
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Implication and axiomatization of functional and constant constraints

Peer-reviewed author version

HELLINGS, Jelle; GYSSENS, Marc; Paredaens, Jan & Wu, Yuqing (2016)

Implication and axiomatization of functional and constant constraints. In: Annals of

mathematics and artificial intelligence, 76 (3-4), p. 251-279.

DOI: 10.1007/s10472-015-9473-7

Handle: http://hdl.handle.net/1942/21031

Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

Implication and Axiomatization of Functional and
Constant Constraints

Jelle Hellings · Marc Gyssens · Jan

Paredaens · Yuqing Wu

Received: date / Accepted: date

Abstract Akhtar et al. introduced equality-generating constraints and functional
constraints as a first step towards dependency-like integrity constraints for RDF
data [3]. Here, we focus on functional constraints. Since the usefulness of func-
tional constraints is not limited to the RDF data model, we study the functional
constraints in the more general setting of relations with arbitrary arity. We further
introduce constant constraints and study the functional and constant constraints
combined.

Our main results are sound and complete axiomatizations for the functional
and constant constraints, both separately and combined. These axiomatizations
are derived using the chase algorithm for equality-generating constraints. For
derivations of constant constraints, we show how every chase step can be sim-
ulated by a bounded number of applications of inference rules. For derivations
of functional constraints, we show that the chase algorithm can be normalized
to a more specialized symmetry-preserving chase algorithm performing so-called
symmetry-preserving steps. We then show how each symmetry-preserving step can

This is a revised and extended version of the paper ‘Implication and Axiomatization of Func-
tional Constraints on Patterns with an Application to the RDF Data Model’ presented at
the 8th International Symposium on Foundations of Information and Knowledge Systems,
Bordeaux, France (FOIKS 2014) [25].

Yuqing Wu carried out part of her work during a sabbatical visit to Hasselt University with a
Senior Visiting Postdoctoral Fellowship of the Research Foundation Flanders (FWO).

Jelle Hellings · Marc Gyssens
Hasselt University and Transnational University of Limburg, Faculty of Sciences
Martelarenlaan 42, 3500 Hasselt, Belgium
E-mail: {jelle.hellings, marc.gyssens}@uhasselt.be

Jan Paredaens
University of Antwerp, Department of Mathematics and Computer Science
Campus Middelheim, Bldg. G, Middelheimlaan 1, 2020 Antwerp, Belgium
E-mail: jan.paredaens@uantwerpen.be

Yuqing Wu
Pomona College, Computer Science Department
185 E. 6th St. Claremont, CA 91711
E-mail: melanie.wu@pomona.edu

2 Jelle Hellings et al.

be simulated by a bounded number of applications of inference rules. The axiom-
atization for functional constraints is in particular applicable to the RDF data
model, solving a major open problem of Akhtar et al.

Keywords Functional constraints · Constant constraints · Chase algorithm ·
Axiomatization

1 Introduction

Usually, data is subject to integrity constraints implied by the semantics of the
data. Formalizing these constraints can help us to reason over the data and identify
inconsistencies. As such, formal constraints play a major role in database manage-
ment systems that automatically maintain integrity of the data and optimize query
evaluation. In this work, we study what we call constant-functional constraints.
These constant-functional constraints are a generalization of the well-known func-
tional dependencies of Codd [13], the conditional functional dependencies of Fan
et al. [21], and the functional constraints of Akhtar et al. [3,15,25]. More con-
cretely, the constant-functional constraints can be characterized as the union of
the functional constraints applied to arbitrary relations, as presented by Hellings
et al. [25], and the constant constraints, which we introduce here.

Functional constraints have the form

(P ,L→ R),

where P specifies a pattern in the data and L and R are sets of variables occurring
in this pattern. Their semantics is comparable to that of the functional dependen-
cies: if two parts of the data match the pattern and are equal on L, then they must
also be equal on R. Example 1 illustrates this for ternary RDF data.

Example 1 Consider the family tree shown in Figure 1.

Alexis

Alexia

Alexander

fatherOf

motherOf

Alexandra

fatherOf

motherOf

Fig. 1 Simplified visualization of an RDF representation of a small family tree.

On these data, the constraint “a child only has one biological father and
mother” holds. This constraint can be expressed by the pair of functional con-
straints ({($p,motherOf, $c)}, $c→ $p) and ({($p, fatherOf, $c)}, $c→ $p). The con-
straint “children have only one biological parent”, which can be expressed by
({($p, $t, $c)}, $c→ $p), does not hold, however.

Functional constraints allow the expression of not only the traditional func-
tional dependencies, but also of context-dependent functional dependencies that
only apply to a part of the data. In the context of Example 1, a context-dependent

Implication and Axiomatization of Functional and Constant Constraints 3

functional dependency could be the constraint child → parent restricted to moth-

erOf triplets.
Because of the use of free variables and constants in patterns, patterns may

also match specific structures in the relation. This is particularly useful if the
underlying relation represents a graph. In this setting, functional constraints may
impose structural constraints.

Example 2 Let Edge(from, to) be a binary relation schema representing the edge
relation of a graph. The functional constraint ({($n, $n)}, ∅ → $n) expresses that
there is at most one node with a self-loop. The pattern {($n, $m), ($m, $n)} in
the functional constraint ({($n, $m), ($m, $n)}, $n → $m) matches cycles (closed
paths) of length 2 (including self-loops). Consider two pairs of such cycles starting
at node v. By the constraint, the second node in both cycles must be equal, and
thus the latter constraint expresses that every node v is part of at most one cycle
of length 2.

With functional constraints, one cannot specify that data entries matching a
variable in some pattern should have a specified constant value. To extend the
scope of the constraints under consideration, we introduce constant constraints
and study functional and constant constraints combined and refer to them as
constant-functional constraints. Constant constraints have the form

(P ,E),

where P is a pattern and E is a finite set of constant equalities of the form (c = $v),
with c a constant and $v a variable occurring in the pattern P .

Example 3 Let PI(name, country, cc, phone) be the schema of a relation storing per-
sonal information, in which the attribute cc provides the country code that should
be used to call the phone number phone. The constant constraint ({($n,BE, $c, $p)},
{(‘32’ = $c)}) specifies that people from Belgium have a Belgian phone number.

For the functional dependencies in the relational data model, a sound and
complete axiomatization is already long known [5], and, more recently, Akhtar
et al. presented a sound and complete axiomatization for the equality-generating
constraints in the RDF data model [3]. Since the constant-functional constraints
are subsumed by equality-generating constraints, this axiomatization can also be
used for the inference of constant-functional constraints only. In this case, inter-
mediate inference steps can generate equality-generating constraints that are not
necessarily equivalent to constant-functional constraints, unfortunately. For the
functional constraints, Akhtar et al. identified the existence of a sound and com-
plete axiomatization (not involving other types of constraints) as a major open
problem. On the one hand, the Armstrong axiomatization for the functional de-
pendencies [5] can be generalized to the setting of functional constraints. This
generalization, however, lacks the reasoning power over patterns necessary for a
complete axiomatization. On the other hand, there is no straightforward way to
specialize the axiomatization of the equality-generating constraints to functional
constraints only.

In this paper, we present a sound and complete axiomatization for the constant
constraints, the functional constraints, and the constant-functional constraints

4 Jelle Hellings et al.

over relations of arbitrary arity. The constraints used by all intermediate infer-
ence steps allowed by these axiomatizations are constant constraints, functional
constraints, and constant-functional constraints, respectively. In particular, the
case of ternary relations yields a sound and complete axiomatization for the func-
tional constraints in the RDF data model, thereby positively solving the open
problem of Akhtar et al. [3].

Our axiomatization is derived using the chase algorithm for equality-generating
constraints [3], which is a variation of the standard chase algorithm [2,8]. For
derivations of constant constraints, we show how every chase step can be sim-
ulated by a bounded number of applications of inference rules. For derivations
of functional constraints, such a direct simulation of chase steps is not straight-
forward. The key insight we use to circumvent this problem is that the chase
algorithm, when applied to decide if a functional constraint holds, can be normal-
ized to a more specialized, symmetry-preserving, chase algorithm. The main idea
behind the symmetry-preserving chase algorithm is that, due to their semantics,
chases for functional constraints always start with tableaux that are symmetric.
We prove that during such chases one can always maintain this symmetry in the
tableau, by using so-called symmetry-preserving steps. We then show how each
symmetry-preserving step can be simulated by a bounded number of applications
of inference rules. The axiomatization for the constant-functional constraints fol-
lows from these simulations. Axiomatizations for only the constant constraints and
only the functional constraints can be derived in a similar manner.

This is a revised and extended version of Hellings et al. [25]. Compared to
Hellings et al., we present a slightly simplified sound and complete axiomatization
of the functional constraints. Additionally, we present the constant constraints
and provide sound and complete axiomatizations of constant constraints and of
constant-functional constraints.

Organization. In Section 2, we present the necessary definitions used through-
out this paper. In Section 3, we discuss the constant-functional constraints and
equality-generating constraints. In Section 4, we present the chase algorithm for
equality-generating constraints and specialize it to constant-functional constraints.
In Section 5, we propose an axiomatization for the constant-functional constraints.
In Section 6, we look at the relationships between the constant-functional con-
straints and previously introduced classes of dependencies. In Section 7, we sum-
marize our findings and discuss directions for future work.

2 Preliminaries

Functional and equality-generating constraints [3] have originally been introduced
in the context of the RDF data model. In this model, RDF data are usually
represented by a single ternary relation. In the Introduction, we have already
argued that functional and equality-generating constraints are useful in a wider
range of data models. We therefore generalize functional and equality-generating
constraints to relations of arbitrary arity. The following notations and definitions
will be used throughout the paper.

We consider disjoint infinitely enumerable sets U and V of constants and vari-

ables, respectively. For distinction, we usually prefix variables by “$”. A term is

Implication and Axiomatization of Functional and Constant Constraints 5

either a constant or a variable. Hence, the set T of all terms equals U ∪ V. A tuple

of arity n is a sequence (t1, . . . , tn) of terms. A pattern of arity n is a finite set
of tuples of arity n. If P is a pattern, then UP , VP , and TP denote the set of all
constants, variables, and terms in P , respectively. A pattern P with VP = ∅ is
usually referred to as a relation.

We define the domain, range, and inverse of a function f in the usual way and
denote these by domain(f), range(f), and f−1, respectively. Two functions f and
g agree on a set S, denoted by f =S g, if f(x) = g(x) for all x ∈ S. The restriction

of a function f to a set S is defined as f |S = {(x, y) | x ∈ S, y = f(x)}. The identity

on a set S is defined as idS = {(s, s) | s ∈ S}.
The term-based renaming function φa1←↩b1,...,ai←↩bi , a1, b1, . . . , ai, bi ∈ T, is the

function on T for which φa1←↩b1,...,ai←↩bi(bj) = aj , j = 1, . . . , i, and which is the
identity elsewhere. Likewise, the function-based renaming function Φf←↩g, with f a
function and g an injective function with domain(f) = domain(g), is the func-
tion on T for which Φf←↩g(g(t)) = f(t), t ∈ domain(f), and which is the identity
elsewhere. Notice that this function is well-defined due to the injectivity of g.

A function f on terms is extended to tuples, patterns, and sets in the following
natural way: for a tuple (t1, . . . , tn), f((t1, . . . , tn)) = (f(t1), . . . , f(tn)), and, for a
set S, f(S) = {f(s) | s ∈ S}. For two patterns P and Q, a function e : VP ∪ U → T
is an embedding of P into Q if e|U = idU and e(P) ⊆ Q.

