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Abstract 

Little research has been done to evaluate the effect of adjusting for baseline in the analysis of 

repeated incomplete binary data through simulation study. In this article, covariate adjusted and 

unadjusted implementations of the following methods were compared in analyzing incomplete 

repeated binary data when the outcome at the study endpoint is of interest: logistic regression 

with the last observation carried forward (LOCF), generalized estimating equations (GEE), 

weighted GEE (WGEE), generalized linear mixed model (GLMM), and multiple imputation with 

analyses via GEE (MI).  Incomplete data mimicking several clinical trial scenarios were 

generated using missing completely at random (MCAR), missing at random (MAR), and missing 

not at random (MNAR) mechanisms.  Across the various analytic methods and scenarios 

covariate adjusted analyses generally yielded larger, less biased treatment effect estimates and 

larger standard errors compared with their unadjusted counterpart.  The net result of these factors 

was increased power from the covariate adjusted analyses without increasing type I error rates.  

Although all methods were biased in at least some of the MNAR scenarios, the type I error rates 

from LOCF exceeded 20% whereas the highest rate from any other method in any scenario was 

less than 10%.  LOCF also yielded biased results in MCAR and MAR data whereas the other 

methods were not biased or had smaller biases than LOCF.  These results support longitudinal 

modeling of repeated binary data over LOCF logistic regression of the study endpoint only.  

These results also support covariate adjustment for baseline severity in these longitudinal 

models.  

Key words:   GEE, GLMM, multiple imputation, weighted analysis 
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1. Introduction 

Binary outcomes derived from underlying continuous measures are commonly evaluated in 

randomized clinical trials to compare treatment effect.  For example, in diabetes clinical trials 

glycated haemoglobin (HbA1c) is a continuous measure that reflects average plasma glucose for 

several months (Sacks et al., 2002). It is commonly used as the primary efficacy outcome 

measure.  However, a clinically meaningful outcome is whether the endpoint HbA1c reaches the 

target of <7.0% (ADA, 2013).  Therefore, comparing the proportion of patients reaching HbA1c 

target of <7.0% between treatments based on a binary outcome is an important objective in 

diabetes trials.   

In longitudinal clinical trials patients are treated over a period of time and are evaluated at 

multiple time points.  Usually, the primary efficacy evaluation is based on the measurement at 

the last scheduled time point.  However, not all the patients complete the study. Some patients 

may withdraw before completing the study, and the measurement at the last scheduled time point 

will be missing.  Missing data occur commonly in longitudinal studies for various reasons, 

including lack of efficacy, safety, re-location, etc.  A historically common approach to handle 

missing data was to impute the missing observations with the last available observation of the 

patient, i.e., the last observation carried forward (LOCF) method.   However, LOCF requires 

restrictive assumptions that are unlikely to hold in practice, and this approach is generally not 

acceptable (NRC, 2010) 

Other analytic approaches for repeated binary data that do not require imputation include 

generalized estimating equations (GEE) (Liang and Zeger, 1986; Zeger and Liang, 1986).  Under 
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a missing completely at random mechanism (MCAR) (Rubin, 1976), GEE provides unbiased and 

consistent parameter estimates even when the working correlation matrix is mis-specified.  

However, under the missing at random mechanism (MAR) (Rubin, 1976) parameter estimates 

based on GEE can be biased.  A weighted generalized estimating equations approach (Robins et 

al. 1995; and Fitzmaurice et al. 1995) extends conventional GEE and provides consistent 

parameter estimates under MAR when the dropout model is correctly specified.  In this 

approach, an individual’s contribution is weighted by the inverse probability of dropout at the 

given time. 

Likelihood-based generalized linear mixed model (GLMM) analyses of the available cases have 

also been widely used for the analysis of repeated binary data, generally under the assumption of 

MAR although some approximations to direct-likelihood require the more stringent MCAR 

assumption (Wolfinger and O’Connell, 1993).   

Multiple imputation approaches (Rubin, 1987; Schafer, 1999; Shieh, 2003; Li et al., 2006; 

Carpenter and Kenward, 2013; and van Buuren, 2014) are commonly applied to continuous 

incomplete longitudinal data and can therefore be used to impute the continuous outcome from 

which the binary responses are derived without some of the restrictive assumptions that limit 

LOCF.  After imputation, the resulting complete data sets can be analyzed with either GEE or 

likelihood-based methods.   

Lipkovich et al. (2005) compared the performance of MI followed by GEE analysis with GLMM 

and GEE analyses of available cases in estimating treatment differences for binary outcomes 

derived from underlying continuous responses.  The MI-based approach performed better than 
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GEE and GLMM in terms of precision, power, and type I error rate under MAR.  However, 

under the missing not at random (MNAR) mechanism, all three methods yielded biased results.  

Liu and Zhan (2011) also conducted simulations to compare GLMM, GEE, and several MI 

approaches for the analysis of repeated binary responses with missing data in evaluating the 

treatment effect at study endpoint.  Results indicated that GLMM performed better than GEE and 

MI approaches in terms of controlling type I error rate under MAR. 

In many clinical settings the baseline severity is linked to the probability of achieving a target 

level of symptom severity.  For example, in diabetes baseline HbA1c levels influence whether 

the patient can achieve the HbA1c target of <7.0%.  Therefore, adjusting for baseline severity 

may improve analytic performance in these situations.  However, little research has been done to 

evaluate the effect of adjusting for initial disease severity in the analysis of repeated binary data 

with missing values.  The present research evaluates the performance of the covariate adjusted 

and unadjusted analyses of repeated binary outcomes in terms of type I error rate, power, 

precision, and bias across several common statistical approaches.  Focus is on evaluating the 

treatment effect at the study endpoint. We note that by the treatment effect we aim at the 

“efficacy estimand” that is the treatment effect, assuming had all patients who discontinued the 

trial would have completed the study while complying with the protocol. 

2. Statistical Methods 

For the analysis of the single outcome at study endpoint without repeated measures, logistic 

regression with LOCF was used.  For repeated binary outcome analyses GEE, WGEE, GLMM, 
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and MI approaches were used, and the study endpoint contrast was derived from the repeated 

measures analysis.  Details of each analysis are described below. 

