
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Weaker Forms of Monotonicity for Declarative Networking: A More

Fine-Grained Answer to the CALM-Conjecture

Peer-reviewed author version

AMELOOT, Tom; KETSMAN, Bas; NEVEN, Frank & Zinn, Daniel (2016) Weaker

Forms of Monotonicity for Declarative Networking: A More Fine-Grained Answer to

the CALM-Conjecture. In: ACM TRANSACTIONS ON DATABASE SYSTEMS, 40 (4).

DOI: 10.1145/2809784

Handle: http://hdl.handle.net/1942/21061

Weaker Forms of Monotonicity for Declarative

Networking:

a More Fine-grained Answer to the

CALM-conjecture

Tom J. Ameloot∗ Bas Ketsman† Frank Neven
Daniel Zinn

February 13, 2017

Abstract

The CALM-conjecture, first stated by Hellerstein [31] and proved
in its revised form by Ameloot et al. [18] within the framework of re-
lational transducer networks, asserts that a query has a coordination-
free execution strategy if and only if the query is monotone. Zinn
et al. [42] extended the framework of relational transducer networks
to allow for specific data distribution strategies and showed that the
non-monotone win-move query is coordination-free for domain-guided
data distributions. In this paper, we extend the story by equating
increasingly larger classes of coordination-free computations with in-
creasingly weaker forms of monotonicity and present explicit Data-
log variants that capture each of these classes. One such fragment is
based on stratified Datalog where rules are required to be connected
with the exception of the last stratum. In addition, we character-
ize coordination-freeness as those computations that do not require
knowledge about all other nodes in the network, and therefore, can
not globally coordinate. The results in this paper can be interpreted
as a more fine-grained answer to the CALM-conjecture.

1 Introduction

Declarative networking is an approach where distributed computations are
modeled and programmed using declarative formalisms based on extensions
of Datalog. On a logical level, programs (queries) are specified over a global

∗Tom J. Ameloot is a Postdoctoral Fellow of the Research Foundation – Flanders
(FWO).
†Bas Ketsman is a PhD Fellow of the Research Foundation – Flanders (FWO).

1

schema and are computed by multiple computing nodes over which the in-
put database is distributed. These nodes can perform local computations
and communicate asynchronously with each other via messages. The model
operates under the assumption that messages can never be lost but can be
arbitrarily delayed. An inherent source of inefficiency in such systems are
the global barriers raised by the need for synchronization in computing the
result of queries.

This source of inefficiency inspired Hellerstein [31, 12] to formulate the
CALM-principle which suggests a link between logical monotonicity on the
one hand and distributed consistency without the need for coordination on
the other hand.1 A crucial property of monotone programs is that derived
facts must never be retracted when new data arrives. The latter implies a
simple coordination-free execution strategy: every node sends all relevant
data to every other node in the network and outputs new facts from the
moment they can be derived. No coordination is needed and the output of all
computing nodes is consistent. This observation motivated Hellerstein [31]
to formulate the CALM-conjecture which, in its revised form2, states

“A query has a coordination-free execution strategy iff the query
is monotone.”

Ameloot, Neven, and Van den Bussche [18] formalized the conjecture in
terms of relational transducer networks3 and provided a proof. Zinn, Green,
and Ludäscher [42] subsequently showed that there is more to this story.
In particular, they obtained that when computing nodes are increasingly
more knowledgeable on how facts are distributed, increasingly more queries
can be computed in a coordination-free manner. Zinn et al. [42] considered
two extensions of the transducer network model introduced in [18]. In the
first extension, here referred to as the policy-aware model, every computing
node is aware of the facts that should be assigned to it and can consequently
evaluate negation over schema relations. In the second extension, referred to
as the domain-guided model, data distribution is restricted as follows: each
possible domain value d is assigned to at least one node; and, when an input
fact contains value d, this fact is given to all nodes that d is assigned to. It
was shown in [42] that the coordination-free computations within the orig-
inal, policy-aware, and domain-guided models form a strict hierarchy and
that the non-monotone win-move query can be computed by a coordination-
free domain-guided transducer network. The central objective of this paper
is to characterize these increasingly larger classes of coordination-free com-
putations in terms of increasingly weaker forms of monotonicity thereby ob-
taining a more fine-grained answer to the CALM-conjecture.

1CALM stands for Consistency And Logical Monotonicity.
2The original conjecture replaced monotone by Datalog [18].
3Relational transducer networks are an extension of relational transducers as first in-

troduced by Abiteboul in [5, 6].

2

Towards this goal, we introduce the set of domain-distinct-monotone and
the set of domain-disjoint-monotone queries, which we denote by Mdistinct

and Mdisjoint, respectively. Recall that a query is monotone if the output
does not decrease (w.r.t. set inclusion) when new facts are added. The classes
of domain-distinct-monotone and domain-disjoint-monotone queries then
correspond to queries with
non-decreasing output (again w.r.t. set inclusion) when only facts are added
that contain at least one and only new domain elements, respectively. While
Mdistinct is a reformulation of the class of queries preserved under extensions
(c.f., Section 3.2), Mdisjoint appears to be a new class.4 We semantically
characterize the coordination-free computations within the policy-aware and
domain-guided model in terms of Mdistinct and Mdisjoint, respectively, to
obtain the following answer to the CALM-conjecture: for a query Q,

(i) Q can be computed by a coordination-free (original) transducer net-
work iff Q is monotone [18];

(ii) Q can be computed by a coordination-free policy-aware transducer
network iff Q ∈Mdistinct; and,

(iii) Q can be computed by a coordination-free domain-guided transducer
network iff Q ∈Mdisjoint.

It is tricky to formally define coordination-freeness because ideally it
should forbid communication for coordination purposes but it should al-
low communication to exchange data values, for instance, to compute joins.
We employ the formalization of coordination-freeness as introduced in [18],
where, intuitively, a query is called coordination-free if for every possible in-
put some ideal distribution exists which allows to find the complete output
already without any communication. As a transducer network has to cor-
rectly compute the query on all distributions, the latter particularly implies
that for non-ideal distributions the only form of communication is for data-
transfer, not for coordination. In fact, the distributed evaluation algorithms
that we propose in our proofs are naive with respect to communication, in
the sense that the whole database is sent to all nodes, and eventually every
node computes the result of the query. The exact algorithms, in particular
the moment when nodes can start producing output facts, depend on the
type of monotonicity and are discussed in Section 4.4.

While we do not claim this notion of coordination-freeness to be the
only possible one, the results in this paper imply that it is a sensible one.
In particular, we show that coordination-free computations can not globally
coordinate across all computing nodes. This is made precise by proving
that every coordination-free transducer is equivalent to one that has no

4But the queries in Mdisjoint are conceptually similar to the first order sentences
preserved under closed extensions, studied by Compton [24].

3

knowledge of all other nodes in the network. We refer to Section 4.2 for a
more thorough discussion.

In its original formulation [31], the CALM-conjecture did not refer to
the general class of monotone queries, but rather to the monotone queries
definable in Datalog. Therefore, it is interesting to investigate subclasses of
Datalog with negation that remain within Mdistinct and Mdisjoint, respec-
tively. As mentioned before, Mdistinct corresponds to the well-known class
of queries which are preserved under extensions, denoted by E . Afrati et
al. [7] obtained that semi-positive datalog, denoted SP-Datalog, is included
in E , while Cabibbo [23] showed that SP-Datalog extended with value in-
vention captures E and therefore Mdistinct. We show that semi-connected
stratified Datalog, denoted semicon-Datalog¬, a fragment of stratified Data-
log where only ‘connected’ rules are allowed (except for the last stratum) and
which contains SP-Datalog, is included in Mdisjoint and that this fragment
extended with value invention captures precisely Mdisjoint. Furthermore,
all queries definable in SP-Datalog and semicon-Datalog¬ are coordination-
free within the policy-aware and domain-guided transducer network model,
respectively.

The results of this paper are summarized in Figure 2.

Outline. In Section 2, we introduce the necessary definitions. In Section 3,
we investigate the classesMdistinct andMdisjoint. In Section 4, we semanti-
cally characterize coordination-free transducer networks in the policy-aware
and domain-guided models. In Section 5, we consider Datalog fragments
for Mdistinct and Mdisjoint. Because the results are first shown in absence
of nullary relations, we discuss in Section 6 how to extend the results to
schemas also containing nullary relations. We discuss related work in Sec-
tion 7 and conclude in Section 8.

2 Definitions

Queries and instances. We assume an infinite set dom of data values.
A database schema σ is a collection of relation names R where every R has
arity ar(R). We call R(d̄) a fact when R is a relation name and d̄ is a tuple
in dom. We say that a fact R(d1, . . . , dk) is over a database schema σ if
R ∈ σ and ar(R) = k. A (database) instance I over σ is simply a finite set
of facts over σ. We denote by adom(I) the set of all values that occur in
facts of I. When I = {f}, we simply write adom(f) rather than adom({f}).
By |I| we denote the number of facts in I.

A query over a schema σ to a schema σ′ is a generic mapping Q from
instances over σ to instances over σ′. Genericity means that for every per-
mutation π of dom and every instance I, Q(π(I)) = π(Q(I)). For a set of
facts I and a schema σ, we write I|σ to denote the maximal subset of I that
is over σ.

4

For convenience, we restrict our attention to schemas for which all rela-
tions have arity greater than zero. In particular, this means that queries,
and therefore also Datalog programs, can not define nullary relations. We
address how the addition of nullary relations changes our results in Section 6.

Datalog with negation. We recall Datalog with negation [4], abbreviated
Datalog¬.

Let var be the universe of variables, disjoint from dom. An atom is of
the form R(u1, . . . , uk) where R is a relation name and each ui ∈ var. We
call R the predicate. A literal is an atom or a negated atom and is called
positive in the former case and negative in the latter case.

A Datalog¬ rule ϕ is a quadruple (headϕ, posϕ, negϕ, ineqϕ) where headϕ
is an atom; posϕ and negϕ are sets of atoms; ineqϕ is a set of inequalities
(u 6= v) with u, v ∈ var; and, the variables of ϕ all occur in posϕ. The com-
ponents headϕ, posϕ and negϕ are called respectively the head, the positive
body atoms and the negative body atoms. We refer to posϕ ∪ negϕ as the
body atoms. Note, negϕ contains just atoms, not negative literals. Every
Datalog¬ rule ϕ must have a head, posϕ must be non-empty and negϕ may
be empty. If negϕ = ∅ then ϕ is called positive. The set of variables of ϕ is
denoted vars(ϕ).

Of course, a rule ϕ may be written in the conventional syntax. For in-
stance, if headϕ = T (u, v), posϕ = {R(u, v)}, negϕ = {S(v)}, and ineqϕ =
{u 6= v}, with u, v ∈ var, then we can write ϕ as T (u, v)← R(u, v), ¬S(v), u 6=
v.

A rule ϕ is said to be over schema σ if for each atom R(u1, . . . , uk) ∈
{headϕ} ∪ posϕ ∪ negϕ, the arity of R in σ is k. A Datalog¬ program P
over σ is a finite set of Datalog¬ rules over σ. We write sch(P) to denote
the (minimal) database schema that P is over. We define idb(P) ⊆ sch(P)
to be the database schema consisting of all relations in rule-heads of P .
We abbreviate edb(P) = sch(P) \ idb(P). As usual, the abbreviation “idb”
stands for “intensional database schema” and “edb” stands for “extensional
database schema” [4].