For constraints for which this is relevant, we denote “pattern P satisfies con-
straint C ” by P |≡ C . Likewise, for a set of constraints S, we write P |≡ S to
denote that P |≡ C for all C ∈ S.1

We say that “set of constraints S implies set of constraints S′”, denoted by
S |= S′, if, for every relation R, R |≡ S implies R |≡ S′. The sets of constraints
S and S′ are equivalent, denoted by S ≡ S′, if S |= S′ and S′ |= S. In the above,
whenever S = {C} and/or S′ = {C ′} are singletons, we usually write C and/or C ′

instead of {C} and/or {C ′}.
An inference rule can be described using a schema of the form

S
C

conditions,

which should be informally read as “if S, subject to some conditions, then C ”,
where S is a set of constraints and C is a constraint. The inference rule is k-ary if
|S| = k. A set of inference rules R is k-ary if every rule r ∈ R is at most k-ary.

If a constraint C can be obtained from a set of constraints S by repeatedly
applying rules of a set of inference rules R, we say that C can be derived from S
using R, denoted by S `R C . We usually omit R if R is clear from the context.
A set of inference rules R is sound whenever S `R C implies S |= C and complete

whenever S |= C implies S `R C .
A set of inference rules is a finite axiomatization if it is sound, complete, k-

ary (for some k ≥ 0), and if the inference rules can be represented by a fi-
nite number of decidable inference rule schemas. An inference rule schema s =
“if S, subject to some conditions, then C ” is decidable if, given a set of constraints

1 Observe that the semantics of satisfaction depends on the type of constraints considered.
The semantics of satisfaction for functional constraints is defined in Definition 5 and the
semantics of satisfaction for constant constraints is defined in Definition 7. However, we use
a generic notation for satisfaction independent of the type of constraints, which is why we
introduce it here.

6 Jelle Hellings et al.

S′ with |S| ≤ |S′| and constraint C ′, it is decidable if s can be applied to derive
S′ `s C ′.

3 Functional and constant constraints

Functional constraints and constant constraints on n-ary relations are special sub-
classes of equality-generating constraints on n-ary relations. We formally define
functional, constant, and equality-generating constraints on n-ary relations.

Definition 1 A functional constraint is a pair (P ,L→ R), where P is a nonempty
pattern and L,R ⊆ VP .

Let C = (P ,L → R) be a functional constraint. We say that P , L, and R are
the pattern, left-hand side, and right-hand side of C , respectively. We denote these
by ptn(C), lhs(C), and rhs(C).

Definition 2 A constant constraint is a pair (P ,E), where P is a nonempty pattern
and E is a finite set of equalities of the form (c = $v) for c ∈ U and $v ∈ VP .

Definition 3 An equality-generating constraint is a pair (P ,E), where P is a non-
empty pattern and E is a finite set of equalities of the form (t = u) for t, u ∈ VP ∪U.

Let C = (P ,E) be a constant or an equality-generating constraint. We say
that P and E are the pattern and the equalities of C , respectively. We denote
these by ptn(C) and eq(C). We say that an equality (t = u) ∈ E is a constant

equality on pattern P if t ∈ U and u ∈ VP . Notice that the constant constraints are
a proper syntactical subclass of the equality-generating constraints, in which the
set of equalities is restricted to constant equalities.

Definition 4 A constant-functional constraint is a constraint that is either a con-
stant constraint or a functional constraint.

We formally define the semantics of the functional, constant, and equality-
generating constraints on n-ary relations.

Definition 5 Let C = (P ,L → R) be a functional constraint and let P ′ be a
pattern. Then P ′ satisfies C if, for every pair of embeddings e1 and e2 of P into
P ′ with e1 =L e2, we have e1 =R e2.

Each time we have two embeddings of P into P ′, it makes sense to look at
the structure e1(P) ∪ e2(P) in order to compare the two embeddings. To make
reasoning about such structures easier, we formalize them.

Definition 6 Let f1 and f2 be a pair of embeddings of pattern P into some pattern
P ′ with f1 =L f2 for L ⊆ VP . We say that the pattern D = f1(P) ∪ f2(P) is a
double pattern of P and L. A pattern D is a maximally double pattern of P and L

if f1 and f2 are injections, f1 =L∪idU f2, range(f1|VP) ⊆ V, range(f2|VP) ⊆ V, and
range(f1|VP\L) ∩ range(f2|VP\L) = ∅.

Implication and Axiomatization of Functional and Constant Constraints 7

We observe that if f1(P) ∪ f2(P) is a maximally double pattern, then, by
construction, f1 and f2 are bijective functions of VP ∪U into Vf1(P)∪U and Vf2(P)∪
U, embedding P into f1(P) and f2(P), respectively. In addition, f1 and f2 map
constants to themselves and variables onto variables. Hence, P , f1(P), and f2(P)
are isomorphic and, as a direct consequence, the maximally double pattern of P

and L is unique up to isomorphisms. We shall therefore often leave the embeddings
f1 and f2 that define f1(P) ∪ f2(P) implicit.

Definition 7 Let P ′ be a pattern and let C = (P ,E) be a constant constraint or
an equality-generating constraint. Then P ′ satisfies C if, for every embedding e of
P into P ′ and every equality (t = u) ∈ E , we have e(t) = e(u).

Akhtar et al. [3] already showed that every functional constraint can be written
as an equality-generating constraint. To establish a formal relationship between
equality-generating and functional constraints, we provide the following results.

Proposition 1 Let C = (P ,L → R) and let D = f1(P) ∪ f2(P) be the maximally

double pattern of P and L. For every two embeddings e1 and e2 of P into pattern

P ′ with e1 =L e2, there is an embedding e of D into P ′ with, for every $r ∈ R,

e1($r) = e ◦ f1($r) and e2($r) = e ◦ f2($r). Conversely, for every embedding e of D

into P ′, there are two embeddings e1 and e2 of P into P ′ with e1 =L e2 and, for every

$r ∈ R, e ◦ f1($r) = e1($r) and e ◦ f2($r) = e2($r).

Proof In one direction, we define e = (e1 ◦ f1−1) ∪ (e2 ◦ f2−1), and, in the other
direction, we define e1 = e ◦ f1 and e2 = e ◦ f2. ut

Corollary 1 Let C = (P ,L → R) be a functional constraint and let D = f1(P) ∪
f2(P) be the maximally double pattern of P and L. We have C ≡ (D , {(f1($r) =
f2($r)) | $r ∈ R}).

As already mentioned, the functional constraints are a generalization of the
functional dependencies. We also formalize this relationship.

Proposition 2 Let C = L→ R be a functional dependency over the relation schema

R(A1, . . . , An) with L,R ⊆ {A1, . . . , An}. Consider the functional constraint C ′ =
({(A1, . . . , An)},L → R), in which the attribute names are assumed to be variables.

Then C ≡ C ′.

The functional dependencies have a well-known axiomatization in the form of
Armstrong’s axioms, consisting of the three inference rules Reflexivity, Augmentation,
and Transitivity [5]. We generalize Armstrong’s inference rules to our setting of the
functional constraints.

Rule 1 (Reflexivity) Let P be a pattern. If R ⊆ L ⊆ VP , then (P ,L→ R).

Rule 2 (Augmentation) If (P ,L→ R) and V ⊆ VP , then (P ,L ∪ V → R ∪ V).

Rule 3 (Transitivity) If (P ,L→M) and (P ,M → R), then (P ,L→ R).

Since Armstrong’s axioms can be generalized to functional constraints, it is
straightforward to show that the well-known decomposition and union rules can
also be generalized to functional constraints. Also, similar decomposition and union
rules can be obtained for the equality-generating constraints [3]. For the decom-
position and union of constant constraints, we introduce the following inference
rules, which also hold for the equality-generating constraints in general.

8 Jelle Hellings et al.

Rule 4 (Decomposition) If (P ,E ∪ E ′), then (P ,E).

Rule 5 (Union) If (P ,E) and (P ,E ′), then (P ,E ∪ E ′).

From now on, if the left-hand side or right-hand side in a functional constraint
is a singleton set {$v}, then we usually write $v instead. Likewise, if the set of
equalities in a equality-generating or constant constraint is a singleton set {(t =
u)}, then we usually write (t = u) instead.

Armstrong’s axioms together with Decomposition and Union are not complete
for the functional constraints, the constant constraints, or the constant-functional
constraints: these inference rules only provide means to reason on constraints spec-
ified on a single pattern. The following example exhibits a situation in which this
is not sufficient:

Example 4 Consider the functional constraint C = ({($a, $b)}, $a → $b) and the
pattern P ′ = {($a, c1), ($a, c2)} with c1, c2 ∈ U and c1 6= c2. If C holds on a
relation R, then no embedding of P ′ into R is possible, and, hence, every constant-
functional constraint on the pattern P ′ holds.

Likewise, consider the constant constraint C = ({($a, $b)}, (c = $b)) and the
pattern P ′ = {($a, c′)} with c′ ∈ U and c 6= c′. Also in this case, if C holds
on a relation R, then no embedding of P ′ into R is possible, and, hence, every
constant-functional constraint on the pattern P ′ holds.

Both these cases consider the derivation of a constraint on pattern P ′ from a
constraint C on pattern ptn(C) with P ′ 6= ptn(C). None of the presented inference
rules are, however, able to reason about constraints specified on patterns that are
not all equivalent.

4 Chasing constant-functional constraints

For equality-generating constraints, Algorithm 1 is known to decide implication [3].
This algorithm is a constant-aware variation of standard chase algorithms for
equality-generating dependencies [2,8].

In Algorithm 1, we refer to lines 5–10 as equalization steps, to line 12 as incon-

sistency termination, and to line 15 as regular termination.

Theorem 1 (Akhtar et al. [3]) Algorithm 1 is correct for equality-generating con-

straints.

We use the relationship between the constant-functional constraints and the
equality-generating constraints, as described in Corollary 1, to construct a chase-
based algorithm that decides implication of constant-functional constraints, shown
as Algorithm 2.

In Algorithm 2, we refer to lines 15–21 as equalization steps, to line 23 as in-

consistency termination, and to line 26 as regular termination. This is analogue to
the equalization steps, inconsistency termination, and regular termination in Al-
gorithm 1.

Theorem 2 Algorithm 2 is correct for constant-functional constraints.

Implication and Axiomatization of Functional and Constant Constraints 9

Algorithm 1 Chase for equality-generating constraints
Input: Set of equality-generating constraints S,

Equality-generating constraint C
Output: S |= C
1: T← ptn(C)
2: while there exists a constraint C ′ ∈ S with T 6|≡ C ′ do
3: Choose equality (t′ = u′) ∈ eq(C ′) and

embedding e of ptn(C ′) into T with e(t′) 6= e(u′)
4: /∗ equalize e(t′) and e(u′) in T ∗/
5: if e(t′) ∈ V then
6: /∗ replace all occurrences of e(t′) in T by e(u′) ∗/
7: T← φe(u′)←↩e(t′)(T)

8: else if e(u′) ∈ V then
9: /∗ replace all occurrences of e(u′) in T by e(t′) ∗/

10: T← φe(t′)←↩e(u′)(T)

11: else /∗ e(t′), e(u′) ∈ U and e(t′) 6= e(u′) ∗/
12: return true
13: end if
14: end while
15: return T |≡ C

Algorithm 2 Chase for constant-functional constraints
Input: Set of constant-functional constraints S,

Constant-functional constraint C
Output: S |= C
1: if C is a functional constraint then
2: Let D be the maximally double pattern of ptn(C) and lhs(C)
3: T← D
4: else /∗ C is a constant constraint ∗/
5: T← ptn(C)
6: end if
7: while there exists a constraint C ′ ∈ S with T 6|≡ C ′ do
8: if C ′ is a functional constraint then
9: Choose variable $r′ ∈ rhs(C ′) and pair of embeddings e1 and e2 of

ptn(C) into T with e1 =lhs(C ′) e2 and e1($r′) 6= e2($r′)

10: t1, t2 ← e1($r′), e2($r′)
11: else /∗ C ′ is a constant constraint ∗/
12: Choose equality (c = $v) ∈ eq(C ′) and

embedding e of ptn(C ′) into T with c 6= e($v)
13: t1, t2 ← c, e($v)
14: end if
15: /∗ equalize t1 and t2 in T ∗/
16: if t1 ∈ V then
17: /∗ replace all occurrences of t1 in T by t2 ∗/
18: T← φt2←↩t1 (T)
19: else if t2 ∈ V then
20: /∗ replace all occurrences of t2 in T by t1 ∗/
21: T← φt1←↩t2 (T)
22: else /∗ t1, t2 ∈ U and t1 6= t2 ∗/
23: return true
24: end if
25: end while
26: return T |≡ C

Proof Algorithm 2 makes a case distinction on the type of all constraints in-
volved. In it, constant constraints are treated as normal equality-generating con-

10 Jelle Hellings et al.

straints. For functional constraints, the algorithm implicitly translates functional
constraints to equality-generating constraints using the results of Proposition 1
and Corollary 1. ut

In Section 5, we shall use the correctness of Algorithm 2 to prove that there
is a complete axiomatization for the derivation of constant-functional constraints
from a set of constant-functional constraints.

