until a
certain threshold in the primary stream’s playback timing has
been reached (e.g. start the pre-buffering 10 seconds prior
to the end of the playback of the primary chunk). Besides
pure timing-based information, this strategy can also utilize
the buffer fill state of the primary stream(s) to determine at
which point in time it becomes viable to start downloading pre-
caching content without disturbing the playback of the primary
stream(s). Practical experiments based on both these strategies
will be detailed in section VII.

B. Quality and bandwidth adaptation

The MPEG-DASH standard enables run-time media quality
adaptation by allowing clients to download individual seg-
ments at specific pre-determined quality levels, for example
depending on prevailing network channel conditions. However,
the standard does not impose a particular scheme to be utilized
and leaves this decision up to the application developer. For
the technology demonstrator proposed in this paper, a total of
four concrete quality adaptations logics have been integrated.
The objective of these logics is to define the quality in which to
download (the different MPEG-DASH segments composing)
each primary and pre-caching chunk. As was the case with
the pre-caching strategies, the system is extensible in terms
of the quality adaptation schemes it offers. The proposed
logics (see below) are hence merely examples of the type of
bandwidth consumption behavior that can be enforced. Note
that the installed quality adaptation strategy, combined with the
utilized content pre-caching approach, are major contributors
to the final Quality of Experience (QoE) of the end-user.

The example quality adaptation logics implemented are:
1) Always use the lowest quality, which denies the system
the ability to adapt by forcing each segment to be down-
loaded in its lowest quality level. 2) Always use the highest
quality (the opposite extreme of the first strategy). 3) Best
bandwidth fit, which instructs the adaptation layer to fetch
the best possible quality, subject to the prevailing downstream
bandwidth capacity (resulting in low quality for low bandwidth
conditions and superior quality when sufficient bandwidth is
available. Finally, option 4) uses a ‘smoothed best fit’. This
is an adaptation of the algorithm proposed by [9], which
is designed to provide a more stable video experience by
“filtering out’ the constant quality changes that would happen
under unstable network conditions, such as is the case for
mobile wide-area network connections.

The fact that bandwidth needs to be divided among two
categories of streams (i.e. primary versus pre-caching, see



section V-A) considerably complicates the quality adaptation
task. In effect, a balance needs to be found between the
priority attributed to the primary and pre-caching streams.
One possible strategy could be to assign the same impor-
tance to both types of chunks, so the user can experience
constant quality playback (each chunk exhibits more or less
the same quality). Another strategy could be to assign more
importance to the primary stream, downloading its chunks in
the highest quality, while evenly distributing the remainder of
the bandwidth among the pre-caching streams (which might
therefore be assigned a lower quality level). The bandwidth
allocation logic is an integral part of the streaming framework
and can deal with all of the above-mentioned cases and is
easily extended to include new strategies.

C. Advanced uses of the immersive experience graph

The proposed streaming system in general, and its immer-
sive experience graph component in particular, is sufficiently
agile and expressive to tackle a number of advanced stream-
ing use cases as well as to implement intelligent streaming
optimizations, as will be demonstrated in this subsection.

1) Tiled streaming: Previously discussed in sections I and
II, the huge resolution of omni-directional or panoramic video
requires specific optimization to deliver these sequences to a
wide range of users in optimal (visual) quality. A scalable
solution is found in tiled video transmission. The immersive
experience graph description and its ability to group together
chunks can be employed to substitute the typical manifest that
describes the spatial relationship of the different video tiles
making up the entire 360° or wide-angle-recorded scene (note
that this is different from the temporal relations described in
e.g. MPD descriptions or HLS manifests). Clients are able to
compose their personalized viewport, defined by combining
chunks in a logical group (see e.g. edge G1 in Figure 2a).

2) Multi-depth-layer streaming: A specific optimization
that can be identified within immersive video, which is also
tightly coupled to the immersive experience graph, is that
of multi-depth-layer transmission. Because (nearly) the en-
tire scene is captured, just like it would be with a fully
computer-generated representation, it becomes relevant to ex-
tract (pseudo-)depth information from the imagery. Such can
be achieved using 2D segmentation algorithms or through
Structure-From-Motion (SFM)-type techniques based on im-
age data only [2]. This is an enabler for several features, in-
cluding realistic augmentation of scenes with artificial content
and optimized streaming.