A valuation for a rule ϕ in P w.r.t. an instance I over edb(P), is a total
function V : vars(ϕ)→ dom. The application of V to an atomR(u1, . . . , uk)
of ϕ, denoted V (R(u1, . . . , uk)), results in the fact R(a1, . . . , ak) where ai =
V (ui) for each i ∈ {1, . . . , k}. This is naturally extended to a set of atoms,
which results in a set of facts. The valuation V is said to be satisfying
for ϕ on I if V (posϕ) ⊆ I, V (negϕ) ∩ I = ∅, and V (u) 6= V (v) for each
(u 6= v) ∈ ineqϕ. If so, ϕ is said to derive the fact V (headϕ).

Positive and semi-positive Datalog. A Datalog¬ program P is positive if
all rules of P are positive. We say that P is semi-positive if for each rule ϕ ∈
P , the atoms of negϕ are over edb(P). We now give the semantics of a semi-
positive Datalog¬ program P [4]. First, let TP be the immediate consequence
operator that maps each instance J over sch(P) to the instance J ′ = J ∪A

5

where A is the set of facts derived by all possible satisfying valuations for
the rules of P on J . Let I be an instance over edb(P). Consider the infinite
sequence I0, I1, I2, etc, inductively defined as follows: I0 = I and Ii =
TP (Ii−1) for each i ≥ 1. The output of P on input I, denoted P (I), is
defined as

⋃
j Ij ; this is the minimal fixpoint of the TP operator.

We denote by Datalog, Datalog(6=), and SP-Datalog the class of positive
Datalog¬ programs without inequalities, the positive Datalog¬ programs,
and the class of semi-positive Datalog¬ programs, respectively. Note that
the last two classes may use inequalities.

Stratified semantics. We say that P is syntactically stratifiable if there
is a function ρ : sch(P) → {1, . . . , |idb(P)|} such that for each rule ϕ ∈ P ,
having some head predicate T , the following conditions are satisfied: (1)
ρ(R) ≤ ρ(T) for each R(ū) ∈ posϕ ∩ idb(P); and, (2) ρ(R) < ρ(T) for each
R(ū) ∈ negϕ ∩ idb(P). For R ∈ idb(P), we call ρ(R) the stratum number
of R. Intuitively, ρ partitions P into a sequence of semi-positive Datalog¬

programs P1, . . . , Pk with k ≤ |idb(P)| such that for each i = 1, . . . , k,
the program Pi contains the rules of P whose head predicate has stratum
number i. This sequence is called a syntactic stratification of P . We can
now apply the stratified semantics to P : for an input I over sch(P), we first
compute the fixpoint P1(I), then the fixpoint P2(P1(I)), etc. The output of
P on input I, denoted P (I), is defined as Pk(Pk−1(. . . P1(I) . . .)). It is well
known that the output of P does not depend on the chosen syntactic stratifi-
cation (if more than one exists). Not all Datalog¬ programs are syntactically
stratifiable. By stratified Datalog we refer to all Datalog¬ programs which
are syntactically stratifiable.

Since we only consider syntactically stratifiable programs in this paper,
we denote from now on the class of stratified Datalog¬ programs simply by
Datalog¬.

Computing Queries. For a query Q with input schema σ and output
schema σ′, and a stratifiable Datalog¬ program P , we say that P computes
Q if Q(I) = P (I)|σ′ for all instances I over σ.

We assume that for each Datalog¬ program some idb-relations are marked
as the intended output. In our example Datalog¬ programs, we use the
convention that relation ‘O’ denotes that output. The input relations are
recognizable as the edb-relations.

In the sequel, we overload notation and denote both the fragment of
Datalog¬ programs as well as the queries expressed by programs in that
class with the same notation. For instance, we use SP-Datalog to denote
both the class of semi-positive Datalog¬ programs as well as the queries
which are expressible by a semi-positive Datalog¬ program.

In examples, we use a unary idb-relation Adom that contains the active
domain of the input. This predicate is computed as the union of the pro-
jections of all positions of all edb-relations. We omit the rules to compute

6

M

Mdistinct

Mdisjoint

Mi+1
distinct

Mi+1
disjoint

Mi
distinct

Mi
disjoint

M1
distinct

M1
disjoint

C

(
((((

(

(

(

(

(

(

(
6⊆6⊇

Figure 1: Monotonicity hierarchy

Adom.

3 Weaker forms of monotonicity

We introduce in Section 3.1 two weaker forms of monotonicity that will be
used in Section 4 to characterize classes of coordination-free transducers. In
Section 3.2, we relate these notions with the well-known classes of queries
preserved under homomorphisms and extensions.

3.1 Domain distinct & disjoint monotonicity

We say that a fact f is domain distinct from instance I when adom(f) \
adom(I) 6= ∅ (i.e., f should contain a new domain element not occurring
in I); f is domain disjoint when adom(f) ∩ adom(I) = ∅. Furthermore, an
instance J is domain distinct (resp., domain disjoint) from I, when every
fact f ∈ J is domain distinct (resp., domain disjoint) from I. Note that J
being domain-disjoint from I does not imply that J1 is domain-disjoint from
J2 for non-empty disjoint subsets J1 and J2 of J .

We introduce two weaker forms of monotonicity by restricting the set of
instances for which the monotonicity condition should hold:

Definition 1. Let Q be a query. Then,

• Q is monotone if Q(I) ⊆ Q(I ∪ J) for all database instances I and J ;

• Q is domain-distinct-monotone if Q(I) ⊆ Q(I ∪ J) for all instances I
and J for which J is domain distinct from I; and,

• Q is domain-disjoint-monotone if Q(I) ⊆ Q(I ∪ J) for all instances I
and J for which J is domain disjoint from I.

We denote the class of monotone, domain-distinct-monotone, and domain-
disjoint–monotone queries by M, Mdistinct, and Mdisjoint, respectively.

7

Next, we restrict the monotonicity definitions to sets J of bounded size.
The size restriction will allow more insight to be developed into the notions
of monotonicity. One important intuition for example, is that monotonic-
ity can be preserved by limiting the amount of new data: otherwise, the
new data can sometimes grow or contain some large structure that could
retract output facts when detected by the query. Formally, for i ≥ 1, we say
that Q is i-monotone, i-domain-distinct-monotone, and i-domain-disjoint-
monotone when in the corresponding unrestricted definition J is now re-
stricted to a size of at most i. We denote the respective classes by Mi,
Mi

distinct, and Mi
disjoint. By definition, M ⊆ Mdistinct ⊆ Mdisjoint and

Mi ⊆Mi
distinct ⊆Mi

disjoint.

As explained in more detail in Section 7, the classesM1
distinct andM1

disjoint

are already introduced in [41] (albeit under a different name). The following
theorem provides some insight in how the above classes are related. Sep-
arating examples can all be expressed in fragments of Datalog¬. A more
visual representation is provided in Figure 1. We denote the class of all
computable queries by C.

Theorem 3.1. For every i, j ≥ 1 with i < j,

1. M (Mdistinct (Mdisjoint (C;

2. M =Mi;

3. Mdistinct (Mi+1
distinct (M

i
distinct;

4. Mdisjoint (Mi+1
disjoint (M

i
disjoint;

5. Mi
distinct (Mi

disjoint;

6. Mj
disjoint 6⊆ M

i
distinct; and,

7. Mi
distinct 6⊆ M

j
disjoint.

Proof. We focus on the inequalities and sketch the separating examples.
All queries are over directed graphs that are defined over the binary edge
relation E.

For (1), first, M (Mdistinct follows from SP-Datalog ⊆ Mdistinct. In-
deed, take an SP-Datalog program P , a rule ϕ ∈ P , and a valuation V of ϕ
on an input I. The facts V (negϕ) use only values from adom(I). So, when
adding facts that are domain-distinct from I, we can not invalidate the nega-
tion of ϕ. Second, we show QTC ∈ Mdisjoint \Mdistinct, where QTC is the
query that computes the complement of the transitive closure of the edge
relation. Towards QTC ∈Mdisjoint, it suffices to notice that for all instances
I with a path missing from vertex a to vertex b, i.e., (a, b) ∈ QTC , the ad-
dition of domain-disjoint subgraphs will not create this path. To argue that

8

QTC 6∈ Mdistinct, it suffices to remark that the addition of domain-distinct
subgraphs can create a path E(a, c), E(c, b), where c is a new vertex. Third,
for Mdisjoint (C, take the query that outputs all triangles on condition
that no two disjoint triangles exist.

For (2), by definition, Mi+1 ⊆ Mi. We show that Mi ⊆ Mi+1. Let
Q ∈Mi and let I and J be arbitrary instances such that |J | ≤ i+1. Pick an
arbitrary fact f ∈ J and set J ′ = J \ {f}. By assumption, Q(I) ⊆ Q(I ∪ J ′)
and Q(I ∪ J ′) ⊆ Q((I ∪ J ′) ∪ {f}). Hence, Q(I) ⊆ Q(I ∪ J).

For (3), it suffices to show that Mi
distinct \M

i+1
distinct 6= ∅. Ignoring the

direction of edges, let Qkclique be the query that outputs the edge relation
when no clique of k vertices exists and the empty relation otherwise. We
show Qi+2

clique ∈M
i
distinct\M

i+1
distinct. Let I be an input not containing (i+2)-

size cliques, upon which the output is thus nonempty. To expose the non-
monotone behavior of Qi+2

clique, we can try to extend any (i + 1)-size cliques
in I to (i + 2)-size cliques by adding a domain-distinct instance J . For
this to work, J needs to contain a star: one new value is the center and it
points at old clique vertices of I, requiring |J | ≥ i+ 1. Such instances J are
not considered in the definition of Mi

distinct, but they are considered in the
definition of Mi+1

distinct.
For (4), again, we only show thatMi

disjoint \M
i+1
disjoint 6= ∅. Let Qkstar be

the query that outputs the edge relation when there is no star with k spokes
in the input and the empty relation otherwise. Clearly, Qi+1

star 6∈ M
i+1
disjoint as

i+ 1 domain-disjoint edges suffice to create an entirely new star with i+ 1
spokes. On the other hand, if there is not already a star with i + 1 spokes
in the input, we can never create one by adding i domain-disjoint edges.

For (5), using similar reasoning as for (3) above, we can argue that
Qi+1

clique 6∈ M
i
distinct and Qi+1

clique ∈M
i
disjoint.

For (6), we show Qj+1
star ∈ M

j
disjoint \M

i
distinct, where Qj+1

star is the query
that outputs the edge relation when there is no star with j + 1 spokes in
the input and the empty relation otherwise. To see Qj+1

star ∈ M
j
disjoint, if we

can only add j domain-disjoint edges, we can not extend a star with less
than j + 1 spokes to a star with j + 1 spokes, and we can also not create
a completely new star with j + 1 spokes. To see Qj+1

star /∈ Mi
distinct, when

the input already contains a star with j spokes, we can increase the number
of spokes to j + 1 by adding one additional edge containing the old central
vertex and one new value.

Finally, for (7), we can only prove the stated result for a schema that
grows with j. Therefore, let R1, . . . , Rj be binary relations and define

Qjduplicate as the query that gives as output the relation R1 when the (global)
intersection of all relations is empty, and the emptyset otherwise. We first
argue Qjduplicate ∈ M

i
distinct. Let I be an arbitrary instance where the in-

tersection of all relations is empty. Instances J that are domain-distinct
with respect to I can not replicate any existing tuples of I over all relations.