5 Axiomatizing constant-functional constraints

Algorithm 2 is a correct algorithm to decide S |= C , with S a set of constant-
functional constraints and C a single constant-functional constraint. Hence, if
S |= C holds, and if we can simulate every equalization step and the termination
of an execution of Algorithm 2 by sound inference rules, then we have a sound and
complete axiomatization for deriving constant-functional constraints.

For chases that do not perform equalization steps, we provide straightforward
inference rules to simulate the eventual termination step in a single inference step
(Section 5.1).

For chases that do initially perform an equalization step, we show that we
can reduce any chase that decides S |= C to a single equalization step (constant
constraints) or at most two equalization steps (functional constraints) with a single
constraint C ′ ∈ S, followed by the chase deciding S |= C ′′, for some constraint
C ′′. We do so by showing that, after the initial equalization step(s) with C ′,
the resulting tableau T is equivalent to the initial tableau for any chase deciding
S |= C ′′. To show that S |= C ′′ holds when S |= C holds, we show C |= C ′′.
Lastly, we show {C ′,C ′′} |= C , while providing sound inference rules to derive
{C ′,C ′′} ` C in a finite number of inference steps.

Due to the dual nature of Algorithm 2 with respect to, on the one hand,
constant constraints, and on the other hand, functional constraints, we divide our
search for inference rules to simulate the initial equalization step(s) of an execution
of Algorithm 2 into two cases.

Firstly, we consider the derivation of constant constraints (Section 5.2). There-
to, we simulate the initial equalization step in the chase that decides S |= C with
C a constant constraint by using a finite number of inference steps.

Secondly, we consider the derivation of functional constraints (Section 5.3).
Thereto we try to simulate the chase that decides S |= C with C a functional con-
straint. In this case, we conclude that a direct simulation of individual equalization
steps is not straightforward. To circumvent this problem, we show that, in this case,
Algorithm 2 can be normalized to a more specialized, symmetry-preserving, chase
algorithm. For the symmetry-preserving chase that decides S |= C , we are able to
simulate the initial symmetry-preserving step by using a finite number of inference
steps.

Finally, the simulation of direct termination in chases for constant-functional
constraints, the initial equalization step in chases for constant constraints, and
the initial symmetry-preserving step in chases for functional constraints are used
as the basis for an induction argument to extend the simulation to the entire
chase (Section 5.4). This induction argument shows how to construct a derivation
S ` C by showing how to translate each equalization step (constant constraints) or

Implication and Axiomatization of Functional and Constant Constraints 11

symmetry-preserving step (functional constraints) of a chase deciding S |= C to a
finite number of inference steps, this such that the produced sequence of inference
steps is a derivation of S ` C .

5.1 Inference rules for direct termination

Consider the case where Algorithm 2 decides whether S |= C terminates with-
out performing any equalization steps. Two subcases are possible, namely regular
termination and inconsistency termination.

5.1.1 Regular termination

Assuming no equalization steps are possible, we have regular termination if there
does not exist a constraint C ′ ∈ S with T 6|≡ C ′. In this case, due to line 26 in
Algorithm 2, we have S |= C if and only if T |≡ C . We investigate necessary
conditions on C such that T |≡ C holds.

Proposition 3 Let C be a functional constraint and let D be the maximally double

pattern of ptn(C) and lhs(C). If D |≡ C , then rhs(C) ⊆ lhs(C).

If we have regular termination and C is a functional constraint, then T is
equivalent to the maximally double pattern of ptn(C) and lhs(C). Hence, by
Proposition 3, we conclude rhs(C) ⊆ lhs(C), and thus we can use Reflexivity to
derive ∅ ` C . Hence, also S ` C .

Proposition 4 Let C be a constant constraint. If ptn(C) |≡ C , then eq(C) = ∅.

If we have regular termination and C is a constant constraint, then T is equiv-
alent to ptn(C). Hence, by Proposition 4, we conclude eq(C) = ∅. For this case,
we introduce the following inference rule.

Rule 6 (Empty) Let P be a pattern. We have (P , ∅).

Proof (soundness) Let R be a relation and assume there are embeddings of P into
R. Let e be any embedding of P into R. The constraint specifies no equalities,
hence, every equality specified by the constraint is satisfied by embedding e. ut

If we have regular termination and C is a constant constraint, then eq(C) = ∅,
and thus we can use Empty to derive ∅ ` C . Hence, also S ` C .

5.1.2 Inconsistency termination

Still assuming no equalization steps are possible, we have inconsistency termination
if there does exist a constraint C ′ ∈ S with T 6|≡ C ′. In this case, due to line 23
in Algorithm 2, we can find two terms t1 ∈ U and t2 ∈ U with t1 6= t2 that should
be equal according to C . We introduce the following inference rules to deal with
such inconsistencies.

12 Jelle Hellings et al.

Rule 7 (Inconsistency I) Let P be a pattern. If (P ′,L′ → R′) with $r′ ∈ R′, and

if there is a pair of embeddings of P ′ into P that agree on L′ and map $r′ to two

distinct constants, then (P ,E), for every finite set of constant equalities E on P, and

(P ,L→ R), for every L ⊆ VP and R ⊆ VP .

Proof (soundness) LetR be a relation withR |≡ (P ′,L′ → R′), and assume there are
embeddings of P into R. Let e be such an embedding. Let e′1 and e′2 be embeddings
mapping P ′ into P that agree on L′ and map $r′ to two distinct constants. Now,
the embeddings e′′1 = e ◦ e′1 and e′′2 = e ◦ e′2 map P ′ into R, agree on L′, and map
$r′ to two distinct constants, a contradiction. Hence, no embedding e of P into R
exists. Thus, we can conclude R |≡ (P ,E), for every finite set of constant equalities
E on P , and R |≡ (P ,L→ R), for every L ⊆ VP and R ⊆ VP . ut

Rule 8 (Inconsistency II) Let P be a pattern. If (P ′,E ′) with (c = $v) ∈ E ′, and if

there is an embedding of P ′ into P mapping $v to a constant unequal to c, then (P ,E),

for every finite set of constant equalities E on P, and (P ,L → R), for every L ⊆ VP
and R ⊆ VP .

Proof (soundness) Let R be a relation with R |≡ (P ′,E ′), and assume there are
embeddings of P into R. Let e be such an embedding. Let e′ be an embedding
mapping P ′ into P and mapping $v to a constant unequal to c. Now, the embedding
e′′ = e◦e′ maps P ′ into R and maps $v to a constant unequal to c, a contradiction.
Hence, no embedding e of P into R exists. Thus, we can conclude R |≡ (P ,E),
for every finite set of constant equalities E on P , and R |≡ (P ,L → R), for every
L ⊆ VP and R ⊆ VP . ut

It is straightforward to verify that these inference rules can be applied to sim-
ulate chases that decide S |= C , with C a constant constraint, with inconsistency
termination and without using equalization steps. We shall now prove that this is
also the case when C is a functional constraint.

Proposition 5 Let S |= C with C a functional constraint. If Algorithm 2 decides

S |= C by immediate inconsistency termination using constraint C ′ ∈ S, then Rule 7

or Rule 8 can be applied to derive C ′ ` C .

Proof Let C = (P ,L→ R) and let T = D = f1(P)∪f2(P) be the maximally double
pattern of P and L. Let e be any embedding of ptn(C ′) into D . As P , f1(P), and
f2(P) are isomorphic and f1 and f2 are bijections, the function e′ = Φf1←↩f2 ◦ e is
well-defined and an embedding of ptn(C ′) into f1(P). Hence, the function e′′ =
f1
−1 ◦ e′ = f1

−1 ◦Φf1←↩f2 ◦ e is also well-defined and an embedding of ptn(C ′) into
P . By construction, the function f1

−1 ◦ Φf1←↩f2 is the identity on constants. We
now consider two cases, namely where C ′ is a functional constraint and where C ′

is a constant constraint.

1. If C ′ = (P ′,L′ → R′) is a functional constraint, then, since Algorithm 2
must pass line 9 to terminate on line 23, we can choose a variable $r′ ∈ R′ and
pair of embeddings e1 and e2 of P ′ into T = D with e1 =L′ e2 and e1($r′) 6=
e2($r′). Now, using the above construction, we obtain the pair of embeddings
e′′1 = f1

−1 ◦Φf1←↩f2 ◦ e1 and e′′2 = f1
−1 ◦Φf1←↩f2 ◦ e2 of P ′ into P . As e1 =L′ e2, we

also have e′′1 =L′ e
′′
2 . Furthermore, as e1($r′) ∈ U, e2($r′) ∈ U, e1($r′) 6= e2($r′),

and f1
−1 ◦ Φf1←↩f2 is the identity on constants, we have e′′1($r′) ∈ U, e′′2($r′) ∈ U,

and e′′1($r′) 6= e′′2($r′). We can thus apply Inconsistency I using constraint C ′ and
embeddings e′′1 and e′′2 to derive C ′ ` C .

Implication and Axiomatization of Functional and Constant Constraints 13

2. If C ′ = (P ′,E ′) is a constant constraint, then, since Algorithm 2 must pass
line 12 to terminate on line 23, we can choose an equality (c = $v) ∈ E ′ and
embedding e of P ′ into T = D with c 6= e($v). Now, using the above construction,
we obtain an embedding e′′ = f1

−1 ◦ Φf1←↩f2 ◦ e of P ′ into P . As e($v) ∈ U and
f1
−1 ◦ Φf1←↩f2 is the identity on constants, we have e′′($v) ∈ U and c = e′′(c) 6=

e′′($v). We can thus apply Inconsistency II using constraint C ′ and embedding e′′

to derive C ′ ` C .

This case analysis completes the proof. ut

5.2 Inference rules for deriving constant constraints

From now on, we assume that a chase deciding S |= C always performs equalization
steps. For simulating the initial equalization step in the case where C is a constant
constraint, we use the following three inference rules.

Rule 9 (Application I) Let P be a pattern, let $v ∈ VP be a variable, and let

t ∈ VP ∪ U be a term. If (φt←↩$v(P),E), if (P ′,L′ → R′), and if there is a pair of

embeddings of P ′ into P that agree on L′ and map $r′ ∈ R′ to t and $v, respectively,

then (P ,E). If, in addition, there exists a c ∈ U such that either c = t (if t ∈ U) or

(c = t) ∈ E (if t ∈ V), then also (P ,E ∪ {(c = $v)}).