Logistic regression: 

For the analysis of a single binary outcome at study endpoint, let Yi=1 represent that the ith 

patient achieved the HbA1c target of <7.0% at the study endpoint, and Yi=0 otherwise.  Let β be 

a vector of regression coefficients; Xi be a vector of covariates such as treatment indicator and 

baseline HbA1c; and pi = pr(Yi=1| Xi, β)=E (Yi | Xi, β).  Then the logistic regression model can be 

expressed as: 

                                              logit (pi )= log (
  

    
) =    

  β                                         (1) 

With LOCF there is no missing data and the key assumption is that patients’ observations would 

not have changed had they stayed in the trial.  Logistic regression was implemented in the 

present study using SAS PROC GENMOD (SAS, 2008). 

Generalized Estimating Equations (GEE) 

For the analysis of a repeated binary outcome, let Yit=1 represent that the ith patient achieved 

HbA1c target of <7.0% at time t, and Yit =0 otherwise; Xit be the vector of covariates for the ith 

patient at time t; let Yi =                   
 ,  Xi= (Xi1 , Xi2 ,…, XiT ), and T be the number of 

scheduled study visits at which the data are collected. Let  β be the vector of regression 

coefficients;  and pi (β)= pr(Yi=1| Xi, β)=E (Yi | Xi, β). Then, the GEE proposed by Liang and 

Zeger (1986) and Zeger and Liang (1986) takes the form 

                                              U(β  ∑   
 

 
     

  (        )                                      (2) 
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where              and    is a “working” covariance matrix. SAS PROC GENMOD (SAS, 

2008) was used to implement GEE in the present study.   The key missing data assumption for 

GEE is that the missing data arise from a MCAR mechanism (Molenberghs and Kenward, 2007).  

 

Weighted Generalized Estimating Equations (WGEE) 

The WGEE method proposed by Robins et al. (1995) and Fitzmaurice et al. (1995) is less 

restrictive than standard GEE in that the key missing data assumption is that the missing data 

arise from an MAR mechanism - given that the probabilities of dropout for each subject are 

correctly specified (Molenberghs and Kenward, 2007). Fitzmaurice et al. (1995) provided a 

formulation of the WGEE method based on the article by Robins et al. (1995). Under this 

approach, equation (2) is modified as: 

                               U(β  ∑
 

  
  

 

 
     

  (        )                                                       (3) 

where    is the estimated probability of ith patient following the dropout pattern that was 

observed for that patients. That is, for a patient who discontinued at visit d,    is the probability 

of patient’s remaining in the study through visit (d-1) and discontinuing at visit d; for a patient 

who had completed the trial,    is the probability of that patient remaining in the study through 

the last scheduled visit. Therefore an individual’s contribution in estimating equation is weighted 

by the inverse probability of observing patient’s discontinuation pattern.   In the present study 

WGEE was implemented using PROC GENMOD (SAS, 2008) to estimate the dropout 

probabilities and incorporate the weightings and conduct analysis. 
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Generalized Linear Mixed Model (GLMM) 

The GLMM extends the generalized linear model by incorporating normally distributed random 

parameters for individual subjects (Breslow and Clayton, 1993) under the assumption of MAR. 

The fixed-effect inference is conditional on random parameters and has a subject-specific 

interpretation.  The form of GLMM based on the logit link function to fit the response 

probability, pit, at time point t is as 

                                 logit (pit )=     
  β +     

                                                                           (4) 

where β is the vector of the fixed-effect parameters,    is the vector of random subject 

parameters and           , and     and     and the vectors of known covariates.  In the present 

study, GLMM was implemented using PROC GLIMMIX in SAS (SAS, 2008). 

Multiple Imputation (MI): 

MI is an extension of single imputation where the missing data are imputed several times, say m 

times. Then each of the m complete data sets is analyzed with standard methods, and the results 

of the m analyses are combined according to Rubin’s rule [Rubin, 1987].  MI usually assumes an 

MAR mechanism. The following process was implemented for the multiple imputation method. 

 1. Bayesian regression, which included earlier values as predictors, was used to impute 

the missing data with a separate predictive distribution for each treatment group [Rubin, 1987].  

The missing continuous HbA1c values were imputed first with the SAS MI procedure (SAS, 

2008).  Next, the continuous outcomes were dichotomized into binary response data according to 

whether they were <7.0% or not.  We generated m=30 complete data sets. 
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 2. The GEE model as previously described was used to analyze each of the 30 imputed 

complete data sets for the repeated binary response, and 30 sets of parameter estimates were 

obtained. 

 3. The 30 estimates and associated standard errors were combined into the final estimates 

with SAS PROC MIANALYZE (SAS, 2008) according to Rubin’s rule. 

3. Simulation 

3.1 Simulation setting 

The continuous HbA1c values (%) at each visit were simulated based on a multivariate normal 

distribution with mean profiles (Table 1) and variance-covariance matrix with elements σi,j=ρ σi 

σj, where ρ was the correlation between the repeated outcomes. The binary outcome was 

constructed based on whether the HbA1c value was <7.0% or not.  Data were simulated based on 

inputs obtained from actual diabetes clinical trials.  A compound-symmetry correlation matrix 

was used, with and the variance (σi
2
) increasing over time from visit 1 (at baseline) to 

visit 4 (1.0, 1.0, 1.2, 1.4).  The sample size of 50 and 200 per treatment group were used to 

mimic phase 2 and phase 3 trial settings, respectively.   

Incomplete data sets were then generated from the complete data sets using 3 rates of missing 

data and 3 missing data mechanisms.  Rates of missing data were either 45% in both treatments 

groups or 25% in one treatment group and 45%  in the other.  Missingness mechanisms were 

either MCAR, MAR, or MNAR.  In MCAR the outcomes did not differ for patients that 

completed compared with those who dropped out.  In MAR the probability of a value (  ) being 

missing depended on the observed value at the previous visit (    ), expressed as logit (p (   
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missing |     )=         .  The value   =1.5 was used in the dropout model, and the value   

was chosen for each treatment group to achieve the desired rates of missing data.  In MNAR the 

probability of a value (  ) being missing depended on the value itself (  ), expressed as 

logit (p (   missing |   )=       .  The value   =0.4 was used in the dropout model, and the 

value   was chosen for each treatment group to achieve the desired rates of missing data.  For 

simplicity, only monotone missingness was considered.  For each scenario 2000 data sets were 

simulated. 