9

Moreover, if |J | ≤ i with i < j then J can not even replicate a completely
new tuple over all relations. To see Qjduplicate /∈M

j
disjoint, a domain-disjoint

instance J with |J | = j can replicate a new tuple over all relations. �

The following lemma shows that the proof of Theorem 3.1 item (7) can
not be strengthened to a fixed schema.

Proposition 3.2. Let σ be a fixed non-empty database schema. There are
i ∈ N and j ∈ N with i < j, such that Q ∈ Mi

distinct implies Q ∈ Mj
disjoint

for all queries Q over σ.

Proof. Let α denote the maximum arity of the relations in σ. As we want
to obtain a contradiction, we choose i and j large enough. As we see below,
choosing i = αα|σ| and j = i + 1 is sufficient for this purpose. Let Q ∈
Mi

distinct be a query over σ. We show for all instances I and J where J is
domain-disjoint from I and |J | ≤ j that Q(I) ⊆ Q(I ∪ J).

The proof is by contradiction. Let us assume there are instances I, J ,
where J is domain-disjoint from I and |J | ≤ j, such that Q(I) 6⊆ Q(I ∪ J).
Clearly, |J | ≤ i immediately implies Q(I) ⊆ Q(I ∪J) (by i-domain-distinct-
monotonicity of Q). Therefore, we focus on |J | = j.

Clearly, |J | ≤ |adom(J)|α|σ| and |adom(f)| ≤ α. To finish the proof, we
use an auxiliary statement (†):

Q(I) 6⊆ Q(I ∪ J) implies ∀f , f ′ ∈ J : adom(f) = adom(f ′). (†)

Now, (†) implies |adom(J)| ≤ α. Therefore, |J | ≤ αα|σ| = i < j; which is a
contradiction. Hence, Q(I) ⊆ Q(I ∪ J).

In the remainder of the proof we show (†) by its contraposition. Assume
there are two facts f , f ′ ∈ J for which adom(f) 6= adom(f ′); we show that
Q(I) ⊆ Q(I ∪J). Either adom(f)\adom(f ′) 6= ∅ or adom(f ′)\adom(f) 6= ∅.
W.l.o.g. below we assume adom(f ′) \ adom(f) 6= ∅.

We define K as the set of facts from J that contain only constants from
adom(f), i.e.

K = {g ∈ J |adom(g) ⊆ adom(f)}.

Note that |K| ≤ i < |J | because f ′ /∈ K. Now, by i-domain-distinct-
monotonicity of Q, we have Q(I) ⊆ Q(I ∪ K). Further, J \ K is domain-
distinct from I ∪K and |J \K| ≤ i < |J | because f ∈ K. So, again by i-
domain-distinct-monotonicity of Q, we have Q(I∪K) ⊆ Q(I∪K∪(J \K)) =
Q(I ∪ J). Hence, Q(I) ⊆ Q(I ∪ J). This completes the proof. �

Finally, as is to be expected, deciding whether a query class belongs to
one of the monotonicity classes quickly turns undecidable:

Proposition 3.3. Let A be a class among M, Mi
distinct, and Mi

disjoint for

i ∈ N+ ∪ {∞}; and let P be a Datalog¬ program with two strata. It is
undecidable whether P ∈ A.

10

Proof. The proof is by reduction from testing containment of datalog pro-
grams, which is shown to be undecidable in [39].

To this end, let P1 and P2 be two datalog programs over the same schema
σ and with output predicates O1 and O2, respectively, of the same arity. Let
U be a unary relation symbol not occurring in σ. Consider the program P

P1

P2

T (x̄) ← O1(x̄),¬O2(x̄)
Switch(z) ← U(x), Adom(z)
O(x̄) ← T (x̄),¬Switch(z), Adom(z)

which computes P1(I) \ P2(I) for every instance I where U is empty, and
returns the empty relation otherwise. Now, if P1(J) ⊆ P2(J) for all J , then
the output of P is always empty and consequently P is in A. When there
is an instance J such that P1(J) 6⊆ P2(J) then define I as the extension
of J with U interpreted as the empty relation. Then, P (I) 6= ∅ but P (I ∪
{U(a)}) = ∅ for a novel domain element a, and P 6∈ A. The result follows.
�

3.2 Correspondence with other classes

We relate the above classes to those defined in terms of preservation of
properties. Let I and J be two instances over σ. A homomorphism from I
to J is a mapping h from adom(I) to adom(J) such that {R(h(d̄)) | R(d̄) ∈
I} ⊆ J . We say that h is injective if h(d) 6= h(d′) whenever d 6= d′. An
instance J is called an induced subinstance of I if J = {f ∈ I | adom(f) ⊆
adom(J)}.

Definition 2. Let Q be a query. Then,

• Q is preserved under (injective) homomorphisms if for all instances
I and J , and for every (injective) homomorphism h : adom(I) →
adom(J), we have {R(h(d̄)) | R(d̄) ∈ Q(I)} ⊆ Q(J).

• Q is preserved under extensions if for all instances I and J for which
J is an induced subinstance of I, we have Q(J) ⊆ Q(I).

We denote by H, Hinj, and E the class of queries preserved under homo-
morphisms, injective homomorphisms, and extensions, respectively. Some-
times H is also referred to as the class of strongly monotonic queries (e.g.,
[7, 35]).

Proposition 3.4. H (Hinj =M (E =Mdistinct.

Proof. We only argue that E = Mdistinct because the rest is folklore (see,
e.g., [7, 35, 38]). The equality follows immediately as J is an induced subin-
stance of I iff I \ J is domain distinct from J . �

11

4 Coordination-freeness

A relational transducer is essentially a collection of queries that transforms
a sequence of input facts to a sequence of output facts while maintaining
a relational state [6, 27, 28]. In the distributed context, the functionality
at each node of a network can be described via a relational transducer,
giving rise to so-called relational transducer networks [18]. Subsequently,
relational transducer networks have been extended in two ways to give
nodes restricted access to distribution policies [42]. Such policies model
deterministic input data distributions based on hashing. In this section, we
review these two extensions, here referred to as policy-aware and domain-
guided transducer networks, and characterize the corresponding classes of
coordination-free queries. In particular, we show the following: the queries
that are coordination-free in policy-aware transducer networks and domain-
guided transducer networks correspond to the query classes Mdistinct and
Mdisjoint, respectively. It was shown in [18] that coordination-free queries
in the original transducer networks correspond precisely to the setM of all
monotone queries. The results in this section therefore provide a refinement
of the CALM-conjecture in terms of weaker forms of monotonicity.

We formalize transducer networks in Section 4.1, and the notion of
coordination-freeness in Section 4.2. We present the results in Section 4.3.
We provide some additional discussion in Section 4.4.

4.1 Transducer models

We review the two extensions of Zinn et al. [42] to the original transducer
network model [18]. Here, we refer to these extensions as policy-aware and
domain-guided transducer networks, respectively.

4.1.1 Networks, data distribution, and policies

A network N is a nonempty finite set of values from dom, which we call
nodes. Let σ be a database schema. A distributed database instance H over
σ and N is a function that maps each x ∈ N to an instance over σ. A
distributed database instance H over σ models a distribution with potential
replication of data over the schema σ.

For a set X, let P+(X) = P(X) \ {∅} denote the set of all non-empty
subsets of X. We write facts(σ) to denote the set of all possible facts over
σ, i.e., using all possible values from dom. A distribution policy P for
σ and N is a total function from facts(σ) to P+(N). Intuitively, P says
how to distribute any instance I over σ to the nodes of N , possibly with
replication. Concretely, we define distP (I) to be the distributed database
instance H over σ and N that satisfies H(x) = {f ∈ I | x ∈ P (f)} for each
x ∈ N .

12

A domain assignment α for N is a total function from dom to P+(N).
A distribution policy P for σ and N is called domain-guided if there exists
a domain assignment α for N such that, for each R(a1, . . . , ak) ∈ facts(σ),
we have P (R(a1, . . . , ak)) =

⋃k
i=1α(ai).

5 In this case, we also say that P
is induced by domain-assignment α. Intuitively, for each value a ∈ dom,
function α says which nodes get input facts containing a.

Example 4.1. Suppose dom is the set N of natural numbers. Let N =
{1, 2} be a two-node network and let the schema σ contain the single relation
symbol E of arity 2. Consider the following distribution policy P 1 for σ and
N :

P 1(E(a, b)) =

{
{1} if a is odd
{2} otherwise

for each a, b ∈ N. Note that P 1 partitions any input I over σ based on
its first attribute. If I = {E(1, 3), E(3, 4), E(4, 6)}, the distributed database
instance distP 1(I) is

{1 7→ {E(1, 3), E(3, 4)}, 2 7→ {E(4, 6)}}.

This input I demonstrates that P 1 is not a domain-guided policy: neither
node is assigned all facts containing domain value 4.

A domain-guided policy assigns domain values (rather than facts) to
nodes in the network. Consider the domain assignment α for N that maps
odd numbers to {1} and even numbers to {2}. The corresponding domain-
guided distribution policy P 2 for σ and N assigns a fact f to node 1 if
adom(f) contains an odd value, and to node 2 if adom(f) contains an even
value. For the specific input I from above, the instance distP 2(I) is

{1 7→ {E(1, 3), E(3, 4)}, 2 7→ {E(3, 4), E(4, 6)}}.

Note that node identifiers may occur in input facts. �

4.1.2 Policy-aware relational transducers

In the following, we write R(k) to denote a relation symbol R of arity k. A
(policy-aware) transducer schema Υ is a tuple (Υin,Υout,Υmsg,Υmem,Υsys)
of database schemas with disjoint relation names, with the additional re-
striction that

Υsys = {Id(1), All(1), MyAdom(1)} ∪ {policy(k)
R | R

(k) ∈ Υin}.

These schemas are called respectively “input”, “output”, “message”, “mem-
ory”, and “system”.

A (policy-aware relational) transducer Π over Υ is a quadruple (Qout, Qins, Qdel, Qsnd)
of queries having the input schema Υin∪Υout∪Υmsg∪Υmem∪Υsys and such
that

5Recall that we have assumed k ≥ 1 for now; but see also Section 6.

13

• query Qout has target schema Υout;

• queries Qins and Qdel both have target schema Υmem;

• query Qsnd has target schema Υmsg.

These queries form the mechanism by which a node on a network produces
output, updates its memory (through insertions and deletions), and sends
messages.

We note that the transducers in [18] do not have the relations MyAdom

and policyR (with R in Υin).

4.1.3 Policy-aware transducer networks

A (policy-aware) transducer network Π is a quadruple (N ,Υ,Π,P) where
N is a network, Υ is a transducer schema, Π is a transducer over Υ, and P
is a distribution policy for Υin and N . We say that Π is domain-guided if
the distribution policy P is domain-guided. So, domain-guided transducer
networks are a special kind of policy-aware transducer networks. We will
next give the semantics of Π on an input I over Υin. We start with the
underlying intuition.

Intuition We put a copy of transducer Π on each node of N , and policy
P initializes each node with a fragment of I. Then we choose an arbitrary
node x ∈ N and make it “active”: we execute the queries of transducer Π
to update the output and memory at x, and to generate new messages for
the other nodes. Such an active moment of a node is called a transition
of Π. The semantics of Π is described by so-called runs which are infinite
sequences of transitions.