Proof (soundness) Let R be a relation with R |≡ (φt←↩$v(P),E) and R |≡ (P ′,L′ →
R′), and assume there are embeddings of P into R. Let e be any embedding of P

into R and let e′1 and e′2 be any pair of embeddings of P ′ into P that agree on
L′ and map $r′ ∈ R′ to t and $v, respectively. Now e′′1 = e ◦ e′1 and e′′2 = e ◦ e′2
are embeddings of P ′ into R with e′′1 =L′ e

′′
2 . By R |≡ (P ′,L′ → R′), we have

e′′1($r′) = e′′2($r′), and, by construction, we have e′′1($r′) = e(t) and e′′2($r′) = e($v).
Hence, e($v) = e(t), and ε = e|domain(e)\{$v} is an embedding of φt←↩$v(P) into R.

Now, by R |≡ (φt←↩$v(P),E), we have, for every (c′ = $w) ∈ E , ε($w) = c′. Notice
that $v 6∈ domain(ε). Hence, if ε($w) = c′, then $w 6= $v and e($w) = c′. Hence,
we conclude R |≡ (P ,E).

Above, we already showed that e($v) = e(t). It now follows readily that, if, in
addition, there exists c ∈ U such that either c = t (if t ∈ U) or (c = t) ∈ E (if
t ∈ V), we also have R |≡ (P , (c = $v)), and, hence, R |≡ (P ,E ∪ {(c = $v)}). ut

Rule 10 (Application II) Let P be a pattern, let $v ∈ VP be a variable, and let

c ∈ U be a constant. If (φc←↩$v(P),E), if (P ′,E ′) with (c = $v′) ∈ E ′, and if there is

an embedding of P ′ into P mapping $v′ to $v, then (P ,E ∪ {(c = $v)}).

Proof (soundness) Let R be a relation with R |≡ (φc←↩$v(P),E) and R |≡ (P ′,E ′),
and assume there are embeddings of P into R. Let e be any embedding of P into
R and let e′ be any embedding of P ′ into P mapping $v′ to $v. Now e′′ = e ◦ e′ is
an embedding of P ′ into R. By R |≡ (P ′,E ′), we have e′′($v′) = e($v) = c.

As a consequence, ε = e|domain(e)\{$v} is an embedding of φc←↩$v(P) into R.

Now, by R |≡ (φt←↩$v(P),E), we have, for every (c′ = $w) ∈ E , ε($w) = c′. Notice
that $v 6∈ domain(ε). Hence, if ε($w) = c′, then $w 6= $v and e($w) = c′. Hence,
we conclude R |≡ (P ,E ∪ {(c = $v)}). ut

14 Jelle Hellings et al.

The following example exhibits situations in which the Application I and II
rules can be used.

Example 5 Using Application I in a straightforward manner, we can derive

{({($a, $b, $c)}, $a→ $b), ({($a, b, $c), ($a, b, d)}, (c = $c))} `
({($a, b, $c), ($a, $b, d)}, (c = $c))

by using the embeddings

e1 = {$a 7→ $a, $b 7→ b, $c 7→ $c}
e2 = {$a 7→ $a, $b 7→ $b, $c 7→ d}.

We thus have e1 =$a e2, e1($b) = b, and e2($b) = $b. Using Application I, we can
also derive

({($a, $b, $c), $a→ $c) ` ({($a, $b, c), ($a, $b, $c)}, {c = $c})

by using the embeddings

e1 = {$a 7→ $a, $b 7→ $b, $c 7→ c}
e2 = {$a 7→ $a, $b 7→ $b, $c 7→ $c}.

Observe that in this case, Application I is applied to a single non-trivial functional
constraint and to the trivial constant constraint ({($a, $b, c), ($a, $b, $c)}, ∅). Using
Application II, we can derive

{({($a, $b, $c)}, (c = $c)), ({($a, $b, c)}, (b = $b))} ` ({($a, $b, $c)}, (b = $b))

by using the embedding e′ = {$a 7→ $a, $b 7→ $b, $c 7→ $c}.

Rule 11 (Inconsistent Propagation) Let P be a pattern, $v ∈ VP , and c1, c2 ∈ U
with c1 6= c2. If (P , {(c1 = $v), (c2 = $v)}), then (P ,E) for every finite set of constant

equalities E on P.

Proof (soundness) Let R be a relation with R |≡ (P , {(c1 = $v), (c2 = $v)}) and
assume there are embeddings of P into R. Let e be such an embedding mapping
P into R. By R |≡ (P , {(c1 = $v), (c2 = $v)}), we must have c1 = e($v) and
c2 = e($v). As a consequence, we conclude c1 = c2, a contradiction. Hence, no
embedding e of P into R exists. Thus we can conclude R |≡ (P ,E), for every finite
set of constant equalities E on P . ut

Before we show how the initial equalization step in any chase deciding S |= C

with C a constant constraint can be simulated by the introduced inference rules,
we introduce an additional inference rule to simplify our proofs:

Rule 12 (Embedding I) If (P ′,E ′) and h is an embedding from P ′ into P, then

(P , {(c = h($v)) | ((c = $v) ∈ E ′) ∧ (h($v) ∈ V)}).

Proof (soundness) Let R be a relation with R |≡ (P ′,E ′), and assume there are
embeddings of P into R. Let e be any embedding of P into R. Then ε = e ◦h is an
embedding of P ′ into R. Hence, for every (c = $v) ∈ E ′, we have e(c) = c = ε(c) =
ε($v) = e(h($v)). ut

Implication and Axiomatization of Functional and Constant Constraints 15

Embedding I explicitly maps a constant constraint defined on a pattern to a
different pattern. Observe that Embedding I is applicable to equality-generating
constraints as well. However, if we apply Embedding I to a constant constraint
(P ′,E ′), then the derived constraint is always a constant constraint. The following
example illustrates the usage of Embedding I.

Example 6 If ({($a, $b)}, ($a = c)) holds, then trivially also ({($x, $y)}, ($x = c))
holds. We can derive ({($x, $y)}, ($x = c)) from ({($a, $b)}, ($a = c)) by using
Embedding I with the embedding h = {$a 7→ $x, $b 7→ $y}.

Next, we show how the initial equalization step in any chase deciding S |= C

with C a constant constraint can be simulated by the introduced inference rules.

Theorem 3 Let S be a set of constant-functional constraints, let C = (P ,E) be a

constant constraint, and let S |= C .

If Algorithm 2 is initially able to perform an equalization step with C ′ ∈ S resulting

in tableau T′′ = P ′′, then there exists a constant constraint C ′′ = (P ′′,E ′′) such that

we have the following:

1. S |= C ′′,
2. {C ′,C ′′} ` C using Rules 4, 9, 10, and 11.

Proof Without loss of generality, we can assume that φt1←↩t2 is the equalization
performed in the initial equalization step: this always holds if C ′ is a constant
constraint, and, if C ′ is a functional constraint, then we can always swap the roles
of e1 and e2. Hence, we assume that P ′′ = φt1←↩t2(P).

We distinguish two types of executions of Algorithm 2, namely those that
terminate regularly and those that terminate due to inconsistency. We divide our
analysis into these two cases.

1. Algorithm 2 terminates regularly. We define

E ′′ = {c = φt1←↩t2($v) | ((c = $v) ∈ E) ∧ (φt1←↩t2($v) ∈ V)}

and C ′′ = (P ′′,E ′′). Observe that we have E 6= E ′′ if and only if there exists an
equality (c = t2) ∈ E : if (c = t2) ∈ E and t1 ∈ V, then we have E ′′ = E ∪ {(c =
t1)} \ {(c = t2)}, and, if (c = t2) ∈ E and t1 ∈ U, then we have E ′′ = E \ {(c = t2)}.
Also observe that, if t1 ∈ U and if there exists an equality (c = t2) ∈ E , then, due
to this chase terminating regularly and S |= C , we have t1 = c.

We have C |= C ′′, since we have C ` C ′′ by a straightforward application of
Embedding I using the embedding φt1←↩t2 . By S |= C and C |= C ′′, we conclude
S |= C ′′. Next, we prove {C ′,C ′′} ` C . We do so by a case distinction on the type
of constraint C ′.

1.a. C ′ is a functional constraint. Let e1 and e2 be embeddings of ptn(C ′)
into T = P and let $r′ ∈ rhs(C ′) with t1 = e1($r′) and t2 = e2($r′), meeting
the conditions of line 9 of Algorithm 2. Since Algorithm 2 terminates regularly,
it is not possible that t1, t2 ∈ U, and, since φt1←↩t2 is the equalization performed,
it is not possible that t1 ∈ V, t2 ∈ U. Two cases remain, namely t1, t2 ∈ V and
t1 ∈ U, t2 ∈ V.

First consider the case where t1 ∈ V and t2 ∈ V. If there exists an equality
(c = t2) ∈ E , then we have E ′′ = E ∪ {(c = t1)} \ {(c = t2)}, and, if there does

16 Jelle Hellings et al.

not exist an equality (c = t2) ∈ E , then we have E ′′ = E . In both cases, we apply
Application I to conclude {C ′,C ′′} ` C . Next consider the case where t1 ∈ U and
t2 ∈ V. In this case, we have E ′′ = E \ {(t1 = t2)} and we apply Application
I to conclude {C ′,C ′′} ` (P ,E ′′ ∪ {(t1 = t2)}) and Decomposition to conclude
{C ′,C ′′} ` (P ,E ′′). If (t1 = t2) ∈ E , then C = (P ,E ′′ ∪ {(t1 = t2)}), otherwise
C = (P ,E ′′). Hence, we conclude {C ′,C ′′} ` C .

1.b. C ′ is a constant constraint. Let e be an embedding of ptn(C ′) into T = P

and let (c = $v) ∈ eq(C ′) be an equality with t1 = c and t2 = e($v), meeting
the conditions of line 12 of Algorithm 2. In this case, we have E ′′ = E \ {(t1 =
t2)}. We apply Application II to conclude {C ′,C ′′} ` (P ,E ′′ ∪ {(t1 = t2)}) and
Decomposition to conclude {C ′,C ′′} ` (P ,E ′′). If (t1 = t2) ∈ E , then C = (P ,E ′′∪
{(t1 = t2)}), otherwise C = (P ,E ′′). Hence, we conclude {C ′,C ′′} ` C .

2. Algorithm 2 terminates due to inconsistency. Let $w ∈ VP ′′ be a variable
and let c1, c2 ∈ U be constants with c1 6= c2. We define E ′′ = {(c1 = $w), (c2 = $w)}
and C ′′ = (P ′′,E ′′). Chasing pattern P ′′ using S will lead to inconsistency, hence,
S |= C ′′. Next, we prove {C ′,C ′′} ` C . We do so by a case distinction on the type
of constraint C ′.

2.a. C ′ is a functional constraint. Let e1 and e2 be embeddings of ptn(C ′)
into T = P and let $r′ ∈ rhs(C ′) with t1 = e1($r′) and t2 = e2($r′), meeting the
conditions of line 9 of Algorithm 2. We apply Application I to conclude (P ,E ′′)
and Inconsistent Propagation to conclude {C ′,C ′′} ` C .

2.b. C ′ is a constant constraint. Let e be an embedding of ptn(C ′) into T = P

and let (c = $v) ∈ eq(C ′) be an equality with t1 = c and t2 = e($v), meeting
the conditions of line 12 of Algorithm 2. We apply Application II to conclude
{C ′,C ′′} ` (P ,E ′′ ∪ {(c = $v)}), Decomposition to conclude (P ,E ′′), and Incon-
sistent Propagation to conclude {C ′,C ′′} ` C .