The performance of different analysis methods was evaluated based on bias ( ̂ -    in scenarios 

when there was no difference between treatments at endpoint, relative bias (
 ̂    

  
 100) in 

scenarios where treatments did differ at endpoint.  Methods were also compared based on 95% 

confidence interval (CI) coverage (using normal theory approximation), standard errors (SE) 

(average of  SEs from the 2000 simulations), and type I error rate for scenarios with no 

difference between treatments and power for scenarios where treatments differed.  ̂ is the 

estimate of log odds ratio for unadjusted or adjusted analysis.    is the “true” log odds ratio for 

the unadjusted or adjusted analysis which is based on estimates from the values obtained by 

averaging results from the corresponding complete data sets.   

3.2. Simulation Results 

Tables 2 and 3 show the simulation results for different methods:  covariate adjusted/ unadjusted 

logistic regression (Adj.logit/Unadj.logit) with LOCF method, covariate adjusted/unadjusted 

generalized estimating equations (Adj.GEE/Unadj.GEE), covariate adjusted/unadjusted weighted 
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generalized estimating equations (Adj.WGEE/Unadj.WGEE),  covariate adjusted/unadjusted 

generalized linear mixed model (Adj.GLMM/Unadj.GLMM), and covariate adjusted/unadjusted 

generalized estimating equations on the basis of multiple imputation  (Adj.MI/ Unadj.MI).  

Under MCAR, LOCF appreciably inflated type I error when rates of missing data differed 

between treatments.  All analyses yielded the anticipated nominal type I error rate when rates of 

missing data were equal for the two treatments. MI analyses yielded the lowest type I error rate 

(<3%).  

All analyses yielded relatively unbiased estimates with the absolute bias <0.06 for the no 

treatment effect case, and relative bias ≤16% for the strong treatment effect case, except for 

LOCF. LOCF had biases 7-18 times greater than other methods for the no treatment effect case 

with unequal missing proportions and relative bias up to 35% for the strong treatment effect case.  

All analyses produced CIs with coverage close to their nominal level except for LOCF analysis 

which was associated with coverage lower than the nominal level, with the MI analysis 

exceeding the nominal level.  For the strong treatment effect case, adjusted analyses yielded 

greater, less biased treatment effect estimates but also larger SEs compared to the unadjusted 

analyses, resulting in increased power with the large sample size.  However, slightly lower 

power of the adjusted analyses was observed with the small sample size. 

Under MAR,  Unadj.GEE, Unadj.GLMM, WGEE, and LOCF methods inflated type I error with 

unequal missing data rates.  All analyses preserved type I error rate with the equal missing 

proportion case .  MI analyses had the lowest type I error rate, <4%.  All analyses yielded 

relatively unbiased estimates with the absolute bias ≤0.07 for the no treatment effect case, except 
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for LOCF, Unadj.GLMM and WGEE.  However, for the strong treatment effect case LOCF, 

GLMM, and WGEE yielded significantly biased estimates with relative bias up to 66.1%.  In 

general, adjusted analyses had less bias than their unadjusted counterparts. All analyses produced 

CIs with coverage close to the nominal level except for LOCF, Unadj.GLMM, and WGEE, 

which yielded coverage lower than the nominal level, while MI analysis exceeded their nominal 

level.  For the strong treatment effect case, adjusted analyses yielded greater, less biased 

treatment effect estimates and SEs compared to the unadjusted analyses, but resulted in increased 

power in general.  

Under MNAR,  all analyses inflated type I error rate except for MI and WGEE.  For the strong 

treatment effect case with equal missing data rates all analyses except for LOCF and 

Unadj.GLMM produced relatively unbiased estimates (relative bias <=11.7%). However, for the 

strong treatment effect case with unequal missing data rates all analyses except for WGEE 

yielded significantly biased estimates with relative bias up to 37.9%. 

5. Clinical Trial Examples 

The methods tested in the simulation study were also applied to data from five diabetes clinical 

trials in which an active drug (treatment) was compared with different comparators over 52 

weeks. The missing data proportions for the treatment and comparators were 15.1%, 23.9%; 

12.8%, 12.2%; 22.7%, 26.9%; 23.4%, 20.3%; and 19.4%, 20.0% for study 1 to 5, respectively. 

The proportions of patients who achieved HbA1c target of <7.0% at the final visit for the 

treatment and comparators were 73%, 55%; 54%, 31%; 64%, 53%; 61%, 48%; and 64%, 38% 

for study 1 to 5, respectively. The analyses were conducted on proportion of patients whose 52-
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week endpoint HbA1c was <7.0%.  The LOCF analyses were implemented using logistic models 

with a factor for treatment only (Unadj.Logit) and with baseline HbA1c (Adj.Logit).  The models 

for the GEE, WGEE, GLMM, and MI analyses included treatment, visit, and treatment-by-visit 

interaction, with or without baseline HbA1c, and baseline HbA1c-by-visit interaction. An 

unstructured covariance matrix or working correlation matrix was used except for WGEE where 

an independent working correlation matrix was used which was considered as a best fit 

(Fitzmaurice et al. 1995).  Results are displayed in Table 4 and Figure 1.  As in the simulated 

data, covariate adjusted methods yielded larger treatment effects compared to their unadjusted 

counterparts; and standard errors were larger and p values smaller from adjusted analyses for all  

studies except for study 4, where adjusted and unadjusted methods yielded comparable effects 

and standard errors.  The possible reason is that that the treatment group had a slightly lower 

mean baseline HbA1c value compared to the comparator group in study 4, while the baseline 

HbA1c was slightly higher in the treatment group or close to the comparator in other studies. The 

differences (treatment-comparator) in baseline HbA1c were -0.02%, 0.07%, 0.04%, -0.04%, and 

0.12% for study 1 to 5, respectively. 

6. Summary and Discussion 

In longitudinal clinical trials it is often reasonable to assume missing data arise from an MAR 

mechanism (Verbeke and Molenberghs, 2000; NRC, 2010).   Dichotomized continuous 

outcomes or other binary measures are often of interest.  Therefore, appropriate modeling of 

incomplete longitudinal binary clinical trial data is important.  
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Longitudinal binary data analyses with incomplete measures have been studied extensively in the 

literature (Albert, 1999; Cnaan et al. 1997; Fitzmaurice et al. 1994). However, little research has 

been done to evaluate the effect of adjusting for baseline in the analysis of repeated incomplete 

binary data through simulation study. Simulations were conducted over a variety of scenarios in 

this article to examine how including or not including baseline severity as a covariate influenced 

results across several methods for analyzing incomplete longitudinal binary responses.  The 

covariate adjusted analyses generally yielded larger, less biased treatment effect estimates and 

larger standard errors compared with their unadjusted counterpart.  The net result of these factors 

was increased power from the adjusted analyses without increasing type I error rate.  Results 

from five phase 3 diabetes trials were consistent with the simulation findings.   