Now, the queries of Π may concretely read the following facts at x: local
input facts, output and memory facts, any received message facts (over
Υmsg), and also some facts over Υsys. In more detail, the facts over Υsys

consist of the following:

• relation Id provides the identifier of x (i.e., just value ‘x’);

• relation All provides the identifiers of all nodes in the network;

• relation MyAdom provides for convenience the local active domain of x
(based on local facts and received messages); and,

• the relations policyR provide the facts assigned to x by policy P , but
restricted to the local active domain of x.6

6The relations policyR were previously called ‘localR’ [42]. Here, we have chosen a
new predicate name to avoid confusion with local input facts at a node.

14

Intuitively, by considering only policyR-facts over the local active domain
of x, we provide “safe” access to the distribution policy, i.e., we prevent x
from using values outside adom(I) ∪N .7

Example 4.2. Recall dom, N , σ, and P 1 from Example 4.1. Consider a
policy-aware transducer network Π = (N ,Υ,Π,P 1) with Υin = σ. We leave
Υout, Υmsg, and Υmem unspecified. Let us focus on the node 1. On input
I = {E(1, 3), E(3, 4), E(4, 6)}, at least the following facts will be exposed to
node 1 during each transition: the local input facts E(1, 3) and E(3, 4); the
system facts Id(1), All(1), All(2), MyAdom(a) for each a ∈ {1, 2, 3, 4}, and
policyE(a, b) with a ∈ {1, 3} and b ∈ {1, 2, 3, 4}. If node 1 would later
receive (and store) the value 6, then also MyAdom(6) will be exposed, and the
policyE(a, b)-facts with a ∈ {1, 3} and b = 6. Also, note that node 1 can in
principle deduce that E(3, 2) is not part of I since policyE(3, 2) is present
at node 1 but not E(3, 2). �

Formal semantics Let Π = (N ,Υ,Π,P) be a policy-aware transducer
network. A configuration of Π is a pair ρ = (s, b) of functions s and b such
that:

• s maps each x ∈ N to a set of facts over Υout ∪Υmem;

• b maps each x ∈ N to a multiset of facts over Υmsg.

We call s and b respectively the state and (message) buffer. Intuitively, s
specifies for each node what output and memory facts it has locally available,
and b specifies for each node what messages have been sent to it but that
are not yet delivered. The reason for having multisets for the buffers, is that
the same message can be sent multiple times to the same recipient and thus
multiple copies can be floating around in the network simultaneously. The
start configuration of Π is the unique configuration ρ = (s, b) that satisfies
s(x) = ∅ and b(x) = ∅ for each x ∈ N .

Denote Π = (Qout, Qins, Qdel, Qsnd). A transition of Π on an input I
over Υin is a quadruple (ρ1, x,m, ρ2) where ρ1 = (s1, b1) and ρ2 = (s2, b2)

7This safety restriction also makes our model more realistic: in general, a node still
needs to communicate with other nodes before it can draw global conclusions about the
input or network.

15

are configurations of Π, x ∈ N , m is a submultiset of b1(x), and, letting

H = distP (I),

M = m collapsed to a set,

J = H(x) ∪ s1(x) ∪M,

A = adom(J) ∪N ,
S = {Id(x)} ∪ {All(y) | y ∈ N} ∪ {MyAdom(a) | a ∈ A} ∪

{policyR(a1, . . . , ak) | R(k) ∈ Υin, {a1, . . . , ak} ⊆ A,
x ∈ P (R(a1, . . . , ak))},

D = J ∪ S,

for the state s2, we have,

s2(x)|Υout = s1(x)|Υout ∪Qout(D),

s2(x)|Υmem =
[
s1(x)|Υmem ∪ (Qins(D) \Qdel(D))

]
\ (Qdel(D) \Qins(D)),

s2(y) = s1(y) for each y ∈ N \ {x},

and for the buffer b2, we have (using multiset difference and union),

b2(x) = b1(x) \m,
b2(y) = b1(y) ∪Qsnd(D) for each y ∈ N \ {x},

where we use multiset difference and union. We call ρ1 and ρ2 respectively
the source and target configuration of the transition and we refer to x as
the active node. If m = ∅, then we call the transition a heartbeat.

For an input I over Υin, a run R of Π on I is an infinite sequence
of transitions of Π on I, such that the start configuration of Π is used as
the source configuration of the first transition, and the target configuration
of each transition is the source configuration of the next transition. Note
that runs represent nondeterminism: each transition can choose what node
becomes active and what messages to deliver from the buffer of that node.
We consider only fair runs. These are the runs that satisfy the following
additional conditions: (i) each node is the active node in an infinite number
of transitions; and, (ii) if a fact occurs infinitely often in the message buffer
of a node then this fact is infinitely often delivered to that node. Intuitively,
the last condition demands that no sent messages are infinitely delayed.

4.1.4 Computing queries

We are interested in transducers that produce the same facts over Υout re-
gardless of the network, the distribution policy, and the order of transitions.
These transducers are said to compute a query.

16

Formally, let Q be a query with input schema σ1 and output schema σ2.
Further, let Π = (N ,Υ,Π,P) be a policy-aware transducer network. We
define the output of a run R of Π, denoted out(R), to be the union of all
output facts jointly produced by the nodes of N during R, i.e., all facts over
Υout. Note that once a fact is added to Υout, it can never be retracted. We
say that Π computes Q if (i) Υin = σ1 and Υout = σ2; and, (ii) for each
input I over σ1, every (fair) run R of Π on I satisfies out(R) = Q(I).

Now, letting Π be a policy-aware transducer over transducer schema Υ,
we say that

• Π (distributedly) computes Q (for all policies) if for all networksN and
all distribution policies P for Υin and N , the policy-aware transducer
network (N ,Υ,Π,P) computes Q;

• Π (distributedly) computes Q under domain-guidance if for all net-
works N and all domain-guided distribution policies P for Υin and N ,
the transducer network (N ,Υ,Π,P) computes Q.

4.2 Defining Coordination-freeness

We define coordination-freeness for policy-aware transducers similarly as for
the original transducer model [18]. Let Π be a policy-aware transducer over
a schema Υ.

• We say that Π is coordination-free if (1) Π distributedly computes a
query Q, and (2) for all networks N , for all inputs I for Q, there
is a distribution policy P for Υin and N such that the policy-aware
transducer network (N ,Υ,Π,P) has a run on input I in which Q(I) is
already computed in a prefix consisting of only heartbeat transitions.8

Let F1 denote the set of queries distributedly computed by coordination-
free policy-aware transducers.

• Similarly, we say that Π is coordination-free under domain-guidance if
(1) Π distributedly computes a query Q under domain-guidance, and
(2) if for all networks N , for all inputs I for Q, there is a domain-
guided policy P for N , such that the transducer network (N ,Υ,Π,P)
has a run on input I in which Q(I) is already computed in a prefix
consisting of only heartbeat transitions.

Let F2 denote the set of queries distributedly computed by policy-
aware transducers that are coordination-free under domain-guidance.

8Technically, heartbeat transitions allow to send messages but not to read them. So,
‘only heartbeat’ transitions effectively means ‘no communication’.

17

4.2.1 Discussion

It is useful to reflect on what it means to be coordination-free. Of course,
one could prohibit any form of communication but that would be too dras-
tic and unworkable when data is distributed and communication is already
needed for the simple purpose of exchanging data (for instance, to compute
joins). Therefore, the present formalization tries to separate the ‘data’-
communication (that can never be eliminated in a distributed setting) from
the ‘coordination’-communication by requiring that there is some ‘ideal’ dis-
tribution on which the query can be computed without any communication.9

The intuition is as follows: because on the ideal distribution there is no
coordination needed (as even communication is not needed there), and the
transducer network has to correctly compute the query on all distributions,
communication is only used to transfer data on non-ideal distributions and
is not used to coordinate.

While we do not claim our notion of coordination-freeness to be the
only possible one, the results in Section 4.4 confirm that the just described
intuition is not too far off. Indeed, it follows that coordination-freeness cor-
responds precisely to those computations that do not require the knowledge
about all other nodes in the network, and hence, can not globally coordi-
nate. Specifically, we show that when a node has no complete overview of
all the nodes in the network, which can be achieved by removing the rela-
tion All, then every transducer is coordination-free. More importantly, the
converse holds true as well. That is, we show that every coordination-free
transducer is equivalent to one that does not use the relation All.

4.3 Characterization

We characterize the classes Mdistinct and Mdisjoint by coordination-free
transducers:

Theorem 4.3. Mdistinct = F1.

Theorem 4.4. Mdisjoint = F2.

The rest of Section 4.3 is devoted to the proofs of the just mentioned theo-
rems. In particular, the proof of Theorem 4.3 is divided into Propositions 4.5
and 4.6. Similarly, the proof of Theorem 4.4 is divided into Propositions 4.7
and 4.8. We provide a discussion of these results in Section 4.4.

Proposition 4.5. F1 ⊆Mdistinct.

9We remark that in this ideal distribution it is not always sufficient to give the full
input to all nodes (see, e.g., [18]). Furthermore, the network is not necessarily aware that
the data is ideally distributed as it can not communicate.

18

Proof. Let Q be a query distributedly computed by a coordination-free
transducer Π. Let Υ denote the schema of Π. Let I and J be two in-
stances over the input schema of Q, such that J is domain-distinct from I.
Let f ∈ Q(I). We show f ∈ Q(I ∪ J).

By assumption, Π computes Q on a network N with at least two nodes.
By coordination-freeness, there is a distribution policy P 1 for Υin and N
such that the transducer network Π1 = (N ,Υ,Π,P 1) when given input I,
has a run R1 in which Q(I) is already computed in a prefix consisting of
only heartbeat transitions. Let x ∈ N be a node that outputs f in this
prefix. Intuitively, we now show that x can be made to output f on input
I ∪ J , so that f ∈ Q(I ∪ J).

Fix an arbitrary node y ∈ N \ {x}. Consider the following distribution
policy P 2 for Υin and N : P 2(g) = {y} for all g ∈ J , and P 2(g) = P 1(g)
for all g ∈ facts(Υin) \ J . Denote Π2 = (N ,Υ,Π,P 2). Now, Π2 on input
I ∪ J gives to x the same local input facts as Π1 on input I:

• Let g ∈ I be a fact given to x by Π1 on input I. This implies x ∈
P 1(g). We have g /∈ J because J is domain-distinct from I. Then
P 2(g) = P 1(g) by definition of P 2. So, x ∈ P 2(g), and thus g is
given to x by Π2 on input I ∪ J .

• Let g ∈ I ∪ J be a fact given to x by Π2 on input I ∪ J . This implies
x ∈ P 2(g). But we have designed P 2 to give facts of J only to y, and
not to x. Hence, g ∈ I. So, P 2(g) = P 1(g) by definition of P 2. Thus
x ∈ P 1(g), and g is given to x by Π1 on input I.

Now, when running Π2 on input I ∪J , if we initially do only heartbeats
with active node x, the node x goes through the same state changes as
in the heartbeat-prefix of R1: the local input at x is the same as in R1,
and the locally known active domain does not change since no messages are
witnessed during the heartbeats. This causes x to repeatedly observe the
same facts in policyR and MyAdom, which are also the same as in R1.10

Relations Id and All also contain the same values at x as in R1. So, after a
while, say after k heartbeats, node x outputs f in Π2. This finite heartbeat
prefix can be extended to a full fair run R2 of Π2 on input I ∪ J , for which
out(R2) = Q(I ∪ J) holds by assumption on Π. Hence, f ∈ Q(I ∪ J). �

Proposition 4.6. Mdistinct ⊆ F1.