This case analysis completes the proof. ut

5.3 Inference rules for deriving functional constraints

For chases deciding S |= C with C a constant constraint, there is a direct cor-
respondence between the tableau T and patterns of constant constraints. In Sec-
tion 5.2, we showed that we can use this correspondence to derive inference rules
simulating the initial equalization step.

For chases deciding S |= C with C = (P ,L→ R) a functional constraint, such a
direct correspondence between the tableau T and patterns of functional constraints
does not exist. Line 3 of Algorithm 2 does however give an initial correspondence
between the tableau T and the maximally double pattern of P and L. A single
equalization step can however destroy any correspondence between the tableau
T and any maximally double pattern that is useful in derivations of non-trivial
functional constraints, as shown by the next example.

Example 7 We apply Algorithm 2 to the set of constraints

S = {({($a, $b, $c)}, $b→ $c), ({($a, $b, $c), ($a, $d, e)}, $a→ $b)}

and the target functional constraint C = ({($a, $b, $c), ($a, $b, e)}, $a → $b). It is
straightforward to verify S |= C . We initially have the tableau

T = {($a, $b1, $c1), ($a, $b1, e), ($a, $b2, $c2), ($a, $b2, e)} .

Implication and Axiomatization of Functional and Constant Constraints 17

We have ({($a, $b, $c)}, $b→ $c) 6|≡ T, leading to the equalization φe←↩$c1(T) which
results in the tableau

T′ = {($a, $b1, e), ($a, $b2, $c2), ($a, $b2, e)} .

Using the definition of a maximally double pattern, we can search for a pattern
P ′, set of variables L′ ⊆ VP ′ , and injective functions f1 and f2 such that T′ =
f1(P ′) ∪ f2(P ′), f1 =L′∪idU f2, and range(f1|VP′\L′) ∩ range(f2|VP′\L′) = ∅. It is

easily verifiable that the only way to achieve this is by putting P ′ = T′, f1 = f2 =
idVP′∪U , and L′ = {$a, $b1, $b2, $c2}. Since L′ = VP ′ , any functional constraint of
the form (P ′,L′ → R′) will have R′ ⊆ L′, and, hence, holds trivially.

We can however always maintain a direct correspondence between tableau T
and a maximally double pattern that is useful in derivations and we can do so in
at most two equalization steps, as shown next. Theorem 4 is visualized in Figure 2.

Theorem 4 Let S be a set of constant-functional constraints, let C = (P ,L→ R) be

a functional constraint, let D = f1(P) ∪ f2(P) be the maximally double pattern of P

and L, and let S |= C .

If T = D and an equalization step with C ′ ∈ S is possible, then also a sequence of

at most two equalization steps with C ′ is possible that results in a tableau T′′ = D ′′ =
f ′′1 (P ′′)∪f ′′2 (P ′′), a maximally double pattern of P ′′ and L′′ with L′′ ⊆ VP ′′ , such that

there is a mapping m with f ′′1 (P ′′) = m(f1(P)) and f ′′2 (P ′′) = m(f2(P)).

Proof First, we consider all the cases in which C ′ = (P ′,L′ → R′) is a functional
constraint. Let $r′ ∈ R′ be a variable and let e1 and e2 be a pair of embeddings
of P ′ into T = D with e1 =L′ e2 and e1($r′) 6= e2($r′), meeting the conditions of
line 9 of Algorithm 2. Since an equalization step is performed, we have e1($r′) 6∈ U
or e2($r′) 6∈ U.

We can swap the roles of both f1, f2, and e1, e2. Hence, without loss of gener-
ality, we can assume that e1($r′) = f1(t) with t ∈ TP , and, for $v ∈ VP , e2($r′) =
f1($v) or e2($r′) = f2($v). First, we consider the cases in which e2($r′) = f1($v).

1. t ∈ L∪U and $v ∈ L. Since $v ∈ L, we have f1($v) = f2($v). Let φf1(t)←↩f1($v)
be the equalization performed by the initial equalization step using C ′ and em-
beddings e1 and e2, resulting in the tableau φf1(t)←↩f1($v)(f1(P)∪ f2(P)), which is
equivalent to the tableau

T′′ = (φf1(t)←↩f1($v) ◦ f1(P)) ∪ (φf1(t)←↩f1($v) ◦ f2(P)).

By construction, φf1(t)←↩f1($v) ◦ f1 and φf1(t)←↩f1($v) ◦ f2 are embeddings of P into
T′′ that agree on L′′ = φt←↩$v(L)∩V = L \ {$v} and, for all t ∈ TP \ {$v}, are equal
to f1 and f2. Hence, we can put P ′′ = φt←↩$v(P), f ′′1 = f1|TP′′ , f

′′
2 = f2|TP′′ , and

m = φf1(t)←↩f1($v).
2. t ∈ VP ∪ U and $v 6∈ L. Since P , f1(P), and f2(P) are isomorphic, and f1

and f2 are bijections mapping constants to themselves and variables to variables,
the functions ε1 = Φf2←↩f1 ◦ e1 and ε2 = Φf2←↩f1 ◦ e2 are well-defined and are
embeddings of P ′ into f2(P) that agree on L′. Hence, by construction, f2(t) =
ε1($r′) 6= ε2($r′) = f2($v). Let φf1(t)←↩f1($v) be the equalization performed by the
initial equalization step using C ′ and embeddings e1 and e2, resulting in the tableau

18 Jelle Hellings et al.

φf1(t)←↩f1($v)(f1(P) ∪ f2(P)). Since f1($v) 6∈ range(f2), this tableau is equivalent
to the tableau

T′ = (φf1(t)←↩f1($v) ◦ f1(P)) ∪ f2(P).

Hence, f2(P) is unaffected by the initial equalization step and thus a second equal-
ization step is possible using functional constraint C ′ and embeddings ε1 and ε2.

Performing this second equalization φf2(t)←↩f2($v) on T′ results in the tableau
φf2(t)←↩f2($v)(φf1(t)←↩f1($v)(f1(P) ∪ f2(P))). Since f2($v) 6∈ range(f1), this tableau
is equivalent to the tableau

T′′ = (φf1(t)←↩f1($v),f2(t)←↩f2($v) ◦ f1(P)) ∪ (φf1(t)←↩f1($v),f2(t)←↩f2($v) ◦ f2(P)).

By construction, φf1(t)←↩f1($v),f2(t)←↩f2($v) ◦ f1 and φf1(t)←↩f1($v),f2(t)←↩f2($v) ◦ f2
are embeddings of P into T′′ that agree on L′′ = φt←↩$v(L) ∩ V = L and, for
all t ∈ TP \ {$v}, are equal to f1 and f2. Hence, we can put P ′′ = φt←↩$v(P),
f ′′1 = f1|TP′′ , f

′′
2 = f2|TP′′ , and m = φf1(t)←↩f1($v),f2(t)←↩f2($v).

Next we consider the cases in which e2($r′) = f2($v).

3. e1($r′) = f1($v). From e1($r′) = f1($v), e2($r′) = f2($v), and e1($r′) 6=
e2($r′), we conclude that $v 6∈ L. Let φf1($v)←↩f2($v) be the equalization performed
by the initial equalization step using C ′ and embeddings e1 and e2, resulting in
the tableau φf1($v)←↩f2($v)(f1(P) ∪ f2(P)), which is equivalent to the tableau

T′′ = (φf1($v)←↩f2($v) ◦ f1(P)) ∪ (φf1($v)←↩f2($v) ◦ f2(P)).

By construction, φf1($v)←↩f2($v) ◦ f1 and φf1($v)←↩f2($v) ◦ f2 are embeddings of P

into T′′ that agree on L′′ = L ∪ {$v} and, for all t ∈ TP \ {$v}, are equal to f1 and
f2. Hence, we can put P ′′ = P , f ′′1 = φf1($v)←↩f2($v) ◦ f1, f ′′2 = φf1($v)←↩f2($v) ◦ f2,
and m = φf1($v)←↩f2($v).

4. e1($r′) = f1(t) 6= f1($v). Since P , f1(P), and f2(P) are isomorphic and f1
and f2 are bijections mapping constants to themselves and variables to variables,
the functions ε1 = Φf1←↩f2 ◦e1 and ε2 = Φf1←↩f2 ◦e2 are well-defined and are embed-
dings of P ′ into f1(P) with ε1 =L′ ε2. Since e1($r′) = f1(t) and e2($r′) = f2($v)
with t 6= $v, we have e1($r′) = f1(t) = ε1($r′) 6= ε2($r′) = f1($v). Hence, if the
equalization step with C ′, e1, and e2 is initially possible, then also an equalization
step with C ′, ε1, and ε2 is possible. We choose to perform the equalization step
with C ′, ε1, and ε2 instead. Hence, we reduce this case to the cases 1 and 2.

Finally, we consider all the cases in which C ′ = (P ′,E ′) is a constant constraint.
Let (c = $v′) ∈ E ′ be an equality and let e be an embedding of P ′ into T = P ′′ with
c 6= e($v′), meeting the conditions of line 12 of Algorithm 2. Since an equalization
step is performed, we have e($v′) 6∈ U. Since we can swap the roles of f1 and f2,
we can assume, without loss of generality, that e($v′) = f1($v) with $v ∈ VP . This
yields us two cases, namely $v ∈ L or $v 6∈ L.

5. $v ∈ L. Since $v ∈ L, we have f1($v) = f2($v). Let φc←↩f1($v) be the equaliza-
tion performed by the initial equalization step using C ′ and embedding e, resulting
in the tableau φc←↩f1($v)(f1(P) ∪ f2(P)), which is equivalent to the tableau

T′′ = (φc←↩f1($v) ◦ f1(P)) ∪ (φc←↩f1($v) ◦ f2(P)).

Implication and Axiomatization of Functional and Constant Constraints 19

By construction, the functions φc←↩f1($v) ◦ f1 and φc←↩f1($v) ◦ f2 are embeddings of
P into T′′ that agree on L′′ = φc←↩$v(L)∩V = L\{$v} and, for all t ∈ TP \{$v}, are
equal to f1 and f2. Hence, we can put P ′′ = φc←↩$v(P), f ′′1 = f1|TP′′ , f

′′
2 = f2|TP′′ ,

and m = φc←↩f1($v).
6. $v 6∈ L. Since P , f1(P), and f2(P) are isomorphic, and f1 and f2 are bi-

jections mapping constants to themselves and variables to variables, the function
ε = Φf2←↩f1 ◦e is well-defined and is an embedding of P ′ into f2(P) with ε($v′) 6= c.
Hence, by construction, ε($v′) = f2($v). Let φc←↩f1($v) be the equalization per-
formed by the initial equalization step using C ′ and embedding e, resulting in
the tableau φc←↩f1($v)(f1(P) ∪ f2(P)). Since f1($v) 6∈ range(f2), this tableau is
equivalent to the tableau

T′ = (φc←↩f1($v) ◦ f1(P)) ∪ f2(P).

Hence f2(P) is unaffected by the initial equalization step and thus a second equal-
ization step is possible using constant constraint C ′ and embedding ε.

Performing this second equalization φc←↩f2($v) on T′ results in the tableau
φc←↩f2($v)(φc←↩f1($v)(f1(P) ∪ f2(P))). Since f2($v) 6∈ range(f1), this tableau is
equivalent to the tableau

T′′ = (φc←↩f1($v),c←↩f2($v) ◦ f1(P)) ∪ (φc←↩f1($v),c←↩f2($v) ◦ f2(P)).

By construction, φc←↩f1($v),c←↩f2($v)◦f1 and φc←↩f1($v),c←↩f2($v)◦f2 are embeddings
of P into T′′ that agree on L′′ = φc←↩$v(L) ∩ V = L and, for all t ∈ TP \ {$v}, are
equal to f1 and f2. Hence, we can put P ′′ = φc←↩$v(P), f ′′1 = f1|TP′′ , f

′′
2 = f2|TP′′ ,

and m = φc←↩f1($v),c←↩f2($v).