In regards to how the various methods handled missing data, with MNAR data all methods 

except for WGEE yielded biased results in at least some scenarios and all methods except MI 

and WGEE inflated type I error rates in some scenarios.  With MCAR data LOCF yielded biased 

results, inflated type I error rates and had poor CI coverage, whereas results from other methods 

were not biased.  With MAR data, LOCF again yielded biased results. GLMM also yielded 

biased results.  MI yielded unbiased results, as expected, because it assumes MAR.  Results from 

GEE were relatively unbiased.  Counter to expectation, results from WGEE were biased in the 

MAR scenarios where dropout rates differed but were not biased when dropout rates were equal.   

Recall the description in section 3.1 of the dropout mechanisms applied to delete data. 

In MAR the probability a value (  ) being missing depended on the observed value at the 

previous visit (    ), expressed as logit (p (   missing |     )=         .  The value   

=1.5 was used in the dropout model and the value   was chosen for each treatment 

group to achieve the desired rates of missing data. 
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Thus, when the dropout rate was equal in the two treatments they shared a common intercept (  , 

but when dropout rates differed the intercepts differed.  That is, there were separate dropout 

models for each treatment.  However, in the WGEE analyses a single model was used to estimate 

the weights for both treatment groups.  Therefore, in scenarios where the dropout rates differed, 

the model used to estimate the weights was not the same as the model used to generate the 

missing data.  In addition, for MAR logit (p (   missing |     )=         .   

However, the weights were estimated using logit (p (   missing |     )=       . 

The issue of having the same or separate models by treatment group applies to the imputation 

model in MI.  In the present study MI was implemented with separate imputation models for 

each treatment, thereby accommodating different dropout models for each treatment in the 

scenarios where dropout rates differed.  

These results illustrate the potential importance of modeling considerations in the handling of 

missing data.  For methods that explicitly impute missing values or model dropout, it may be 

useful to consider separate models for each treatment or for groups of treatments (e.g., all doses 

of a drug in one group, placebo in the other), especially when rates, timing, and/or reasons for 

dropout differ.  

Although these modeling considerations are important, they should not be taken as motivation to 

return to the use of ad hoc methods.  For example, in the MAR scenarios where WGEE yielded 

type I error rates of 6.1% – 6.9%, the corresponding rates from LOCF were 20.6% - 23.5%. 
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In this article, we only allowed missingness to depend on outcomes prior to (MAR) or at the 

current visit (MNAR) and monotone missingness. Evaluation of model performance under the 

scenarios where missingness depends on baseline covariates, and/or with non-monotone 

missingness is a future research topic. 

The present investigation focused on only one of the many modeling considerations, fitting a 

single covariate that describes baseline severity.  Results support including baseline severity as a 

covariate in analyses of incomplete longitudinal binary outcomes.    
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Appendix 

Examples of SAS code 

************************************************************************** 

Adjusted and Unadjusted GEE models 

**************************************************************************; 

proc genmod data= simu_data; 

class subjid  visit trt ; 

model target_a1c=   trt  <baselinehba1c> visit visit*trt <baselinehba1c*visit> /dist=bin ; 

repeated subject=subjid/type=un; 

lsmeans visit*trt /diff; 

run; 

 

************************************************************************** 

Adjusted and Unadjusted GLMM models 

**************************************************************************; 

proc glimmix data= simu_data empirical ;  

nloptions maxiter=100 tech=NRRIDG;  

class subjid visit trt; 

model target_a1c = trt  < baselinehba1c > visit visit*trt <baselinehba1c*visit>/dist=bin ; 

random int / subject=subjid; 

lsmeans visit*trt/diff; 
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run;  

 

************************************************************************** 

Adjusted and Unadjusted MI  

**************************************************************************; 

 

proc mi data=one seed=1305417 nimpute=30 out=outone; 

by trt; 

var baselinea1c v1 v2 v3; 

monotone reg(v2= baselinea1c v1);  

monotone reg(v3= baselinea1c v1 v2 ); 

run; 

 

ods output diffs=MIdiffs (where= (visit in (3) and _visit in (3))rename=(  

stderr=MIse estimate=MIest)); 

proc genmod data=outone descending; 

class subjid   visit trt;by _imputation_;  

model target_a1c= <baselinea1c> trt  visit <baselinea1c*visit> visit*trt/dist=bin ; 

repeated subject=subjid/type=un; 

lsmeans visit*trt/pdiff; 

 

proc mianalyze data=MIdiffs; 
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modeleffects Miest; 

stderr mise; 

run; 

 

************************************************************************** 

Adjusted and Unadjusted WGEE models 

**************************************************************************; 

%MACRO WGEE( 

        INPUTDS =, 

        VISVAR  =, 

        STRVIS  =, 

        ENDVIS  =, 

        TRTVAR  =, 

        SUBJVAR =, 

        Y       =, 

        CLASVAR =, 

        DMODL   =, 

        DCOVTYPE=, 

        MCOVTYPE=, 

        TRIM    =); 

 

PROC SORT DATA=&INPUTDS OUT=ONE1; 
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  BY &SUBJVAR &VISVAR; 

  WHERE &STRVIS<=&VISVAR<=&ENDVIS; 

RUN; 

 

DATA _LASTVIS; 

  SET ONE1; 

  BY &SUBJVAR &VISVAR; 

  IF LAST.&SUBJVAR; 

  LASTVIS=&VISVAR; 

  KEEP &SUBJVAR LASTVIS; 

RUN; 

 

DATA TWO1; 

  MERGE ONE1 _LASTVIS; 

  BY &SUBJVAR; 

  IF &VISVAR<LASTVIS THEN DROP=0; 

  IF &VISVAR=LASTVIS AND LASTVIS<&ENDVIS THEN DROP=1; 

  IF &VISVAR=LASTVIS AND LASTVIS=&ENDVIS THEN DROP=0; 

RUN; 

 

%*************************************************************************; 

%*Visitwise logistic regression analysis of dropout to determine weights *; 
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%*************************************************************************; 

proc sort data=TWO1; by &TRTVAR &SUBJVAR; run; 

ODS LISTING CLOSE; 

 PROC GENMOD DATA=TWO1 DESCENDING; 

   CLASS &CLASVAR; 

   MODEL DROP=&DMODL/DIST=BIN PRED TYPE3; 

  