Proof. Let Q ∈ Mdistinct. Let σ1 and σ2 denote respectively the input and
output schema of Q. We construct a coordination-free transducer Π that
computes Q.11

10The relations policyR appear the same to x during the heartbeat runs of Π1 and Π2

because P 2(g) = P 1(g) for all g ∈ facts(Υin) with adom(g) ⊆ adom(I); this is because
J is domain-distinct from I.

11We use auxiliary nullary relations, but this is allowed because we impose no restrictions
on the languages used to implement transducer queries.

19

We start with the intuition.

Intuition Let I be an input for Q that is distributed over a network N .
We say that a subset C ⊆ adom(I) ∪ N is complete at a node x ∈ N ,
when x knows for every fact f over σ1 with adom(f) ⊆ C whether f ∈ I
or f /∈ I. If C is indeed complete at x, node x will output Q(I ′) where
I ′ = {f ∈ I | adom(f) ⊆ C}. Note that Q(I ′) ⊆ Q(I) by domain-distinct-
monotonicity of Q.12 We construct a policy-aware transducer that executes
Q at a node x whenever the unary system relation MyAdom is complete at x.

To start, the nodes broadcast their locally given input facts. Each node
x stores every received input fact. This way, the system relation MyAdom

grows at x. During each transition of x, the following happens:

• Node x checks for each input relation R(k) and each k-tuple (a1, . . . , ak)
over MyAdomk whether the fact policyR(a1, . . . , ak) is shown to x. If
so, then x is reponsible for the fact R(a1, . . . , ak) under the distribution
policy. In that case, if R(a1, . . . , ak) is absent from the local input at
x, node x can conclude that R(a1, . . . , ak) is actually globally absent
from the entire input. Then x broadcasts the absence of this fact.
These absences are accumulated at all nodes.

• Node x checks whether MyAdom is complete at x. Relation MyAdom is
complete if for each fact f over σ1 with adom(f) ⊆ MyAdom, either (i)
f is available in the accumulated input facts at x, giving f ∈ I; or
(ii) x has locally concluded or received the explicit absence of f from
I. Whenever MyAdom is complete, node x computes Q on the locally
accumulated input facts.

With the above strategy, no wrong outputs are produced. To show that at
least Q(I) is produced, we note that at some point, each node x has received
all available input facts and all absences of facts over adom(I)∪N . At that
moment, x computes Q on I, causing at least Q(I) to be output in each run.

Transducer Π is indeed coordination-free according to the formal def-
inition: for all networks N , and for all inputs I, the full output will be
computed at some node x with only heartbeats when x is made responsible
(under the distribution policy) for all facts over σ1 made with the values
adom(I) ∪ N ; then x will immediately detect that relation MyAdom is com-
plete.

12Indeed, since adom(I ′) ⊆ C and each fact f ∈ I \ I ′ has a value outside C, we know
that I \ I ′ is domain-distinct from I ′. So, Q(I ′) ⊆ Q(I ′ ∪ (I \ I ′)) = Q(I).

20

Construction We define the transducer schema Υ of Π as follows:

Υin = σ1,

Υout = σ2,

Υmsg = {R msg(k), R notMsg(k) | R(k) ∈ σ1},
Υmem = {R mem(k), R notMem(k) | R(k) ∈ σ1},

and the contents of Υsys is uniquely determined by the contents of Υin using
the definition of the transducer schema.

Now we specify the transducer Π = (Qout, Qins, Qdel, Qsnd). For easier
readability, each query is specified by a set of rules that are executed in
the order they are written. We will go step-by-step through the protocol
sketched above, and we specify what rules should be added to Qout, Qins,
and Qsnd. First, we define Qdel to always return ∅, causing nodes to only
accumulate facts.

To broadcast the input, we add the following rule to Qsnd for each R(k) ∈
σ1:

R msg(u1, . . . , uk)← R(u1, . . . , uk).

We store any received input facts in memory by adding the following rule
to Qins for each R(k) ∈ σ1:

R mem(u1, . . . , uk)← R msg(u1, . . . , uk).

At each node, this mechanism eventually collects all input domain values in
MyAdom.

To broadcast the absence of input facts, we add the following rule to
Qins for each R(k) ∈ σ1:

R notMsg(u1, . . . , uk)← policyR(u1, . . . , uk),¬R(u1, . . . , uk).

Recall that policyR uses only values from MyAdom. We store any received
absence-facts in memory by adding the following rule to Qins for each R(k) ∈
σ1:

R notMem(u1, . . . , uk)← R notMsg(u1, . . . , uk).

To produce output, we use the following functionality for Qout.
13 First, we

compute inside Qout for each R(k) ∈ σ1 an auxiliary relation R known(k) to
contain all tuples for which we either know they certainly exist or certainly
not exist in input relation R:

R known(u1, . . . , uk)← R(u1, . . . , uk).

R known(u1, . . . , uk)← R mem(u1, . . . , uk).

R known(u1, . . . , uk)← policyR(u1, . . . , uk),¬R(u1, . . . , uk).

R known(u1, . . . , uk)← R notMem(u1, . . . , uk).

13Note that the query language for Qout needs to be at least as powerful as the query
language for Q.

21

Next, we check inside Qout for each R(k) ∈ σ1 whether MyAdom is complete
for relation R:

R missing()← MyAdom(u1), . . . , MyAdom(uk),¬R known(u1, . . . , uk).

Finally, we allow Qout to execute Q when for all input relations R1, . . . , Rn
the corresponding relations R1 missing, . . . , Rn missing are empty:

ready()← ¬R1 missing(), . . . ,¬Rn missing().

if ready() then

compute Q on the local input UNION the R mem relations.

Output lower bound Let Π be as constructed above. LetN be a network
and let P be a distribution policy for σ1 and N . Let Π = (N ,Υ,Π,P) be
the corresponding transducer network. Let I be an input instance over σ1.
Let R be a run of Π on I. We show Q(I) ⊆ out(R).

Fix some node x ∈ N . Because input facts are sent as messages, there is
a transition index i of R after which x has accumulated I, giving MyAdom =
adom(I)∪N . We now argue there is a transition j ofR with i < j after which
MyAdom is complete at x, causing the ready-flag to become true and making x
subsequently compute Q(I). If we can argue for each fact R(a1, . . . , ak) over
σ1 with {a1, . . . , ak} ⊆ MyAdom that R known(a1, . . . , ak) eventually appears
in the evaluation of Qout at x, the sought transition index j can be defined
as the smallest transition index with active node x, with i < j, during which
all these R known-facts appear.14 So, let R(a1, . . . , ak) be a fact over σ1

with {a1, . . . , ak} ⊆ MyAdom.

• Suppose R(a1, . . . , ak) ∈ I. The fact R known(a1, . . . , ak) appears on x
no later than when all of I is available on x.

• Suppose R(a1, . . . , ak) 6∈ I. By definition of distribution policy, there is
some y ∈ N such that y ∈ P (R(a1, . . . , ak)). Using the same reasoning
as above, after a while, y will also locally have MyAdom = adom(I)∪N .
At that point, the fact policyR(a1, . . . , ak) will be shown to y. Now
R(a1, . . . , ak) /∈ I implies that y is not given R(a1, . . . , ak). If x =
y then R known(a1, . . . , ak) appears directly at x in Qout. If x 6= y
then y will first send the message R notMsg(a1, . . . , ak). By fairness,
this message arrives at x, and x stores R notMem(a1, . . . , ak); and thus
R known(a1, . . . , ak) appears in Qout.

Output upper bound Let N , P , Π, I, and R be as above. We now
show out(R) ⊆ Q(I).

14Note that once an R known-fact appears in Qout, it will keep doing so by the accumu-
lating nature of the transducer.

22

Let f ∈ out(R). Let x ∈ N be a node that outputs f during some
transition i ofR. This implies that during transition i, the ready-flag is true,
and Q is computed over a locally gathered subset I ′ ⊆ I at x. So, f ∈ Q(I ′).
Denote J = I \ I ′. We will now argue that J is domain-distinct from I ′, so
that f ∈ Q(I ′) ⊆ Q(I ′ ∪ J) = Q(I) by domain-distinct-monotonicity of Q.

Towards a contradiction, suppose there is a fact g ∈ J with adom(g) ⊆
adom(I ′). So, in transition i, we have adom(g) ⊆ MyAdom since adom(I ′) ⊆
MyAdom. Denote g = R(a1, . . . , ak). Now, because the ready-flag is true,
the R missing-flag is false, which implies that the fact R known(a1, . . . , ak)
exists during transition i. Looking at how relation R known is computed, we
distinguish between the following cases, each leading to a contradiction:

• Rule 1 & 2: If the local input fact R(a1, . . . , ak) or the memory fact
R mem(a1, . . . , ak) is available at x during transition i thenR(a1, . . . , ak) ∈
I ′, which is false.

• Rule 3: Suppose policyR(a1, . . . , ak) is shown to x but the input
fact R(a1, . . . , ak) is missing at x. The existence of the policyR-
fact implies x ∈ P (R(a1, . . . , ak)). Now, since R(a1, . . . , ak) ∈ I by
definition of J , the fact R(a1, . . . , ak) should have been given to x,
resulting in R(a1, . . . , ak) ∈ I ′, which is false.

• Rule 4: This is similar to Rule 3. If R notMem(a1, . . . , ak) is available at
x during transition i, some node y with y ∈ P (R(a1, . . . , ak)) had pre-
viously sent R notMsg(a1, . . . , ak). This means that y does not locally
have input fact R(a1, . . . , ak). But R(a1, . . . , ak) ∈ I (by definition of
J) and y ∈ P (R(a1, . . . , ak)) together imply that y is actually given
the input fact R(a1, . . . , ak). Since y sends all its input facts to x, we
would get R(a1, . . . , ak) ∈ I ′, which is false.

Coordination-freeness We argue that Π is coordination-free. Let N be
a network and let I be an input over σ1. We define a distribution policy P for
σ1 and N so that Q(I) can be computed with only heartbeat transitions.
Concretely, we define P (f) = N for each f ∈ facts(σ1). Denote Π =
(N ,Υ,Π,P).

Fix some arbitrary node x ∈ N . Transducer network Π gives the
entire instance I as input to x. Suppose we initially do only heartbeat
transitions at x. We show that the ready-flag becomes true at x already
in the first heartbeat transition, causing x to compute Q(I). Note that
MyAdom = adom(I) ∪ N in the first heartbeat transition. Next, for any fact
R(a1, . . . , ak) over σ1 with {a1, . . . , ak} ⊆ MyAdom, either this fact is in I or
it is not in I. In the first case, because x is given all of I as local input,
the first rule of relation R known makes the fact R known(a1, . . . , ak) avail-
able at x during the first heartbeat transition. In the second case, because
x ∈ P (R(a1, . . . , ak)) by design of P , the third rule of relation R known

23

makes the fact R known(a1, . . . , ak) also available at x during the first heart-
beat transition.

Overall, each R missing-flag is false in the first heartbeat transition of
x, making the ready-flag true. This heartbeat prefix can be extended to a
full fair run of Π on input I. �

Proposition 4.7. F2 ⊆Mdisjoint.

Proof. The proof strategy is similar to the proof strategy of Proposition 4.5.
Let Q be a query distributedly computed by a policy-aware transducer

Π that is coordination-free under domain-guidance. Let Υ denote the trans-
ducer schema of Π. Let I and J be two instances over the input schema of Q,
such that J is domain-disjoint from I. Let f ∈ Q(I). We show f ∈ Q(I ∪J).