This case analysis completes the proof. ut

We refer to the sequence of at most two equalization steps performed in Cases 1,
2, 3, 5, and 6 of Theorem 4 as a symmetry-preserving step of type 1, 2, 3, 5,
and 6, respectively. The name “symmetry-preserving” reflects that this sequence
of equalization steps maintains the symmetry between the parts in the tableau
originating from f1(P) and f2(P), as illustrated in Figure 2. Notice that we do
not consider equalization steps performed by Case 4 of Theorem 4. In this case,
we have shown that we can always perform other equalization steps that can be
represented by a symmetry-preserving step of type 1 or 2.

Observe that the initial tableau in a chase deciding S |= C , with C a func-
tional constraint, is a maximally double pattern of ptn(C) and lhs(C). Hence, if
equalization steps are possible, then we can apply Theorem 4 inductively to yield
a sequence of symmetry-preserving steps that ends when no further equalization
steps are possible. We refer to such chases performing only symmetry-preserving
steps as symmetry-preserving chases.

Corollary 2 Let S be a set of constant-functional constraints, let C = (P ,L → R)
be a functional constraint. If S |= C , then there is a symmetry-preserving chase that

decides S |= C .

For simulating the initial symmetry-preserving step in a chase deciding S |= C

with C a functional constraint, we use the following three inference rules.

20 Jelle Hellings et al.

D D ′′ = m(D)

P P ′′
f1

f2

f ′′1

f ′′2

m

Fig. 2 Visualization of a symmetry-preserving step performed on the maximally double pat-
tern D = f1(P) ∪ f2(P) of P and L with L ⊆ VP , resulting in the maximally double pattern
D ′′ = f ′′1 (P ′′) ∪ f ′′2 (P ′′) of P ′′ and L′′ with L′′ ⊆ VP′′ . Since the mapping m is symmetry-
preserving, the symmetry between f1(P) and f2(P) is maintained: structural changes are ap-
plied symmetrically to both halves of D . Hence, m maps each half of D to the corresponding
half of D ′′.

Rule 13 (Application III) Let P be a pattern, let $v ∈ VP be a variable, and let

t ∈ VP ∪U be a term. If (φt←↩$v(P), φt←↩$v(L)∩V → φt←↩$v(R)∩V), if (P ′,L′ → R′),

and if there is a pair of embeddings of P ′ into P that agree on L′ and map $r′ ∈ R′ to

t and $v, respectively, then (P ,L→ R).

Proof (soundness) Let R be a relation with R |≡ (φt←↩$v(P), φt←↩$v(L) ∩ V →
φt←↩$v(R) ∩ V) and R |≡ (P ′,L′ → R′), and assume there are embeddings of P

into R. Let e1 and e2 be any pair of embeddings of P into R with e1 =L e2, and
let e′1 and e′2 be embeddings of P ′ into P that agree on L′ and map $r′ ∈ R′ to t

and $v, respectively. Now, g1 = e1 ◦ e′1 and g2 = e1 ◦ e′2 are embeddings of P ′ into
R with g1 =L′ g2. By R |≡ (P ′,L′ → R′), we have g1($r′) = g2($r′), and, by con-
struction, we have g1($r′) = e1(t) and g2($r′) = e1($v), and, hence, e1($v) = e1(t).
In a similar way, we obtain e2($v) = e2(t).

As a consequence, ε1 = e1|domain(e1)\{$v} and ε2 = e2|domain(e2)\{$v} are em-
beddings of φt←↩$v(P) into R. By construction, we have ε1 =φt←↩$v(L) ε2 and,
hence, ε1 =φt←↩$v(L)∩V ε2. By R |≡ (φt←↩$v(P), φt←↩$v(L) ∩ V → φt←↩$v(R) ∩ V), we
conclude ε1 =φt←↩$v(R)∩V ε2. If $v 6∈ R, then R = φt←↩$v(R)∩V and thus e1 =R e2.
In the other case, when $v ∈ R, we have e1($v) = ε1(t) and e2($v) = ε2(t). As t is
either a constant or t ∈ φt←↩$v(R) ∩ V, we have ε1(t) = ε2(t). Hence, in both cases
we have e1 =R e2, and we conclude R |≡ (P ,L→ R). ut

Rule 14 (Application IV) Let P be a pattern, let $v ∈ VP be a variable, and let

c ∈ U be a constant. If (φc←↩$v(P), φc←↩$v(L) ∩ V → φc←↩$v(R) ∩ V), if (P ′,E ′) with

(c = $v′) ∈ E ′, and if there is an embedding of P ′ into P mapping $v′ to $v, then

(P ,L→ R).

Proof (soundness) Let R be a relation with R |≡ (φc←↩$v(P), φc←↩$v(L) ∩ V →
φc←↩$v(R) ∩ V) and R |≡ (P ′,E ′) and assume there are embeddings of P into
R. Let e1 and e2 be any pair of embeddings of P into R with e1 =L e2, and let e′

be an embedding of P ′ into P mapping $v′ to $v. Now, e′′1 = e1 ◦ e′ and e′′2 = e2 ◦ e′
are embeddings of P ′ into R. By R |≡ (P ′,E ′), we have c = e′′1($v′) = e′′2($v′) and,
by construction, we have c = e′′($v′) = e1($v) and c = e′′2($v′) = e2($v), and thus
c = e1($v) = e2($v).

As a consequence, ε1 = e1|domain(e1)\{$v} and ε2 = e2|domain(e2)\{$v} are em-
beddings of φc←↩$v(P) into R. By construction, we have ε1 =φc←↩$v(L) ε2 and,
hence, ε1 =φc←↩$v(L)∩V ε2. By R |≡ (φc←↩$v(P), φc←↩$v(L)∩V → φc←↩$v(R)∩V), we

Implication and Axiomatization of Functional and Constant Constraints 21

conclude ε1 =φc←↩$v(R)∩V ε2. If $v 6∈ R, then R = φc←↩$v(R)∩V and thus e1 =R e2.
In the other case, when $v ∈ R, we already have e1($v) = e2($v) = c. Hence, in
both cases we have e1 =R e2, and we conclude R |≡ (P ,L→ R). ut

The following example exhibits situations in which the Application III and IV
rules can be used.

Example 8 Using Application III, we can derive

{({($a, $b, $c)}, $a→ $b), ({($a, b, $c), ($a, b, d)}, $a→ $c)} `
({($a, b, $c), ($a, $b, d)}, $a→ $c)

by using the embeddings

e1 = {$a 7→ $a, $b 7→ b, $c 7→ $c}
e2 = {$a 7→ $a, $b 7→ $b, $c 7→ d}.

Using Application IV, we can derive

{({($a, $b, $c)}, (c = $c)), ({($a, $b, c)}, $a→ $b)} ` ({($a, $b, $c)}, $a→ $b)

by using the embedding e′ = {$a 7→ $a, $b 7→ $b, $c 7→ $c}.
If (P , (c = $v)) is a constant constraint, then, using Application IV, we can

also derive (P , ∅ → $v) by using the identity on VP ∪ U as the embedding e′ of P

onto itself.

Rule 15 (Functional Consequence) Let P be a pattern and let L ⊆ VP be a set of

variables. If (P ′,L′ → R′) and P ′ has a pair of embeddings into the maximally double

pattern f1(P)∪ f2(P) of P and L, agreeing on L′ and mapping $r′ ∈ R′ to f1($v) and

f2($v), respectively, then (P ,L→ $v).

Proof (soundness) LetR be a relation withR |≡ (P ′,L′ → R′), and assume there are
embeddings of P into R. Let e1 and e2 be any pair of embeddings of P into R with
e1 =L e2. Let f1(P) ∪ f2(P) be the maximally double pattern of P and L. Let e′1
and e′2 be embeddings of P ′ into f1(P)∪f2(P) with e′1 =L′ e

′
2, e′1($r′) = f1($v), and

e′2($r′) = f2($v). As f1 and f2 are bijections, the functions ε1 = Φe1←↩f1◦Φe2←↩f2◦e
′
1

and ε2 = Φe1←↩f1 ◦ Φe2←↩f2 ◦ e
′
2 are well-defined and are embeddings of P ′ into R.

By construction, we have ε1 =L′ ε2, ε1($r′) = e1($v), and ε2($r′) = e2($v). Hence,
by R |≡ (P ′,L′ → R′), e1($v) = ε1($r′) = ε2($r′) = e2($v). ut

The following example exhibits situations in which the Functional Consequence
rule can be used.

Example 9 We can derive

({($a, $b, $c), ($x, $y, $z)}, $b→ $z) ` ({($a, $b, $c), ($x, $y, $z)}, ∅ → $z)

using Functional Consequence. We have the maximally double pattern

{($a1, $b1, $c1), ($x1, $y1, $z1), ($a2, $b2, $c2), ($x2, $y2, $z2)}

22 Jelle Hellings et al.

of {($a, $b, $c), ($x, $y, $z)} and ∅. We use the embeddings

e1 = {$a 7→ $a1, $b 7→ $b1, $c 7→ $c1, $x 7→ $x1, $y 7→ $y1, $z 7→ $z1}
e2 = {$a 7→ $a1, $b 7→ $b1, $c 7→ $c1, $x 7→ $x2, $y 7→ $y2, $z 7→ $z2}.

We thus have e1 =$b e2, e1($z) = $z1 and e2($z) = $z2. Hence, using Functional
Consequence, we conclude ({($a, $b, $c), ($x, $y, $z)}, ∅ → $z).

Notice that there is a relationship between the Functional Consequence rule
and the well-known join dependencies [2] and multivalued dependencies [6]. In
this example, the possible embeddings of the pattern {($a, $b, $c), ($x, $y, $z)}
can be represented by a relational table T with schema R(A,B,C,X, Y, Z). Due
to the construction of T , the join dependency ABC ./ XY Z holds on T . This
join dependency is equivalent to the multivalued dependency ∅ � ABC. Due to
({($a, $b, $c), ($x, $y, $z)}, $b → $z), the functional dependency B → Z also holds
on T , and, hence, ABC → Z holds. Using the well-known derivation rules for
functional dependencies and multivalued dependencies, we conclude ∅ → Z.

Before we show how the initial equalization step in any chase deciding S |= C

with C a functional constraint can be simulated by the introduced inference rules,
we introduce an additional inference rule to simplify our proofs:

Rule 16 (Embedding II) If (P ′,L′ → R′) and h is an embedding from P ′ into P,

then (P , h(L′) ∩ V → h(R′) ∩ V).

Proof (soundness) Let R be a relation with R |≡ (P ′,L′ → R′), and assume there
are embeddings of P into R. Let e1 and e2 be any pair of embeddings of P into
R with e1 =h(L′)∩V e2. Then, ε1 = e1 ◦ h and ε2 = e2 ◦ h are embeddings of P ′

into R. As embeddings always agree on constants and e1 =h(L′)∩V e2, we have
e1 =h(L′) e2 and, hence, also ε1 =L′ ε2. By R |≡ (P ′,L′ → R′), we have ε1 =R′ ε2.
As a consequence, we have e1 =h(R′) e2 and, hence, also e1 =h(R′)∩V e2. ut

Embedding II explicitly maps a functional constraint defined on a pattern to
a different pattern. The following example illustrates this.

Example 10 If ({($a, $b)}, $a → $b) holds, then trivially also ({($c, $d)}, $c → $d)
holds. We can derive ({($c, $d)}, $c → $d) from ({($a, $b)}, $a → $b) by using
Embedding II with the embedding h = {$a 7→ $c, $b 7→ $d}.