Regardless of the technique used, it should result in the
definition of a set of objects contained in the foreground,
along with the classification of the rest of the image as back-
ground (with possibly multiple layers in between, depending
on the accuracy of the segmentation/SFM algorithms). By
stacking multiple layers on top of each other, with regions
not belonging to the layer in question being rendered in a
transparent fashion, this optimization is effectively visually
hidden from the end-user. Priorities and/or quality levels
can then be assigned and taken into account by the client
software when requesting individual depth layers from the

Fig. 3: Screenshot of native Qt-based front-end

server. This maps perfectly onto the proposed pre-caching
and bandwidth adaptation strategies. The layering of different
chunks composing the scene can also be described using
the proposed immersive experience graph, through its chunk
grouping feature.

VI. THE FRAMEWORK
A. Platform independence

An important design goal for the streaming framework is
platform independence: the proposed system must be portable
to a multitude of platforms, devices and execution environ-
ments. To this end, the framework’s software architecture is
divided into a set of back- and front-end components. The
back-end entities encapsulate the majority of the functional
logic (scene handling, MPEG-DASH streaming, media quality
adaptation, bandwidth management, media pre-caching, ...).
Implementation-wise, the back-end is composed of a set
of JavaScript modules. This decision is motivated by the
near ubiquitous availability and increased performance of
JavaScript engines, which renders the back-end deployable
on the vast majority of modern platforms. The front-end, in
contrast, fulfills the role of extended media player and is hence
primarily responsible for performing media decoding, media
rendering and user interfacing. The communication between
back- and front-end is WebSocket-based.

Thus far, two distinct front-end implementations have been
realized: a native Qt application for desktop environments
(see Figure 3) as well as an HTML5-based implementation.
The latter recognizes the rapidly rising popularity of the Web
as content delivery and application platform. Both front-end
instantiations are functionally identical. Additional front-ends
could readily be developed (e.g. mobile apps for various
platforms), which demonstrates the flexibility of the approach.

B. Software architecture

Figure 4 depicts the software architecture of the proposed
framework. As can be seen, the bulk of the functionality
is embedded in the (reusable) JavaScript-powered back-end.
Marked in gray are those modules that are excluded from the
focus of the described research. Solutions for these modules’
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responsibilities can be found in the literature (on a conceptual
level) or even as off-the-shelf usable software components and
are therefore not elaborated on in this paper. The non-marked
modules on the other hand are integral to the system.

In general terms, the PlaybackLogic module acts as
coordinator of the back-end process. It 1) loads all avail-
able immersive experiences (e.g. the walking tour around
university grounds or the museum visit described before),
2) instructs the DownloadManager to fetch the ap-
propriate MPEG-DASH segments, 3) applies the quality
adaptation and pre-caching strategies as dictated by the
QoEManager, and 4) sends the resulting content via the
CommunicationManager to the front-end. More pre-
cisely, the QoEManager entity exploits heterogeneous con-
textual information (client device capabilities, end-user pref-
erences, application-specific requirements, ...) to customize
the client-side presentation of the immersive experience.
As such, it steers the operation of other modules like the
QualityAdaptationLogic and PrecachingLogic.
The BandwidthDistributionLogic module deter-
mines how the available bandwidth, as estimated by the
BandwidthEstimation component, must be divided
among the individual chunks that are involved in the current
immersive experience. Finally, the TimelineManager im-
plements fine-grained media playback management.