By coordination-freeness, Π distributedly computes Q on a network N
with at least two nodes. Also by coordination-freeness, there is a domain-
guided distribution policy P 1 for Υin and N such that the transducer net-
work Π1 = (N ,Υ,Π,P 1) when given input I, has a run R1 in which Q(I)
is already computed in a prefix consisting of only heartbeat transitions. Let
x ∈ N be a node that outputs f in this prefix. Intuitively, we now show
that x can be made to output f on input I ∪ J , so that f ∈ Q(I ∪ J).

Since P 1 is domain-guided, there exists a domain-assignment α1 for N
inducing P 1. Fix an arbitrary node y ∈ N \ {x}. We define the following
domain-assignment α2: α2(a) = {y} for all a ∈ adom(J), and α2(a) =
α1(a) for all a ∈ dom\adom(J). Let P 2 be the domain-guided distribution
policy for Υin and N induced by α2. Denote Π2 = (N ,Υ,Π,P 2). We argue
that Π2 on input I ∪ J gives node x the same local input facts as Π1 on
input I:

• Let g ∈ I be a fact given to x by Π1 on input I. There must be
a value a ∈ adom(g) such that x ∈ α1(a). But since a ∈ adom(I),
we have a /∈ adom(J). We obtain x ∈ α2(a) since α2(a) = α1(a) by
definition of α2. So, Π2 gives g to x on input I ∪ J .

• Let g ∈ I ∪ J be a fact given to x by Π2 on input I ∪ J . There must
be a value a ∈ adom(g) such that x ∈ α2(a). If a ∈ adom(J) then
x = y, which is false. So, a ∈ adom(I). We obtain x ∈ α1(a) since
α2(a) = α1(a) by definition of α2. Moreover, since a ∈ adom(I) and
adom(I) ∩ adom(J) = ∅, we have g ∈ I. So, Π1 gives g to x on input
I.

Now, similarly as in the proof for Proposition 4.5, when running Π2

on input I ∪ J , if we initially do only heartbeats with active node x, the
node x goes through the same state changes as in the heartbeat-prefix of
R1. So after a while, say after k heartbeats, node x outputs f . This finite
prefix can be extended to a full fair run R2 of Π2 on input I ∪ J , for which
out(R2) = Q(I ∪ J) holds by assumption on Π. Hence, f ∈ Q(I ∪ J). �

24

Proposition 4.8. Mdisjoint ⊆ F2.

Proof. Let Q ∈ Mdisjoint. Let σ1 and σ2 denote respectively the input and
output schema of Q. We construct a transducer Π that computes Q and that
is coordination-free under domain-guidance. We start with the intuition.

Intuition Let I be an input over σ1 that is distributed over a network N ,
by means of a domain-guided distribution policy. We call a subset I ′ ⊆ I
safe when I ′ = {f ∈ I | adom(f) ∩ adom(I ′) 6= ∅}. If a node x has obtained
such a safe subset I ′ then node x may compute Q(I ′) because Q(I ′) ⊆ Q(I)
by domain-disjoint-monotonicity of Q.

We construct a policy-aware transducer Π that postpones executing Q
at a node x until a safe subset of I is collected at x. To start, the nodes
broadcast the active domain of their local input fragment. These values are
accumulated at each node. Note that when a node x has some value a in
relation MyAdom, node x is responsible for a under the domain assignment if
and only if policyR(a, . . . , a) is shown to x for at least one input relation
R. If x is indeed responsible for a then x is already locally given all facts
of I containing a (because the distribution policy is domain-guided). Now,
when x is not responsible for a, node x will send out a request pair (x, a).
Any node y responsible for a under the domain assignment will then send
all input facts containing a to x. When x has acknowledged all these facts
to y, node y will send “OK(x, a)”. Now, consider a transition of x, and let
I ′ ⊆ I denote the set of collected input facts at x so far. Node x checks for
each value a in MyAdom whether x is responsible for a or that x has “OK”
for a. If this is so, since always adom(I ′) ⊆ MyAdom, node x has obtained all
input facts containing values from adom(I ′), i.e., I ′ is safe. Subsequently, x
computes Q(I ′).

We have already argued that no wrong outputs are produced. To see
that at least Q(I) is computed, we note that each node x eventually knows
of the entire active domain (because the broadcasted domain will eventually
arrive), and will thus at some point compute Q on the entire set of collected
input facts.

The transducer Π is coordination-free according to the formal definition:
for all networks N , and all inputs I, the output will be computed with only
heartbeats at some node x when x is made responsible (under the domain
assignment) for all values adom(I)∪N ; then x will immediately detect that
its local input fragment is safe.

Note that there is no “global” coordination between all nodes. Indeed,
the acknowledgments sent from a node x to a node y before obtaining an
“OK” message from y can be viewed as the exchange of a big message
between just x and y.

25

Construction We first define a transducer schema Υ as follows:

Υin = σ1,

Υout = σ2,

Υmsg = {valueMsg(1), requestMsg(2), okMsg(2)} ∪
{R msg(k+2), R ackMsg(k+2) | R(k) ∈ σ1},

Υmem = {valueMem(1), requestMem(2), okMem(1)} ∪
{R mem(k), R ackMem(k+2) | R(k) ∈ σ1},

and the contents of Υsys is uniquely determined by the contents of Υin using
the definition of the transducer schema.

Now we give the transducer Π = (Qout, Qins, Qdel, Qsnd). For specifying
these transducer queries, we use the same syntax flavor as in the proof of
Proposition 4.6. We will implement the protocol sketched above step by
step. We define Qdel to always return ∅.

In each query, we partition MyAdom into auxiliary relations respAdom and
otherAdom. Relation respAdom contains the values that the current node
is responsible for under the domain assignment. These relations are only
visible inside the queries (and are thus not in Υ). For each v ∈ var and
k ∈ N, let (vk) = (v, . . . , v) denote the tuple in which v is repeated k times.
Now, we add to Qout, Qins, and Qsnd for each input relation R(k) the rule

respAdom(v)← MyAdom(v), policyR(v
k)

and at the end we add the single rule

otherAdom(v)← MyAdom(v),¬respAdom(v).

For any transition of a node x, for any a ∈ MyAdom, one can verify that
a fact policyR(ak) is exposed to x if and only if x is assigned a by the
domain assignment. Relations respAdom and otherAdom are recomputed in
each transition.

To inform all nodes about the existence of all active domain values,
we add the following rule to Qsnd for each relation R(k) ∈ σ1 and each
i ∈ {1, . . . , k}:

valueMsg(v)← R(u1, . . . , ui−1, v, ui+1, . . . , uk).

To remember the received values, we add this rule to Qins:

valueMem(v)← valueMsg(v).

On each node, this mechanism will cause relation MyAdom to eventually con-
tain all active domain values available on the network. This way, nodes will

26

eventually collect the entire input (see below). To request input facts, we
add this rule to Qsnd:

requestMsg(x, v)← Id(x), otherAdom(v).

To send out the requested input facts, we add the following rule to Qsnd for
each R(k) ∈ σ1 and each i ∈ {1, . . . , k}:

R msg(x, v, u1, . . . , ui−1, v, ui+1, . . . , uk)← requestMsg(x, v), respAdom(v),

R(u1, . . . , ui−1, v, ui+1, . . . , uk).

We remember the request by adding the following rule to Qins:

requestMem(x, v)← requestMsg(x, v), respAdom(v).

To handle received input facts, we add the following rule to Qins for every
R(k) ∈ σ1:

R mem(u1, . . . , uk)← R msg(x, v, u1, . . . , uk), Id(x).

We acknowledge the receipt by adding the following rule to Qsnd:

R ackMsg(x, v, u1, . . . , uk)← R msg(x, v, u1, .., uk), Id(x).

To handle received acknowledgments, we add the following rule to Qins:

R ackMem(x, v, u1, . . . , uk)← R ackMsg(x, v, u1, . . . , uk), requestMem(x, v).

To check whether a requesting node has acknowledged all input facts con-
taining the value from the request, we first compute an auxiliary relation
R missing for each relation R in σ1. Concretely, we add the following rule
to Qsnd for each R(k) ∈ σ1 and each i ∈ {1, . . . , k}:

R missing(x, v)← requestMem(x, v), R(u1, . . . , ui−1, v, ui+1, . . . , uk),

¬R ackMem(x, v, u1, . . . , ui−1, v, ui+1, . . . , uk).

These relations are recomputed in each transition. Now, we add the follow-
ing rule to Qsnd where R1, . . . , Rn are the relations from σ1:

okMsg(x, v)← requestMem(x, v),¬R1 missing(x, v), . . . ,¬Rn missing(x, v).

To receive these okMsg-facts, we add the following rule to Qins:

okMem(v)← okMsg(x, v), Id(x).

Finally, we use the following functionality for Qout:
15

missing()← otherAdom(v),¬okMem(v).

ready()← ¬missing().

if ready() then compute Q on the local input UNION the R mem relations.

Next we will show that Π correctly computes Q, and is coordination-free.

15Recall that otherAdom is an auxiliary relation computed inside Qout; see previously.

27

Output lower bound Let Π be as constructed above. LetN be a network
and let P be a domain-guided distribution policy for σ1 and N . Let Π =
(N ,Υ,Π,P) be the corresponding domain-guided transducer network. Let
I be an input instance over σ1. Let R be a run of Π on I. We show
Q(I) ⊆ out(R).

Fix some x ∈ N . We show that x outputs Q(I) at some point during
R. First, because the nodes broadcast all values from their local input, and
these values are accumulated at x, there is a transition of R after which
continuously MyAdom = adom(I) ∪N at x.

Now, recall that MyAdom is partitioned into respAdom and otherAdom.
Because P is domain-guided, we have already given all f ∈ I for which
adom(f) ∩ respAdom 6= ∅ to x as local input. We argue that x also obtains
all facts f ∈ I for which adom(f) ∩ otherAdom 6= ∅. Indeed, for at least
one value b ∈ adom(f) ∩ otherAdom, node x will send requestMsg(x, b).
There surely exists some node y that is responsible for b under the domain
assignment behind P . Upon receiving the request, node y will send all facts
of I that contain b to x, including f . Node x will store these facts in its
memory, acknowledges them, and eventually receives okMsg(x, b) from y that
is also stored.16 So, there eventually is a transition of x during which x has
all of I (either in local relations or in memory relations), and during which
x also has okMem(b) for all b ∈ otherAdom. During such a transition, the
ready-flag is true and Q is computed on I.

Output upper bound Let N , P , Π, I, and R be as above. We now
show out(R) ⊆ Q(I).

Let f ∈ out(R). Let x ∈ N be a node that outputs f during some
transition i of R. This means that during i the ready-flag was true and
that Q was subsequently applied to some locally available set I ′ ⊆ I (i.e.,
the local input united with any received input facts). So, f ∈ Q(I ′). Denote
J = I \ I ′. If we can show that adom(J) ∩ adom(I ′) = ∅ then we obtain
f ∈ Q(I ′) ⊆ Q(I ′ ∪ J) = Q(I) by domain-disjoint-monotonicity of Q, as
desired.

Towards a proof by contradiction, suppose there is some g ∈ J and a
value a ∈ adom(g) ∩ adom(I ′). Because a ∈ adom(I ′), we have a ∈ MyAdom

during transition i. Recall that MyAdom is partitioned into respAdom and
otherAdom:

• If a ∈ respAdom, then g would have been given as local input to x,
resulting in g ∈ I ′, which is false.