Next, we show how the initial symmetry-preserving step in any symmetry-
preserving chase deciding S |= C with C a functional constraint can be simulated
by the introduced inference rules.

Theorem 5 Let S be a set of constant-functional constraints, let C = (P ,L→ R) be

a functional constraint, and let S |= C .

If Algorithm 2 is initially able to perform a symmetry-preserving step with C ′ ∈ S
resulting in tableau T′′ = f ′′1 (P ′′)∪f ′′2 (P ′′), which is the maximally double pattern of P ′′

and L′′ with L′′ ⊆ VP ′′ , then there exists a functional constraint C ′′ = (P ′′,L′′ → R′′)
such that we have the following:

1. C |= C ′′,
2. {C ′,C ′′} ` C using Rules 2, 3, 13, 14, and 15.

Implication and Axiomatization of Functional and Constant Constraints 23

Proof Initially, we have T = f1(P) ∪ f2(P), a maximally double pattern of P and
L. By Theorem 4, the initial symmetry-preserving step with constraint C ′ results
in tableau T′′ = f ′′1 (P ′′)∪ f ′′2 (P ′′), a maximally double pattern of P ′′ and L′′, such
that f ′′1 (P ′′) = m(f1(P)) and f ′′2 (P ′′) = m(f2(P)) for some mapping m. We make
a case distinction on the type of symmetry-preserving step initially performed.

1. The initial symmetry-preserving step is of type 1 or 2. Let C ′ = (P ′,L′ →
R′), let $r′ ∈ R′, and let e1 and e2 be the embeddings of P ′ into T with e1($r′) =
f1(t) and e2($r′) = f1($v), as in the proof of Theorem 4.

We choose C ′′ = (φt←↩$v(P), φt←↩$v(L) ∩ V → φt←↩$v(R) ∩ V). First, we have
C |= C ′′, since we have C ` C ′′ by a straightforward application of Embedding II
with the embedding φt←↩$v. The functions ε1 = f1

−1 ◦Φf1←↩f2 ◦ e1 and ε2 = f1
−1 ◦

Φf1←↩f2 ◦e2 are well-defined and are embeddings of P ′ into P with, by construction,
ε1 =L ε2, ε1($r′) = t, and ε2($r′) = $v. Hence, we can apply Application III using
embeddings ε1 and ε2, and variable $r′ to derive {C ′,C ′′} ` C .

2. The initial symmetry-preserving step is of type 3. Let C ′ = (P ′,L′ → R′),
let $r′ ∈ R′, and let e1 and e2 be the embeddings of P ′ into T with e1($r′) = f1($v)
and e2($r′) = f2($v), as in the proof of Theorem 4.

We choose C ′′ = (P ,L ∪ {$v} → R). First, we have C |= C ′′, since we have
C ` C ′′ by a straightforward application of Augmentation, Decomposition, and
Union. A straightforward application of Functional Consequence with e1, e2, and
$v yields C ′ ` (P ,L→ $v). Using Augmentation, we obtain C ′ ` (P ,L→ L∪{$v}),
and, hence, using Transitivity, {C ′,C ′′} ` C .

3. The initial symmetry-preserving step is of type 5 or 6. Let C ′ = (P ′,E ′),
let (c = $v′) ∈ E ′, and let e be the embedding of P ′ into T with e($v′) 6= f1($v),
as in the proof of Theorem 4.

We choose C ′′ = (φc←↩$v(P), φc←↩$v(L) ∩ V → φc←↩$v(R) ∩ V). First, we have
C |= C ′′, since we have C ` C ′′ by a straightforward application of Embedding II
with the embedding φc←↩$v. The function ε = f1

−1 ◦Φf1←↩f2 ◦e is well-defined, and
is an embedding of P ′ into P with, by construction, ε($v′) = $v. Hence, we can
apply Application IV using embedding ε and variable $v′ to derive {C ′,C ′′} ` C .

This case analysis completes the proof. ut

5.4 Inference rules for constant-functional constraints

The results from Section 5.1-5.3 only concerned the simulation of direct termina-
tion in chases for constant-functional constraints, the initial equalization step in
chases for constant constraints, and the initial symmetry-preserving step in chases
for functional constraints, respectively. These results are now used as the basis
for an induction argument to extend the simulation to the entire chase, as such
showing how to translate a chase (constant constraints) or a symmetry-preserving
chase (functional constraints) to a derivation.

Proposition 6 The set of inference rules Reflexivity, Empty, Augmentation, Tran-

sitivity, Decomposition, Inconsistency I and II, Application I-IV, Inconsistent Prop-

agation, and Functional Consequence is complete for the class of constant-functional

constraints.

24 Jelle Hellings et al.

Proof Suppose that S is a set of constant-functional constraints and C is a single
constant-functional constraint with S |= C .

If initially direct termination is possible, then, by Proposition 3-5, Reflexivity,
Empty, Inconsistency I, or Inconsistency II can be used to derive C from S.

For chases performing equalization steps we make a case distinction on the
type of the constraint C .

1. C is a constant constraint. Let j > 0 be the number of equalization steps in
a shortest chase deciding S |= C . Assume, as induction hypothesis, that, if S |= C ,
with C a constant constraint, and if this can be decided by a chase performing
less than j equalization steps, then S ` C .

Choose a chase deciding S |= C in exactly j equalization steps. By Theorem 3,
there is a constant constraint C ′′ with S |= C ′′ and {C ′,C ′′} ` C using Decompo-
sition, Application I, Application II, and Inconsistent Propagation such that the
result of the initial equalization step is a tableau T′′, which is equivalent to the
initial tableau in any chase deciding S |= C ′′. Hence, the remaining chase of j − 1
equalization steps is a chase deciding S |= C ′′, and, by the induction hypothesis,
S ` C ′′. Since S ` C ′′ and {C ′,C ′′} ` C , we conclude S ` C .

2. C is a functional constraint. By Corollary 2, we only have to consider
symmetry-preserving chases. Let j > 0 be the number of symmetry-preserving
steps in a shortest symmetry-preserving chase deciding S |= C . Assume, as in-
duction hypothesis, that, if S |= C , with C a functional constraint, and if this
can be decided by a symmetry-preserving chase performing less than j symmetry-
preserving steps, then S ` C .

Choose a symmetry-preserving chase deciding S |= C in exactly j symmetry-
preserving steps. By Theorem 5, there is a functional constraint C ′′ with C |= C ′′

and {C ′,C ′′} ` C using Augmentation, Transitivity, Application III, Application
IV, and Functional Consequence such that the result of the initial symmetry-
preserving step is a tableau T′′, which is equivalent to the initial tableau in any
chase deciding S |= C ′′. Hence, the remaining chase of j − 1 symmetry-preserving
steps is a symmetry-preserving chase deciding S |= C ′′, and, by the induction
hypothesis, S ` C ′′. Since S ` C ′′ and {C ′,C ′′} ` C , we conclude S ` C .

This case analysis completes the proof. ut

Thus, the provided set of inference rules is sound and complete. Finally, we
prove that the provided set of inference rules is 2-ary and that each inference rule
is indeed decidable. As a consequence, the provided set of inference rules is an
axiomatization for the constant-functional constraints.

Theorem 6 The set of inference rules Reflexivity, Empty, Augmentation, Transitiv-

ity, Decomposition, Inconsistency I and II, Application I-IV, Inconsistent Propagation,

and Functional Consequence is an axiomatization for the class of constant-functional

constraints.

Proof Each time we introduced an inference rule, we proved its soundness. Propo-
sition 6 proves that the set of inference rules is complete for deriving constant-
functional constraints. Hence, it only remains to prove that the inference rules are
at most k-ary, for some k ≥ 0, and that applicability of each inference rule is de-
cidable. The inference rules Reflexivity and Empty are 0-ary. The inference rules

Implication and Axiomatization of Functional and Constant Constraints 25

Augmentation, Decomposition, Inconsistent Propagation and Functional Conse-
quence are 1-ary. The inference rules Transitivity, Inconsistency I and II, and
Application I-IV are 2-ary.

Applicability of an inference rule can be decided by checking if patterns are
equal, which is straightforward, or by checking if embeddings from pattern P

into Q exist that satisfy certain properties. Functionally, each embedding from a
pattern P into Q can be specified by the mapping from VP to TQ. Since VP and
TQ are finite, we can easily enumerate all possible embeddings and check whether
embeddings that satisfy the conditions of an inference rule exist. Hence, checking
if an inference rule can be applied is decidable. ut

We observe that the Embedding I and II rules are not part of the axiomati-
zation, as they are not used in the simulation of a chase. Their soundness was
only used to simplify certain proofs. Likewise, the Union rule is not part of the
axiomatization.

By carefully restricting the simulation of chases by inference rules, as presented
in Theorem 6, to either chases involving only constant constraints or chases involv-
ing only functional constraints, respectively, we can also provide axiomatizations
for only the functional constraints and only the constant constraints.

Theorem 7 The set of inference rules Reflexivity, Augmentation, Transitivity, Incon-

sistency I 2, Application III, and Functional Consequence is an axiomatization for the

class of functional constraints.

Theorem 8 The set of inference rules Empty, Decomposition, Inconsistency II 3, Ap-

plication II and Inconsistent Propagation is an axiomatization for the class of constant

constraints.

Next, we investigate the complexity of the provided axiomatization for the
constant-functional constraints.

Theorem 9 Let S be a set of constant-functional constraints and let C be a sin-

gle constant-functional constraint. If S ` C , then there is a derivation that performs

O(|Vptn(C)|) inference steps.

Proof Consider the chase deciding S |= C . At each step of the chase, the number of
distinct variables in the tableau T decreases by one. If C is a constant constraint,
then we initially have |VT| = |VP |. Hence, the chase performs at most |VP | equaliza-
tion steps and Proposition 6 provides a way to simulate each equalization step by a
bounded number of inference steps. If C is a functional constraint, then we initially
have |VT| ≤ 2|VP |. Hence, the chase performs at most 2|VP | symmetry-preserving
steps and Proposition 6 provides a way to simulate each symmetry-preserving step
by a bounded number of inference steps. ut

2 The Inconsistency I inference rule can be used to derive both functional constraints and
constant constraints. In this setting we only use Inconsistency I to derive functional constraints.

3 The Inconsistency II inference rule can be used to derive both constant constraints and
functional constraints. In this setting we only use Inconsistency II to derive constant con-
straints.

26 Jelle Hellings et al.

6 Related work

Many types of constraints have been investigated for the relational model, and
among the simplest of these constraints are the functional dependencies [13]. Func-
tional dependencies play an important role in the well-known Boyce-Codd normal
form [14] and in relational schema normalization in general. Besides the func-
tional dependencies, many other types of constraints have been investigated, and
for the relational model most of these constraints can be categorized as a subclass
of the equality-generating and/or tuple-generating dependencies [1,16,17,26,29].
The constraints studied in this work are all equality-generating. In the following,
we shall describe how the constant-functional constraints are related with other
classes of equality-generating dependencies.

For describing these relationships, we introduce some terminology to define
restrictions on the classes of functional, constant, and equality-generating con-
straints. We say that a constraint C over pattern P is typed if, for every pair
of tuples (t1, . . . , tn) ∈ P and (u1, . . . un) ∈ P , and for every pair of variables
ti ∈ VP , uj ∈ VP , we have ti = uj only if i = j. We say that a functional con-
straint (P ,L → R) is constant-free if UP = ∅. We say that an equality-generating
constraint (P ,E) is constant-free if UP = ∅ and, for every (t = u) ∈ E , t, u ∈ VP .
We say that an equality-generating constraint (P ,E) is many sorted if it is typed
and, for every (t = u) ∈ E , there exist tuples (t1, . . . , tn) ∈ P , (u1, . . . , un) ∈ P

and there exists a j, 1 ≤ j ≤ n, such that t = tj and u = uj . Lastly, we say
that an equality-generating or functional constraint C is an n-pattern constraint if
|ptn(C)| ≤ n.