VII. VALIDATION

To validate the pre-fetching, quality adaptation and band-
width distribution assets of the streaming framework, the
developed prototype application has been experimentally eval-
uated by recording its bandwidth consumption behavior in a
total of six test cases, each implementing a divergent streaming
scenario. All test cases shared a single content set, which
encompassed multiple representation versions of each chunk
to enable MPEG-DASH-based quality adaptation, with Repl
being the lowest quality and Rep7 the highest. The playback
length of each individual chunk in the set varied around 50
seconds, with chunks being temporally divided into 2 second
segments. All test cases applied an identical dual mode pro-
cedure for primary chunk download scheduling: in the initial
fill mode, the objective was to fill the client-side buffer as
quickly as possible with a pre-defined amount of Repl media
segments (i.e. 10 seconds worth of media playback in our
experiments), while in the ensuing steady mode segments were
downloaded at the rate they were consumed (i.e. played back)

and in the quality that best fitted the prevailing bandwidth
conditions. The pre-fetching of future chunks always happened
in the lowest quality level Repl. In case primary and pre-
fetching data was being streamed simultaneously in any of
the experiments, these stream categories were assigned 65 and
35 percent of the downstream bandwidth budget, respectively.
Finally, a stream category’s bandwidth share was always
broken down linearly over the active streams in that category.

The resulting network charts are shown in Figure 5. Each
chart uses a stacked area representation to plot the bandwidth
consumed by the different chunks involved in the respective
experiment. In all diagrams, the downstream bandwidth ca-
pacity is marked using a solid red line. The horizontal and
vertical axes of the charts respectively plot the time (expressed
in seconds) and the bandwidth consumption (in bytes).

Figure 5a demonstrates the simplest test case, where at
the beginning of the streaming of the primary chunk the
options for the next chunk (in their lowest quality represen-
tation level) were downloaded concurrently with the primary
stream. This resulted in the primary stream being attributed
a relatively small percentage (i.e. 65 percent) of the total
amount of available bandwidth throughout the pre-caching
operation. During the primary stream’s steady schedule mode
(which commenced after 4 seconds), RepS segments were
downloaded while the pre-caching was ongoing, and Rep6
segments afterwards (as the primary stream from that point
on could claim the complete bandwidth capacity). Figure 5b
shows a similar result, but under the condition that the amount
of bandwidth was reduced over time (yielding a switch to a
decreased visual quality for the primary stream).

In contrast to the previous experiment, in Figure S5c, the
point in time at which the next chunks were pre-fetched was
postponed until the very last moment in time. In this strategy,
it was determined viable to implement the pre-fetching in
the timespan between the reception of the last segment of
the primary stream and that stream’s buffer depletion (which
in these examples amounted to 10 seconds). Clearly, this
strategy allows for an increased quality level at the start of
the primary stream. In practice, this implies that the user will
not be confronted with a gradually increasing visual quality
at the start of the primary stream. Similarly, Figure 5d applies
the same allocation logic, but considers a scenario where the
amount of available bandwidth was variable and increased
over time. The chart proves that the quality adaptation logic
adjusted the representation of the primary stream to optimally
make use of the extra bandwidth resources, and that the pre-
fetching phase consumed less time compared to Figure 5c.

Figure 5e demonstrates a longer scenario, where the same
logic was applied to a sequence of multiple chunks. It can be
observed that the green stream (which became the primary one
after the decision point) could immediately be downloaded in
the optimal representation, given that its playback buffer was
already filled in the previous pre-fetching stage with the lowest
quality representation. This behavior again resulted in the
avoidance of buffering hickups during playback and reduced
the number of visual representation upgrades.

Finally, Figure 5f represents a case where tiled streaming
is applied. In these conditions, the number of pre-fetch and
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Fig. 5: Experimental evaluation results with regard to bandwidth consumption

primary streams is multiplied by the number of tiles contained
in the current viewport (4 in this scenario). Still, the bandwidth
distribution and quality adaptation logic were able to respect
the imposed limits and optimally distributed resources over
the various streams.

VIII. CONCLUSIONS

In this paper, a streaming framework has been proposed to
optimize adaptive streaming of immersive media experiences.
It is designed to be platform independent and extensible with
respect to usage scenarios, and can integrate many advanced
streaming optimizations. A technology demonstrator has been
built, based on the framework, to validate the ideas.
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