• Suppose a ∈ otherAdom. Because the ready-flag is true during i, node
x has okMem(a). This means that some node y has sent okMsg(x, a),

16In general, a node identifier b ∈ N will not occur in the input. In that case, some
node is still responsible for b under the domain assignment; this node will send okMsg(x, b)
after receiving requestMsg(x, b) without the need for acknowledgements.

28

where y is responsible for a under the domain assignment behind P .
This in turn means that x has received and acknowledged all input
facts containing value a, including g. So, again we obtain g ∈ I ′,
which is false.17

Coordination-freeness We argue that Π is coordination-free under domain-
guidance. LetN be a network. Let I be an input forQ. Consider the domain
assignment α for N that assigns dom to each node. Note that the corre-
sponding domain-guided distribution policy P for σ1 and N always assigns
the full input to each node. Denote Π = (N ,Υ,Π,P). We give I as input
to Π.

Now, fix some node x ∈ N . Suppose we initially do only heartbeats at x.
During the first heartbeat transition, we have respAdom = MyAdom by design
of α. So, the ready-flag immediately becomes true because otherAdom = ∅.
Then Q is computed over all local input facts, which are all facts of I by
design of α. Hence, Q(I) is output during the first heartbeat transition of
x. We can extend this heartbeat prefix to an infinite fair run R of Π on
input I. �

4.4 Discussion

We contrast the distributed evaluation algorithms in the proofs of Proposi-
tion 4.6 (forMdistinct) and Proposition 4.8 (forMdisjoint) with a distributed
evaluation algorithm for the class M of purely monotone queries. It is im-
portant to realize that the algorithms for Mdistinct and Mdisjoint are naive
in the sense that the whole database is sent to all nodes and every node com-
putes the result of the query. It is the type of monotonicity that determines
when a node can start producing output:

• M: every node broadcasts all local input facts; output is generated
for every newly received fact;

• Mdistinct: every node broadcasts all local input facts as well as ab-
sences of facts; output is generated at a node when the missing facts
are surely domain-distinct from the already collected facts; and,

• Mdisjoint: every node broadcasts the values in the local input; when-
ever a new value is received that the node is not responsible for,
a coordination protocol is initiated with nodes responsible for this
value; output is generated at a node when the missing facts are surely
domain-disjoint from the already collected facts.

17Note that during the protocol, the fact g is indeed stored at x strictly before okMem(a)
is stored at x, even if x is talking in parallel to two nodes y and z that are both responsible
for a.

29

While it might seem contradictory that the coordination-free evaluation of
queries in Mdisjoint requires the use of a coordination protocol, it is impor-
tant to realize that this coordination is only determined by the way data is
distributed and does not require global coordination between all nodes. In-
deed, we show below that transducers that do not access the system relation
All, containing the names of all the nodes in the network, are immediately
coordination-free. Moreover, the classes of queries that are distributedly
computed by (policy-aware) transducers without relation All still capture
Mdistinct andMdisjoint. That is, in absence of relation All, we do not need
the notion of coordination-freeness to characterize Mdistinct and Mdisjoint.

Formally, to prevent usage of relation All, at a node x we modify the
semantics of transitions from Section 4.1.3 as follows: we define the set
A now as A = adom(J) ∪ {x}; and, the set S is defined as before, but
now without the All-facts. For this resulting model, let A1 denote the set
of queries distributedly computed by policy-aware transducers, and let A2

denote the set of queries distributedly computed by policy-aware transducers
under domain-guidance.

Theorem 4.9. A1 =Mdistinct and A2 =Mdisjoint

Proof. First, the transducers constructed for the proofs of Proposition 4.6
(Mdistinct ⊆ F1) and Proposition 4.8 (Mdisjoint ⊆ F2) can be used as is to
respectively show thatMdistinct ⊆ A1 andMdisjoint ⊆ A2, because they do
not use All.

We sketch the proof ofA1 ⊆Mdistinct. LetQ be a query that is distribut-
edly computed by a policy-aware transducer Π without All. By assumption,
transducer Π also computes Q on a single-node network {x}. So, on input
I, the single-node transducer network will produce Q(I) with just heart-
beats (no messages can be sent). Let J be an input instance for Q that is
domain-distinct from I. To show Q(I) ⊆ Q(I ∪ J), we consider a two-node
network {x, y} on which we run Π, and consider the distribution policy that
assigns J to just y and the other facts to x. Then x is still given precisely I
when the two-node transducer network is given I ∪ J as input. Now, if we
do only heartbeats at x, then x will behave the same as on the single-node
network because it can not detect the difference with the two-node network
in absence of relation All. So, x will produce Q(I) after a finite number of
heartbeats. This prefix can be extended to a full fair run of the two-node
transducer network on input I ∪ J , as follows: we systematically deliver all
messages available in the last configuration of the prefix; we activate both
nodes x and y infinitely often; and, we also keep delivering any newly sent
messages. By assumption, the transducer network consisting of Π and node
set {x, y} will eventually compute all of Q(I ∪ J) in this fair run.

The inclusion A2 ⊆Mdisjoint can be shown similarly, except that now J
is chosen to be domain-disjoint from I, and we assign all values of adom(J)
to y and all other domain values to x. �

30

It is interesting to note what happens when transducers are not aware of
the distribution policies, i.e., when we do not provide the policyR-relations.
In the resulting model, the set F0 of queries distributedly computed by
coordination-free transducers is precisely the set M of monotone queries;
and, relating to the above, the set A0 of queries distributedly computed by
transducers without relation All is also M [18].

For completeness, we also mention the existence of so-called oblivious
transducers in the original transducer model of Ameloot et al. [18]: these
transducers may use neither relation Id nor relation All. The set of queries
distributedly computed by oblivious transducers is again the set M.

Corollary 4.10. F0 = A0 =M.

5 Datalog fragments

5.1 Semi-connected Datalog¬

As mentioned in the introduction, the original formulation of the CALM-
conjecture links coordination-free computation to Datalog. It is therefore
interesting to investigate subclasses of Datalog with negation that remain
within Mdistinct and Mdisjoint. While SP-Datalog ⊆ Mdistinct(= E) [7], it
is not known whether SP-Datalog can be further extended while remaining
within E .

We next identify a fragment of Datalog¬ which is domain-disjoint-monotone.
Let ϕ be a Datalog¬ rule. We define graph+(ϕ) as the graph where nodes
are the variables in positive body atoms of ϕ, and there is an edge between
two variables if they occur together in a positive body atom of ϕ. We say ϕ
is connected if graph+(ϕ) is connected. We say that an SP-Datalog program
is connected when all rules are connected.

Definition 3. Let P be a program in Datalog¬. Then P is a connected
stratified datalog program, when there is a stratification for P such that all
strata are connected SP-Datalog programs. We say that P is semi-connected
when there is a stratification such that all strata except possibly the last
one are connected SP-Datalog programs.

In the following, we denote the class of connected and semi-connected
stratified Datalog¬ programs by con-Datalog¬ and semicon-Datalog¬, re-
spectively. Then (i) SP-Datalog (semicon-Datalog¬, (ii) SP-Datalog 6⊆
con-Datalog¬, (iii) con-Datalog¬ (semicon-Datalog¬, and (iv) semicon-Datalog¬ (
Datalog¬.

Example 5.1. Consider the following Datalog¬ program P1, which expects a
graph as its input and asks for all the nodes that are not part of a (directed)

31

triangle:

T (x) ← E(x, y), E(y, z), E(z, x), y 6= x, y 6= z, x 6= z
O(x) ← ¬T (x), Adom(x)

Then, P1 is in con-Datalog¬, but P1 6∈ Mdistinct. Indeed, P1({E(a, b)}) 6= ∅,
while P1({E(a, b)} ∪ {E(b, c), E(c, a)}) = ∅. Therefore, P1 6∈ SP-Datalog.

Consider the program P2 which is not a semicon-Datalog¬ program:

T (x, y, z) ← E(x, y), E(y, z), E(z, x), y 6= x, y 6= z, x 6= z
D(x1) ← T (x1, x2, x3), T (y1, y2, y3),

∧
1≤i,j≤3 xi 6= yj

O(x) ← ¬D(x), Adom(x)

Note that the expressed query is not inMdisjoint. Indeed, for domain disjoint
instances I = {E(a, b), E(b, c), E(c, a)} and J = {E(d, e), E(e, f), E(f, d)},
P2(I) 6= ∅, while P2(I ∪ J) = ∅. As we will see shortly, this implies that the
query itself can not be defined by any semicon-Datalog¬ program. �

We next relate connected programs to distributed evaluation over com-
ponents. An instance J is a component of an instance I when J ⊆ I, J 6= ∅,
adom(J) ∩ adom(I \ J) = ∅ and J is minimal with this property. That is,
there is no strict nonempty subset J ′ of J for which adom(J ′)∩adom(I\J ′) =
∅. Intuitively, a component is complete w.r.t. its active domain as it either
contains all the facts in I in which a certain domain element occurs, or it
contains none of these facts. Further notice that for component J from
I: I \ J is domain disjoint from J and vice versa. Denote by co(I) the
components of I.

Definition 4. A query Q distributes over components if for all instances I:

Q(I) =
⋃

C∈co(I)

Q(C).

Lemma 5.3 highlights an important property of con-Datalog¬ and forms
a crucial part of the proof of Theorem 5.4. Towards a proof for Lemma 5.3
we first show the following preliminary result:

Lemma 5.2. Every connected SP-Datalog program distributes over compo-
nents.

Proof. Let P be a connected SP-Datalog program and I an instance. We
need to show that P (I) =

⋃
C∈co(I) P (C).

Let C ∈ co(I). Then I \ C is domain disjoint from C. By domain-
disjoint-monotonicity of P , it thus follows that P (C) ⊆ P (I). Therefore,⋃
C∈co(I) P (C) ⊆ P (I).

We next show that for every fact f ,

if f ∈ P (I) then there is a Cf ∈ co(I) such that f ∈ P (Cf). (†)

32

The latter implies P (I) ⊆
⋃
C∈co(I) P (C). We prove (†) by induction on the

number of derivation steps. Define Ti
P (I) as the output of the immediate

consequence operator of P on I after i iterations, and T∗P (I) as its fixpoint
on I. Then, we show that for all i ≥ 1,

if f ∈ Ti
P (I) then there is a Cf ∈ co(I) such that f ∈ Ti

P (Cf). (‡)

Clearly, for i = 1, (‡) follows directly from the connectedness of P . Assume
f ∈ Ti+1

P (I). Then there is a rule ϕ in P and a valuation V such that
V (posϕ) ⊆ Ti

P (I) and V (negϕ) ∩ Ti
P (I) = ∅. By induction, for every fact

g ∈ V (posϕ) there is a Cg ∈ co(I) such that g ∈ Ti
P (Cg). As ϕ is connected

and adom(Ti
P (C ′))∩adom(Ti

P (C ′′)) = ∅ for every two distinct components
C ′, C ′′ ∈ co(I), there must be a C ∈ co(I), such that Cg = Cg′ = C for all
g,g′ ∈ V (posϕ). So, f ∈ Ti+1

P (C). This completes the proof. �

Lemma 5.3. Every query in con-Datalog¬ distributes over components.

Proof. Let P be a con-Datalog¬ program with stratification P1, . . . , Pm
where for every i ≤ m, Pi is a connected SP-Datalog program.