   REPEATED SUBJECT=&SUBJVAR/WITHINSUBJECT=&VISVAR TYPE=&DCOVTYPE 

            CORRW ECOVB ECORRB MCOVB MCORRB MODELSE; 

  

   ODS OUTPUT OBSTATS=_PRED GEEEMPPEST=EMPEST GEEMODPEST=MODEST 

              GEENCORR=MODCORR GEENCOV=MODCOV GEEWCORR=WORKING 

              GEERCORR=EMPCORR GEERCOV=EMPCOV  

              TYPE3=TYPE3; 

RUN; 

 

ODS LISTING; 

 

%************************************************; 

%* Merge probability of dropout with main data  *; 

%************************************************; 
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DATA _PRED2; 

  SET _PRED; 

  RENAME DROP=PDROP; 

RUN; 

 

DATA THREE1; 

  MERGE TWO1 _PRED2; 

  IF PRED NE . ; 

RUN; 

 

%****************************************************************************

***; 

%* Accumulate inverse probability weights over visits and output new data set  *; 

%****************************************************************************

***; 

proc sort data=THREE1; by &SUBJVAR; run; 

DATA _WGT (KEEP=&SUBJVAR WI); 

  SET THREE1; 

  BY &SUBJVAR; 

  RETAIN WI; 

  IF FIRST.&SUBJVAR THEN WI=1; 

  IF NOT LAST.&SUBJVAR THEN WI=WI*(1-PRED); 
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  IF LAST.&SUBJVAR THEN DO; 

    IF &VISVAR<&ENDVIS THEN WI=WI*PRED; 

        ELSE WI=WI*(1-PRED); 

        WI=1/WI; 

        OUTPUT; 

  END; 

RUN; 

 

%*************************************************; 

%* Add inverse probability weight to data set and*; 

%* trim weight to eliminate unstable weights     *; 

%*************************************************; 

DATA FOUR; 

  MERGE THREE1 _WGT; 

  WI_TR=MIN(WI, &TRIM); 

  BY &SUBJVAR; 

RUN; 

 

PROC GENMOD DATA=FOUR DESCENDING; 

   SCWGT WI; 

   CLASS &CLASVAR; 

   MODEL &Y =<baselinea1c> VISIT trt <baselinea1c*visit> VISIT*trt/DIST=bin  TYPE3; 
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   REPEATED SUBJECT=&SUBJVAR/ TYPE=&MCOVTYPE CORRW; 

   LSMEANS &TRTVAR*&VISVAR/CL DIFF ILINK; 

    

RUN; 

 

 

%MEND WGEE; 

%WGEE( 

  INPUTDS   =dataset, 

  VISVAR    =VISIT, 

  STRVIS    =1, 

  ENDVIS    =3, 

  TRTVAR    =trt, 

  SUBJVAR   =subjid, 

  Y         =target_a1c, 

  CLASVAR   =subjid VISIT trt, 

  DMODL     =baselinea1c a1c trt baselinea1c*trt a1c*trt, 

  DCOVTYPE  =ind, 

  MCOVTYPE  =ind, 

  TRIM      =20); 
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Figure 1.  Log odds ratio and 95% CI by study and method  
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Table 1. Mean treatment profiles in simulation model 

Hypothesis  visit1 HbA1c 

(%) (% 

achieved 

target)* 

visit2  HbA1c 

(%)(%  

achieved 

target) 

visit3  HbA1c 

(%)(%  

achieved 

target) 

visit4  HbA1c 

(%)(%  

achieved 

target) 

No treatment 

effect 

Treatment 

8.5 (0%) 7.6 (27%) 7.3 (39%) 7.0 (50%) 

 Comparator 8.5 (0%) 7.6 (27%) 7.3 (39%) 7.0 (50%) 

Strong 

treatment 

effect 

Treatment 

             8.5 

(0%) 7.6 (27%) 7.3 (39%) 7.0 (50%) 

 Comparator 

8.5 (0%) 7.8 (21%) 7.6 (29%) 

           7.4 

(37%) 

* HbA1c (%) is a continuous variable from which a binary response of whether the patient 

achieved the target HbA1c of 7.0% is derived. We let all baseline (visit 1) HbA1c values be 

>7.0% because this usually is one of the inclusion criteria in diabetes trials. 
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Table 2: Summary of analysis results from 2000 simulations with no treatment effect 

   (45%, 45%)* (25%, 45%)* 

 N  Bias SE Cov (%)  Type I error rate (% ) Bias SE Cov (%)  Type I error rate (% ) 

MCAR 50 Unadj.logit 0.01 0.41 95 5.1 0.15 0.41 92 7.9 

  Adj.logit 0.00 0.45 95 4.9 0.18 0.45 93 7.2 

  Unadj.GEE 0.01 0.53 95 5.2 0.02 0.50 95 5.4 

  Adj.GEE 0.01 0.62 95 5.2 0.03 0.57 95 4.8 

  Unadj.GLMM 0.01 0.60 95 5.1 0.02 0.56 95 4.9 

  Adj.GLMM 0.01 0.65 95 4.6 0.03 0.60 95 4.8 

  Unadj.MI 0.00 0.50 98 2.1 0.00 0.48 97 3.2 

  Adj.MI -0.02 0.57 98 1.9 0.01 0.54 97 2.6 

  Unadj.WGEE 0.01 0.57 97 3.2 0.05 0.52 96 3.9 

  Adj.WGEE 0.00 0.63 96 4.0 0.06 0.58 96 4.1 

 200 Unadj.logit 0.01 0.20 95 5.1 0.15 0.20 89 11.0 

  Adj.logit 0.01 0.22 95 5.1 0.17 0.22 88 11.9 

  Unadj.GEE 0.01 0.26 96 4.4 0.01 0.25 95 5.1 

  Adj.GEE 0.01 0.30 95 4.8 0.01 0.27 94 5.7 

  Unadj.GLMM 0.01 0.29 96 4.5 0.01 0.27 95 5.0 

  Adj.GLMM 0.01 0.31 95 5.0 0.01 0.29 94 5.7 

  Unadj.MI 0.00 0.25 98 2.0 0.02 0.24 97 3.3 

  Adj.MI 0.01 0.28 98 2.1 0.02 0.26 97 3.5 

  Unadj.WGEE 0.01 0.27 97 2.7 0.04 0.25 96 4.2 

  Adj.WGEE 0.01 0.30 97 3.4 0.05 0.28 95 5.2 

MAR 50 Unadj.logit 0.01 0.42 95 5.2 0.24 0.41 90 10.1 

  Adj.logit 0.00 0.46 94 5.5 0.28 0.46 90 10.5 

  Unadj.GEE 0.02 0.51 94 5.7 -0.04 0.48 94 6.1 

  Adj.GEE 0.01 0.58 95 5.3 -0.03 0.55 95 5.2 

  Unadj.GLMM 0.02 0.58 95 4.9 -0.11 0.55 94 5.6 

  Adj.GLMM 0.01 0.62 95 4.4 -0.07 0.58 95 4.7 
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  Unadj.MI 0.00 0.51 97 3.0 -0.01 0.48 97 3.2 