Using the terminology introduced above, we can describe the relationships
between various well-known classes of equality-generating constraints. A summary
of these relationships is visualized in Figure 3. The equality-generating constraints

(EGC) and the functional constraints (FC) of Akhtar et al. [3] were both originally
introduced for the RDF data model, and have been generalized to relations of
arbitrary arity in this work. The equality-generating constraints on relations of
arbitrary arity are equivalent to the full equality-generating dependencies of Wij-
sen [31]. The equality-generating dependencies (EGD) of Beeri and Vardi [7] are
equivalent to the constant-free fragment of the equality-generating constraints.

In the literature on dependencies for the relational model, one often considers
a n-ary relation to be a subset of D1 × · · · × Dn, where Di, 1 ≤ i ≤ n, is a domain
of values disjoint from all other domains. As such, many dependencies are many-
sorted. The implication dependencies of Fagin [16] are an example, and the equality-
generating fragment of these implication dependencies are indeed equivalent to the
many-sorted and constant-free equality-generating constraints.

Also the well-known functional dependencies (FD) of Codd [13] are many-sorted.
It is straightforward to verify that the functional dependencies are also equivalent
to the typed, constant-free, 1-pattern functional constraints (1-pattern FD). Using
this relationship, it is also straightforward to verify that the functional dependen-
cies are equivalent to the constant-free, many-sorted, 2-pattern equality-generating
dependencies.

In the literature, several context-dependent generalizations of the functional
dependencies have been studied. Among them are the conditional functional depen-

dencies (CFD) of Fan et al. [21]. These dependencies allow the use of context-
dependent information in the specification of integrity constraints, and, as such,

Implication and Axiomatization of Functional and Constant Constraints 27

allow for richer tools to maintain integrity of databases. In a straightforward man-
ner, the conditional functional dependencies in normal form [21] can be shown to
be equivalent to the union of the typed, 1-pattern subset of the constant constraints

(CD) and the typed, 1-pattern functional constraints. Hence, the constant-functional

constraints are a proper untyped generalization of the conditional functional depen-
dencies towards arbitrary patterns in relations. The extended conditional functional

dependencies of Bravo et al. [9,20] have been introduced as an extension of the con-
ditional functional dependencies in which one can also express that the valuation
of an attribute (in some context) is restricted to a set of allowed values.

Example 11 Consider again the relational schema PI(name, country, cc, phone) of
Example 3. The attribute cc gives the country code, and the set of allowed values
can be restricted to all existing country calling codes.

Such an allowed set of values is however not expressible by a set of equalities
that should all hold at the same time, and, hence, these types of constraints are
not expressible by constant-functional constraints.

Another example of constraints that allow the specification of context-depen-
dent information are the qualified functional dependencies (QFD) of He et al. [24].
The qualified functional dependencies introduce a convenient syntax to specify
context-dependent functional dependencies on several relations with equivalent
schemas in a straightforward manner. It is straightforward to show that each qual-
ified functional dependency holding on each individual relation can be expressed
by a set of typed, 1-pattern functional constraints on the relation, and vice versa.
Hence, the qualified functional dependencies are also equivalent to the functional
part of the conditional functional dependencies.

For the RDF and XML graph data models, a large body of work on the integrity
of data focuses on the schema of the data. Examples are RDF Schema [18] and,
for the XML data model, DTDs [10] and XSDs [19]. The usage of dependency-like
constraints is less common for these data-models although initial steps have been
made (e.g., [3,4,11,12,22,23,27,28,30,32]).

We repeat that functional constraints were originally introduced for the RDF
data model [3,15]. Besides this obvious relationship with the RDF data model,
the concept of applying functional dependencies or functional-like dependencies to
a view on the data plays a major role in other proposals for constraints for the
RDF and XML data models. A clear and recent example are the XML Constraints

based on XML-to-relational mappings of Niewerth et al. [28], who studied functional
dependencies over tree patterns. Specifically, the tree patterns using only edges
are equivalent to patterns, as we consider them, over the edge relation of XML
documents.

7 Conclusions and future work

Starting from functional and equality-generating constraints for the RDF data
model, we studied constant-functional constraints on arbitrary relations. As our
main result, we prove the existence of a sound and complete axiomatization for
the constant-functional constraints. This axiomatization can easily be specialized
to only deal with functional constraints; hence our results solve a major open
problem in the work of Akhtar et al. [3] on functional constraints for the RDF data

28 Jelle Hellings et al.

constant-free with constants

not typed

typed

EGC

EGC
(typed)

CFC

FC CC

EGD

FC
(constant-free)

ID
(EGD)

QFD

CFD

CD

n-pattern FD

1-pattern FD

FD

Fig. 3 Overview of the various classes of constraints. Directed edges from a class C1 to another
class C2 express inclusion of C1 into C2, meaning that every constraint in C1 is expressible by
a set of constraints in C2.

model. The major result leading to the axiomatization of the constant-functional
constraints is that chases for functional constraints can always be normalized to
symmetry-preserving chases.

We believe that our work provides a promising formal basis for reasoning about
constant-functional constraints. As for future work, several open problems remain.

Firstly, for several types of equality-generating constraints, it is known whether
Armstrong-like relations [5,16] exist. An Armstrong-like relation R for a set of
constraints S satisfies constraint C if and only if S |= C . For both the equality-
generating constraints and the constant-functional constraints, it is unknown un-
der which conditions Armstrong-like relations exist.

Secondly, the addition of constant constraints to the functional constraints also
introduced the possibility to define a set of inconsistent constraints, such that no
non-empty relation can satisfy the constraints. An example is the set

{({($a, $b, $c)}, (c1 = $c)), ({($a, $b, $c)}, (c2 = $c))}.

Being able to decide consistency of a set of constraints is useful. Inconsistent sets
of constraints are not very useful in practice and might even hint at a mistake in
the definition of one or more constraints. The complexity to decide consistency of
a set of constraints S is unknown, however.

Implication and Axiomatization of Functional and Constant Constraints 29

Thirdly, the exact complexity of the implication problem for constant-funct-
ional constraints is not yet known. However, the relationship with conditional func-
tional dependencies already provides lower bounds for the complexity of the con-
sistency problem and the implication problem: for the conditional functional de-
pendencies, these problems are NP-complete and coNP-complete, respectively [21].

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases. ACM

Transactions on Database Systems 4(3), 297–314 (1979)

3. Akhtar, W., Cortés-Calabuig, Á., Paredaens, J.: Constraints in RDF. In: Semantics in
Data and Knowledge Bases, Lecture Notes in Computer Science, vol. 6834, pp. 23–39.
Springer (2011)

4. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Transactions on
Database Systems 29(1), 195–232 (2004)

5. Armstrong, W.W.: Dependency structures of data base relationships. In: Information
Processing 74, pp. 580–583 (1974)

6. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and multi-
valued dependencies in database relations. In: Proceedings of the 1977 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’77, pp. 47–61 (1977)

7. Beeri, C., Vardi, M.: The implication problem for data dependencies. In: Automata,
Languages and Programming, Lecture Notes in Computer Science, vol. 115, pp. 73–85.
Springer (1981)

8. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of the ACM
31(4), 718–741 (1984)

9. Bravo, L., Fan, W., Geerts, F., Ma, S.: Increasing the expressivity of conditional functional
dependencies without extra complexity. In: ICDE ’08 Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, pp. 516–525 (2008)

10. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible markup
language (XML) 1.0 (fifth edition), W3C recommendation 26 november 2008. URL
http://www.w3.org/TR/2008/REC-xml-20081126/

11. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Keys for XML. Computer
Networks 39(5), 473–487 (2002)

12. Calbimonte, J.P., Porto, F., Keet, C.M.: Functional dependencies in OWL ABOX. In:
XXIV Simpósio Brasileiro de Banco de Dados, pp. 16–30 (2009)

13. Codd, E.F.: Relational completeness of data base sublanguages. Tech. Rep. RJ 987, IBM
Research Laboratory, San Jose, California (1972)

14. Codd, E.F.: Recent investigations in relational data base systems. In: Information Pro-
cessing 74, pp. 1017–1021 (1974)

15. Cortés-Calabuig, A., Paredaens, J.: Semantics of constraints in RDFS. In: Proceedings of
the 6th Alberto Mendelzon International Workshop on Foundations of Data Management,
pp. 75–90 (2012)

16. Fagin, R.: Horn clauses and database dependencies. Journal of the ACM 29(4), 952–985
(1982)

17. Fagin, R., Vardi, M.Y.: The theory of data dependencies—a survey. In: Mathematics of
Information Processing, Proceedings of Symposia in Applied Mathematics, vol. 34, pp.
19–71. American Mathematical Society (1986)

18. Fallside, D.C., Walmsley, P.: RDF schema 1.1, W3C recommendation 25 february 2014.
URL http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

19. Fallside, D.C., Walmsley, P.: XML schema part 0: Primer second edition, W3C recommen-
dation 28 october 2004. URL http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

20. Fan, W., Geerts, F., Jia, X.: Conditional dependencies: A principled approach to improving
data quality. In: Dataspace: The Final Frontier, Lecture Notes in Computer Science, vol.
5588, pp. 8–20. Springer (2009)

21. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for
capturing data inconsistencies. ACM Transactions on Database Systems 33(2), 6:1–6:48
(2008)

30 Jelle Hellings et al.

22. Hartmann, S., Link, S.: More functional dependencies for XML. In: Advances in Databases
and Information Systems, Lecture Notes in Computer Science, vol. 2798, pp. 355–369.
Springer (2003)

23. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment. ACM
Transactions on Database Systems 34(2), 10:1–10:33 (2009)

24. He, Q., Ling, T.W.: Extending and inferring functional dependencies in schema transfor-
mation. In: Proceedings of the Thirteenth ACM International Conference on Information
and Knowledge Management, CIKM ’04, pp. 12–21. ACM (2004)

25. Hellings, J., Gyssens, M., Paredaens, J., Wu, Y.: Implication and axiomatization of func-
tional constraints on patterns with an application to the RDF data model. In: Foundations
of Information and Knowledge Systems, Lecture Notes in Computer Science, vol. 8367,
pp. 250–269. Springer (2014)

26. Kanellakis, P.C.: Elements of relational database theory. Tech. Rep. CS-89-39, Brown
University (1989)

27. Lausen, G., Meier, M., Schmidt, M.: SPARQLing constraints for RDF. In: Proceedings
of the 11th International Conference on Extending Database Technology: Advances in
Database Technology, EDBT ’08, pp. 499–509 (2008)

28. Niewerth, M., Schwentick, T.: Reasoning about XML constraints based on XML-to-
relational mappings. In: ICDT, pp. 72–83 (2014)

29. Vardi, M.Y.: Fundamentals of dependency theory. In: Trends in Theoretical Computer
Science, Principles of Computer Science Series, vol. 34, pp. 171–224. Computer Science
Press (1987)

30. Vincent, M.W., Liu, J., Mohania, M.: The implication problem for ‘closest node’ functional
dependencies in complete XML documents. Journal of Computer and System Sciences
78(4), 1045–1098 (2012)

31. Wijsen, J.: Database repairing using updates. ACM Transactions on Database Systems
30(3), 722–768 (2005)

32. Yu, Y., Heflin, J.: Extending functional dependency to detect abnormal data in RDF
graphs. In: The Semantic Web ISWC 2011, Lecture Notes in Computer Science, vol.
7031, pp. 794–809. Springer (2011)