  Adj.MI -0.01 0.58 97 2.6 -0.02 0.55 97 2.5 

  Unadj.WGEE 0.03 0.66 94 5.5 0.13 0.59 95 5.5 

  Adj.WGEE 0.03 0.67 94 5.6 0.13 0.61 94 6.3 

 200 Unadj.logit 0.01 0.21 95 5.1 0.23 0.20 79 20.6 

  Adj.logit 0.01 0.23 94 6.0 0.28 0.23 77 23.5 

  Unadj.GEE 0.01 0.25 94 6.0 -0.05 0.24 94 6.1 

  Adj.GEE 0.01 0.28 94 5.7 -0.03 0.27 94 5.9 

  Unadj.GLMM 0.01 0.28 94 5.6 -0.11 0.27 93 7.3 

  Adj.GLMM 0.01 0.29 94 5.7 -0.07 0.28 94 5.9 

  Unadj.MI 0.01 0.25 96 3.8 0.02 0.24 96 3.7 

  Adj.MI 0.01 0.28 96 3.7 0.02 0.26 97 3.4 

  Unadj.WGEE 0.00 0.38 96 3.8 0.19 0.33 94 6.1 

  Adj.WGEE 0.00 0.35 96 4.4 0.17 0.31 93 6.9 

MNAR 50 Unadj.logit 0.00 0.41 95 5.1 0.13 0.41 93 6.5 

  Adj.logit 0.00 0.45 96 4.2 0.16 0.45 94 6.0 

  Unadj.GEE 0.02 0.53 95 5.2 -0.10 0.49 94 6.2 

  Adj.GEE 0.02 0.61 95 5.3 -0.10 0.56 93 6.5 

  Unadj.GLMM 0.02 0.59 95 4.6 -0.14 0.55 94 6.2 

  Adj.GLMM 0.02 0.64 95 4.5 -0.12 0.59 93 6.3 

  Unadj.MI -0.01 0.50 98 2.4 -0.08 0.47 96 3.4 

  Adj.MI -0.02 0.57 98 2.1 -0.10 0.53 97 3.2 

  Unadj.WGEE 0.02 0.57 97 3.3 -0.01 0.52 97 3.3 

  Adj.WGEE 0.01 0.63 96 4.4 -0.04 0.57 96 4.3 

 200 Unadj.logit 0.00 0.20 94 5.8 0.13 0.20 90 10.3 

  Adj.logit 0.00 0.22 95 5.2 0.15 0.22 89 11.3 

  Unadj.GEE 0.01 0.26 94 6.0 -0.10 0.24 92 7.8 

  Adj.GEE 0.01 0.29 94 5.6 -0.10 0.27 92 8.4 

  Unadj.GLMM 0.01 0.29 94 5.7 -0.13 0.27 91 8.6 

  Adj.GLMM 0.01 0.30 95 5.3 -0.11 0.28 92 8.4 

  Unadj.MI 0.01 0.25 97 2.8 -0.06 0.23 96 4.2 

D
ow

nl
oa

de
d 

by
 [

G
ee

rt
 M

ol
en

be
rg

hs
] 

at
 0

0:
59

 1
0 

Ju
ly

 2
01

5 



ACCEPTED MANUSCRIPT 
 

ACCEPTED MANUSCRIPT 
 

31 

  Adj.MI 0.00 0.28 98 2.5 -0.07 0.26 96 3.8 

  Unadj.WGEE 0.01 0.28 97 3.5 -0.01 0.25 96 4.0 

  Adj.WGEE 0.01 0.30 96 4.2 -0.03 0.27 95 4.7 

* Percentage of missing data for comparator and treatment, respectively; Cov: coverage of 95% CI;  Est: - log odds ratio; 

Boldface font indicates that the type I error rate is beyond 2 SEs of simulations.
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Table 3: Summary of analysis results from 2000 simulations with strong treatment effect 

   (45%, 45%)* (25%, 45%)* (45%, 25%)* 

 N  Est 

RelBias 

(%) SE 

Cov 

(%)  

Power 

(%)  

Est 

RelBias 

(%) SE 

Cov 

(%)  

Power 

(%)  

Est Rel 

Bias 

(%) SE 

Cov 

(%)  

Power 

(%)  

MCAR 50 Unadj.logit -0.48 -10.3 0.42 95 19.7 -0.36 -31.7 0.42 94 14.8 -0.63 18.5 0.42 95 30.3 

  Adj.logit -0.56 -11.7 0.47 94 22.4 -0.43 -32.8 0.46 92 15.5 -0.75 17.0 0.47 95 35.0 

  Unadj.GEE -0.55 3.6 0.55 95 17.1 -0.55 4.7 0.51 95 19.5 -0.56 6.6 0.51 96 19.4 

  Adj.GEE -0.68 6.0 0.63 95 18.0 -0.68 5.9 0.59 95 21.4 -0.69 7.0 0.59 95 20.3 

  Unadj.GLMM -0.60 13.0 0.61 95 16.1 -0.61 16.0 0.57 95 18.8 -0.61 15.1 0.57 95 17.9 

  Adj.GLMM -0.71 11.2 0.66 95 17.5 -0.71 11.3 0.61 95 20.6 -0.71 11.4 0.62 95 19.2 

  Unadj.MI -0.54 2.7 0.51 98 14.2 -0.55 4.0 0.49 97 17.6 -0.56 5.5 0.49 97 16.0 

  Adj.MI -0.65 2.1 0.59 98 14.1 -0.66 3.3 0.56 98 17.5 -0.67 4.6 0.56 97 16.5 

  Unadj.WGEE -0.53 -0.3 0.58 97 12.5 -0.51 -4.4 0.53 96 14.8 -0.57 7.2 0.54 97 16.4 

  Adj.WGEE -0.66 2.8 0.65 96 14.5 -0.63 -2.2 0.60 96 17.4 -0.69 8.6 0.60 96 19.0 

 200 Unadj.logit -0.47 -11.7 0.21 95 62.3 -0.35 -33.1 0.21 85 39.8 -0.60 12.8 0.21 94 82.1 

  Adj.logit -0.55 -14.5 0.23 94 67.9 -0.42 -35.1 0.23 82 44.5 -0.71 10.7 0.23 95 89.4 

  Unadj.GEE -0.55 2.9 0.27 95 53.5 -0.54 2.8 0.25 94 58.6 -0.53 0.2 0.25 95 55.3 

  Adj.GEE -0.65 1.2 0.30 95 57.5 -0.65 1.2 0.28 94 62.7 -0.64 -0.7 0.28 95 63.0 

  Unadj.GLMM -0.59 11.7 0.30 95 51.5 -0.60 12.8 0.28 93 58.4 -0.58 8.9 0.28 95 53.9 

  Adj.GLMM -0.67 4.9 0.31 94 57.5 -0.67 5.3 0.29 94 62.7 -0.66 3.1 0.29 96 62.2 

  Unadj.MI -0.54 2.3 0.25 97 58.9 -0.53 -0.7 0.24 97 60.8 -0.54 1.6 0.24 97 62.5 

  Adj.MI -0.64 0.4 0.29 97 62.2 -0.62 -2.4 0.27 97 65.2 -0.64 0.5 0.27 97 69.4 

  Unadj.WGEE -0.52 -1.3 0.28 97 47.2 -0.50 -6.1 0.26 96 49.6 -0.54 2.7 0.26 96 55.4 

  Adj.WGEE -0.62 -2.4 0.31 96 53.5 -0.59 -7.1 0.29 95 55.0 -0.65 1.9 0.29 96 64.0 

MAR 50 Unadj.logit -0.38 -28.2 0.44 94 12.4 -0.19 -63.7 0.43 88 7.6 -0.70 31.7 0.43 94 35.5 

  Adj.logit -0.47 -26.5 0.49 94 15.8 -0.24 -62.6 0.48 85 7.6 -0.85 33.4 0.48 93 41.4 

  Unadj.GEE -0.54 2.6 0.54 94 17.0 -0.61 14.3 0.51 94 22.5 -0.49 -8.0 0.50 95 14.9 

  Adj.GEE -0.66 2.8 0.61 95 18.6 -0.72 12.2 0.57 94 23.3 -0.62 -3.9 0.57 95 17.7 

  Unadj.GLMM -0.63 18.2 0.60 95 16.9 -0.76 43.2 0.57 94 25.1 -0.47 -12.2 0.55 95 12.5 

  Adj.GLMM -0.71 10.8 0.64 95 19.1 -0.80 25.4 0.61 95 24.5 -0.61 -4.5 0.59 95 16.9 
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  Unadj.MI -0.54 1.5 0.53 97 13.2 -0.58 9.2 0.51 97 17.0 -0.52 -2.0 0.49 97 15.7 

  Adj.MI -0.65 1.0 0.61 97 13.4 -0.69 8.5 0.58 97 19.0 -0.63 -1.6 0.56 97 16.9 

  Unadj.WGEE -0.51 -3.0 0.69 94 11.9 -0.41 -23.3 0.62 94 10.9 -0.70 32.3 0.59 95 20.1 

  Adj.WGEE -0.63 -0.8 0.70 94 15.4 -0.54 -16.1 0.64 94 13.6 -0.81 27.0 0.62 94 25.3 

 200 Unadj.logit -0.37 -29.3 0.22 89 41.9 -0.18 -66.1 0.21 61 13.6 -0.68 27.8 0.21 89 88.9 

  Adj.logit -0.45 -29.5 0.24 87 48.4 -0.22 -65.9 0.23 55 15.4 -0.82 27.4 0.24 88 93.7 

  Unadj.GEE -0.53 0.3 0.26 96 52.7 -0.59 11.8 0.25 94 66.4 -0.46 -12.4 0.25 93 46.0 

  Adj.GEE -0.63 -1.1 0.29 95 57.5 -0.68 6.3 0.28 94 69.4 -0.58 -9.7 0.27 94 54.2 

  Unadj.GLMM -0.60 13.5 0.29 95 53.6 -0.72 36.6 0.28 90 74.5 -0.45 -15.9 0.27 93 37.1 

  Adj.GLMM -0.67 4.6 0.31 95 58.7 -0.75 16.8 0.29 93 73.6 -0.57 -11.3 0.28 94 50.0 

  Unadj.MI -0.53 0.4 0.26 97 53.5 -0.52 -2.3 0.25 97 55.8 -0.53 0.5 0.24 96 61.1 

  Adj.MI -0.64 -0.5 0.29 97 58.3 -0.62 -3.2 0.28 96 61.5 -0.64 -0.4 0.27 96 66.2 

  Unadj.WGEE -0.46 -13.7 0.40 96 24.2 -0.27 -48.5 0.35 91 14.9 -0.73 37.1 0.32 93 64.3 

  Adj.WGEE -0.57 -10.7 0.37 96 35.4 -0.41 -35.3 0.33 90 24.7 -0.81 25.9 0.31 92 74.7 

MNAR 50 Unadj.logit -0.46 -13.7 0.42 94 19.1 -0.38 -29.2 0.42 93 15.3 -0.60 12.3 0.42 96 30.5 

  Adj.logit -0.55 -13.5 0.46 94 21.7 -0.46 -28.3 0.46 92 17.1 -0.72 12.9 0.47 95 32.9 

  Unadj.GEE -0.55 4.2 0.54 94 17.8 -0.65 21.8 0.50 94 25.3 -0.46 -13.4 0.50 95 14.1 

  Adj.GEE -0.68 6.7 0.62 95 19.1 -0.77 20.3 0.57 95 26.2 -0.59 -8.2 0.57 95 16.9 

  Unadj.GLMM -0.61 14.2 0.60 94 16.4 -0.73 37.9 0.56 94 24.9 -0.48 -9.6 0.56 95 12.4 

  Adj.GLMM -0.71 11.7 0.65 95 18.7 -0.81 27.3 0.60 94 26.2 -0.61 -5.2 0.60 95 16.1 

  Unadj.MI -0.54 2.4 0.50 97 14.8 -0.62 16.3 0.48 97 22.1 -0.48 -9.4 0.48 97 13.9 

  Adj.MI -0.65 2.2 0.58 98 15.1 -0.75 16.5 0.55 97 23.8 -0.58 -9.1 0.55 97 13.3 

  Unadj.WGEE -0.53 -0.1 0.57 96 12.0 -0.55 2.8 0.53 96 16.0 -0.53 -0.8 0.53 96 14.9 

  Adj.WGEE -0.66 3.2 0.64 95 14.9 -0.70 9.0 0.59 96 21.4 -0.64 -0.7 0.58 95 17.6 

 200 Unadj.logit -0.47 -11.9 0.21 94 60.5 -0.37 -29.7 0.21 87 44.2 -0.58 9.5 0.21 95 79.1 

  Adj.logit -0.56 -13.1 0.23 92 67.9 -0.45 -30.4 0.23 86 50.4 -0.69 8.1 0.23 95 86.0 

  Unadj.GEE -0.55 2.9 0.26 95 54.8 -0.64 19.8 0.25 93 73.1 -0.43 -18.1 0.25 93 41.6 

  Adj.GEE -0.65 2.1 0.30 95 59.9 -0.73 14.7 0.28 94 76.0 -0.54 -15.3 0.27 93 50.1 

  Unadj.GLMM -0.59 11.6 0.29 95 53.5 -0.71 34.2 0.27 90 74.0 -0.46 -14.1 0.27 95 38.3 

  Adj.GLMM -0.68 5.7 0.31 95 58.9 -0.77 20.0 0.29 93 75.7 -0.56 -13.0 0.29 94 48.8 

  Unadj.MI -0.54 2.0 0.25 97 59.1 -0.59 10.8 0.24 96 70.8 -0.47 -11.8 0.24 97 50.8 

  Adj.MI -0.64 0.7 0.28 97 64.4 -0.70 9.4 0.27 97 76.8 -0.56 -12.9 0.27 96 56.8 
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  Unadj.WGEE -0.53 -0.2 0.28 97 48.8 -0.53 0.8 0.26 97 56.2 -0.51 -3.5 0.25 97 53.2 

  Adj.WGEE -0.64 -0.7 0.30 96 55.4 -0.66 2.9 0.28 96 65.7 -0.60 -6.7 0.28 96 58.0 

* Percentage of missing data for comparator and treatment, respectively; Cov: coverage of 95% CI; Rel Bias: relative Bias;  

Est: - log odds ratio; Boldface font indicates that the type I error rate is beyond 2 SEs of simulations. 
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Table 4. Analysis results from five diabetes clinical studies 

  Log odds 

ratio SE LL UL  p-value 

Study 1 Unadj.logit 0.90 0.18 0.54 1.27 <0.001 

 Adj.logit 1.20 0.21 0.77 1.62 <0.001 

 Unadj.GEE 0.84 0.19 0.46 1.22 <0.001 

 Adj.GEE 1.08 0.22 0.65 1.51 <0.001 

 Unadj.GLMM 1.12 0.27 0.58 1.67 <0.001 

 Adj.GLMM 1.26 0.27 0.72 1.81 <0.001 

 Unadj.MI 0.78 0.19 0.41 1.16 <0.001 

 Adj.MI 1.21 0.22 0.78 1.64 <0.001 

 Unadj.WGEE 0.80 0.20 0.41 1.19 <0.001 

 Adj.WGEE 0.93 0.21 0.50 1.36 <0.001 

Study 2 Unadj.logit 0.96 0.18 0.60 1.33 <0.001 

 Adj.logit 1.26 0.21 0.84 1.68 <0.001 

 Unadj.GEE 0.94 0.18 0.57 1.31 <0.001 

 Adj.GEE 1.26 0.22 0.82 1.71 <0.001 

 Unadj.GLMM 1.36 0.27 0.82 1.90 <0.001 

 Adj.GLMM 1.61 0.28 1.05 2.17 <0.001 

 Unadj.MI 0.93 0.18 0.57 1.30 <0.001 

 Adj.MI 1.22 0.21 0.79 1.64 <0.001 

 Unadj.WGEE 0.94 0.19 0.56 1.32 <0.001 

 Adj.WGEE 1.23 0.22 0.79 1.67 <0.001 

Study 3 Unadj.logit 0.47 0.18 0.12 0.82 0.007 

 Adj.logit 0.64 0.20 0.24 1.05 0.002 

 Unadj.GEE 0.43 0.19 0.06 0.81 0.021 

 Adj.GEE 0.59 0.21 0.16 1.01 0.006 

 Unadj.GLMM 0.65 0.31 0.02 1.28 0.038 

 Adj.GLMM 0.72 0.29 0.14 1.31 0.014 

 Unadj.MI 0.44 0.18 0.08 0.81 0.016 

 Adj.MI 0.57 0.21 0.16 0.98 0.005 
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 Unadj.WGEE 0.45 0.20 0.05 0.85 0.026 

 Adj.WGEE 0.63 0.22 0.19 1.07 0.004 

Study 4 Unadj.logit 0.38 0.17 0.03 0.72 0.028 

 Adj.logit 0.36 0.18 0.00 0.72 0.047 

 Unadj.GEE 0.45 0.18 0.10 0.81 0.011 

 Adj.GEE 0.49 0.19 0.12 0.87 0.009 

 Unadj.GLMM 0.63 0.23 0.17 1.10 0.007 

 Adj.GLMM 0.61 0.23 0.14 1.08 0.009 

 Unadj.MI 0.44 0.17 0.09 0.79 0.012 

 Adj.MI 0.43 0.18 0.06 0.79 0.019 

 Unadj.WGEE 0.50 0.19 0.13 0.88 0.008 

 Adj.WGEE 0.50 0.20 0.09 0.90 0.014 

Study 5 Unadj.logit 1.01 0.17 0.68 1.35 <0.001 

 Adj.logit 1.36 0.20 0.97 1.75 <0.001 

 Unadj.GEE 1.09 0.18 0.73 1.45 <0.001 

 Adj.GEE 1.41 0.21 1.00 1.83 <0.001 

 Unadj.GLMM 1.58 0.28 1.01 2.15 <0.001 

 Adj.GLMM 1.80 0.28 1.24 2.35 <0.001 

 Unadj.MI 1.03 0.17 0.69 1.38 <0.001 

 Adj.MI 1.34 0.20 0.94 1.74 <0.001 

 Unadj.WGEE 1.07 0.19 0.69 1.45 <0.001 

 Adj.WGEE 1.59 0.23 1.13 2.06 <0.001 

SE: standard error; LL: lower limit of 95% confidence interval; UL: upper limit of 95% confidence interval  
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