We show P (I) =
⋃
C∈co(I) P (C), for all I, by induction on the number

of strata for P .
Thereto, define P≤i as the composition Pi ◦ · · · ◦ P1 of the first i strata.

We show by induction that for every instance I,

P≤i(I) =
⋃

C∈co(I)

P≤i(C).

Case i = 1. Follows directly from Lemma 5.2.

Case i > 1. Let C ∈ co(I). Then, by induction, P≤i−1(I \ C) is domain
disjoint from P≤i−1(C). Indeed, C ∈ co(I) implies adom(C)∩adom(I\C) =
∅ and therewith it follows that adom(P≤i−1(C))∩ adom(P≤i−1(I \C)) = ∅.

Now, Pi(P≤i−1(C)) ⊆ Pi(P≤i−1(I)) (by domain-disjoint-monotonicity of
SP-Datalog.). So,

⋃
C∈co(I) P≤i(C) ⊆ P≤i(I).

We next show P≤i(I) ⊆
⋃
C∈co(I) P≤i(C). From Lemma 5.2, it follows

that
P≤i(I) = Pi(P≤i−1(I)) =

⋃
D∈co(P≤i−1(I))

Pi(D).

Let D ∈ co(P≤i−1(I)). By minimality, there is no strict non-empty subset
D′ of D such that adom(D′) ∩ adom(D \ D′) = ∅. Therefore, D cannot
be dispersed over the components of P≤i−1(I). Indeed, it follows from the
definition of component that adom(C) ∩ adom(C ′) = ∅ for every C,C ′ ∈
co(I), implying adom(P≤i−1(C)) ∩ adom(P≤i−1(C ′)) = ∅. So, there is a
C ∈ co(I) such that D ⊆ P≤i−1(C).

33

Although P≤i−1(C) itself may have multiple components, D must be one
of them, and thus P≤i−1(C) \D is domain-disjoint from D. Indeed, by def-
inition of component, adom(D) ∩ adom(P≤i−1(I) \D) = ∅. As P≤i−1(C) ⊆
P≤i−1(I) (by the induction hypothesis), adom(D)∩adom(P≤i−1(C)\D) = ∅
follows. The domain-distinct-montonicity of Pi together with D ⊆ P≤i−1(C)
and P≤i−1(C)\D being domain-disjoint fromD imply Pi(D) ⊆ Pi(P≤i−1(C)).
Therefore,

P≤i(I) =
⋃

D∈co(P≤i−1(I))

Pi(D) ⊆
⋃

C∈co(I)

P≤i(C).

�

We are now armed to prove the following theorem:

Theorem 5.4. semicon-Datalog¬ ⊆Mdisjoint

Proof. Let P be a semicon-Datalog¬ program with stratification P1, . . . , Ps
where Pi is a connected SP-Datalog program for i < s. Define P≤i as
the composition Pi ◦ · · · ◦ P1 of the first i strata. Clearly, P = P≤s =
Ps ◦ P≤s−1. Let I and J be two instances, where J is domain disjoint from
I, i.e., adom(I) ∩ adom(J) = ∅. Then, it follows that adom(P≤s−1(I)) ∩
adom(P≤s−1(J)) = ∅ implying P≤s−1(J) to be domain disjoint from P≤s−1(I).
By domain-disjoint-monotonicity of SP-Datalog programs, it follows that

Ps(P≤s−1(I)) ⊆ Ps(P≤s−1(I) ∪ P≤s−1(J)). (†)

We next show that

P≤s−1(I) ∪ P≤s−1(J) = P≤s−1(I ∪ J), (‡)

which together with (†) implies that P (I) ⊆ P (I ∪ J) and therefore P ∈
Mdisjoint.

It remains to prove (‡). Lemma 5.3 implies that P≤s−1(I) =
⋃
C∈co(I) P≤s−1(C),

P≤s−1(J) =
⋃
D∈co(J) P≤s−1(D) and P≤s−1(I ∪ J) =

⋃
K∈co(I∪J) P≤s−1(K).

Since I and J are domain disjoint, co(I) ∪ co(J) = co(I ∪ J). Therefore,

P≤s−1(I) ∪ P≤s−1(J)
=

⋃
C∈co(I) P≤s−1(C) ∪

⋃
D∈co(J) P≤s−1(D)

=
⋃
K∈co(I∪J) P≤s−1(K)

= P≤s−1(I ∪ J).

This completes the proof. �

34

5.2 Datalog¬ with value invention

While Datalog and SP-Datalog are included the classes M and E , the in-
clusion is strict in both cases. One way to capture these classes is to add a
mechanism to invent new values. In particular, it is known that the classes
M and E (and therefore Mdistinct) are captured by fragments of ILOG¬,
a declarative formalism in the style of stratified Datalog¬ originally intro-
duced in the context of object databases by Hull and Yoshikawa [32]. ILOG¬

introduces a restricted form of value invention. In this section, we show
that adding value invention to semi-connected Datalog¬ suffices to capture
Mdisjoint.

We follow Cabibbo [23] for the definition of ILOG¬ and assume the ex-
istence of invention relations. These are relations with a distinguished first
position, called the invention position or the invention attribute. An inven-
tion atom is an atom of the form R(∗, u1, . . . , uk), where R is an invention
relation and each ui ∈ var. The symbol ∗ is called the invention symbol. An
ILOG¬ program P over σ is a Datalog program with negation over σ where
we allow head atoms to be either (ordinary) relation atoms or invention
atoms.

Before defining the semantics of ILOG¬, we associate to each invention
relation R a distinct Skolem functor fR of arity ar(R)−1. The Skolemization
of P , denoted by Skol(P), is the set of rules in P where every occurrence of
the invention symbol is replaced by appropriate Skolem functor terms. For
example, the Skolemization of the rule

R(∗, x1, x2)← E(x1, x2)

is
R(fR(x1, x2), x1, x2)← E(x1, x2).

The semantics of ILOG¬ is defined similar to the semantics of Datalog with
negation, but valuations are applied on the Skolemized rules instead of the
rules itself and are w.r.t. the Herbrand universe HP for P which is the set
of all ground terms built using elements from dom and Skolem functors for
invention relations in P . When the repeated application of the immediate
consequence operator eventually gives rise to relations of infinite size, the
output of the program is undefined, otherwise the output consists of the
facts in the output relations.

An ILOG¬ program P is safe when the output contains no invented
values. Although safety is an undecidable property, there are syntactical
restrictions that ensure safe programs. One of these is called weakly safe
which we define next. We consider the set of unsafe positions in atoms of
P . This is the smallest set S containing pairs of the form (R, i), where R is
a relation name and i ≤ ar(R), such that

• (R, 1) ∈ S for every invention relation R; and,

35

• if (R, i) ∈ S and there is a rule ϕ in P such that R(x1, . . . , xk) ∈ posϕ,
T (y1, . . . , y`) = headϕ, and xi and yj refer to the same variable, then
(T, j) ∈ S.

An ILOG¬ program P is weakly safe when the output relations of P do not
contain unsafe positions. Note that a weakly safe program is always safe.
We denote weakly safe ILOG¬ by wILOG¬. Furthermore, wILOG¬ where
negation is restricted to predicates in edb(P) is denoted by SP-wILOG for
semi-positive wILOG¬. Stratification can be defined for wILOG¬ in the
same way as for Datalog¬. As before, we only consider stratified negation
in this paper.

Example 5.5. As an example consider the program Ppath over a binary
relation E:

pathnil(∗) ←
path(∗, x, y, nil) ← E(x, y), pathnil(nil)
path(∗, x, z, s) ← E(x, y), path(s, y, z, t)
output(x, y) ← path(s, x, y, t)

First notice that Ppath is weakly safe. Indeed, the unsafe position for path

are 1 and 4. Consequently, no positions in output are unsafe. The program
outputs the transitive closure over relation E in a left-linear fashion. But,
during the computation it also assigns to every path a unique (invented)
value, and a reference to the preceding path where it was derived from.

Specifically, the relation pathnil contains an invented value used as dummy
reference or id in the representation for paths of length one (i.e., where there
is no preceding path to refer to) while the relation path stores the derived
paths. In particular, in a fact of the form path(s, x, y, t), x and y are nodes
and there is a path in E from x to y, s is an id for this path from x to y, and
t is an id for a path starting from some node z to node y, where there is an
edge between x and z. Using invented values to create linked lists as in the
relation path will be exploited below to generate enumerations of database
instances.

Let fp and fn be the Skolem functors associated to path and pathnil,
respectively. When the input graph is acyclic there are only a finite number
of distinct paths. So, computing the transitive closure in a left-linear fashion,
eventually there are no more values to be added. The output of the immediate
consequence operator for Ppath on I = {E(a, b), E(b, c)} is given below (we
only show newly derived facts):

36

i output of T in the ith iteration step on I

1: {pathnil(fn())}
2: {path(fp(b, c, fn()), b, c, fn()), path(fp(a, b, fn()), a, b, fn())}
3: {path(fp(a, c, fp(b, c, fn())), a, c, fp(b, c, fn())), output(b, c), output(a, b)}
4: {output(a, c)}
5: ∅

However, when the input contains a cycle, the immediate consequence
operator will never reach a fixpoint. Take for example J = {E(a, b), E(b, a)}:

i output of T in the ith iteration step on J

1: {pathnil(fn())}
2: {path(fp(b, a, fn()), b, a, fn()), path(fp(a, b, fn()), a, b, fn())}
3: {path(fp(a, a, fp(b, a, fn())), a, a, fp(b, a, fn())),

path(fp(b, b, fp(a, b, fn())), b, b, fp(a, b, fn())), output(a, b), output(b, a)}
4: {path(fp(b, a, fp(a, a, fp(b, a, fn()))), b, a, fp(a, a, fp(b, a, fn()))),

path(fp(a, b, fp(b, b, fp(a, b, fn()))), a, b, fp(b, b, fp(a, b, fn()))),
output(a, a), output(b, b)}

5: {path(fp(a, a, fp(b, a, fp(a, a, fp(b, a, fn())))), a, a, fp(b, a, fp(a, a, fp(b, a, fn())))),
path(fp(b, b, fp(a, b, fp(b, b, fp(a, b, fn())))), b, b, fp(a, b, fp(b, b, fp(a, b, fn()))))}

.

Cabibbo investigated the expressiveness of ILOG¬ over relational databases [23]
and obtained the following results: stratified wILOG¬ programs with two
strata capture the class of all computable queries; wILOG¬ programs where
negation is restricted to inequalities and extensional database predicates
captures M and E , respectively.

We introduce the class of semi-connected wILOG¬ programs and show
that it captures precisely the domain-disjoint-monotone queries. Analo-
gous to the definitions for Datalog¬, we say that a SP-wILOG program is
connected when all rules are connected. A wILOG¬ program P is semi-
connected when there is a stratification for P such that all strata, except
possibly the last one, are connected SP-wILOG programs. We denote the
set of all semi-connected wILOG¬ programs with semicon-wILOG¬. Notice
that semicon-wILOG¬ is a conservative extension of semicon-Datalog¬ that
strictly subsumes SP-wILOG.

We now give some definitions that generalize notions from datalog queries
to wILOG¬. The only difference is that now queries can be undefined. A
query Q over σ is domain-disjoint-defined if for each pair of instances I, J
over σ, J is domain-disjoint from I and Q is defined over I ∪ J imply that
Q is defined over I. A (partial) query is domain-disjoint-monotone if it is
domain-disjoint-defined and for each instance I and J , J is domain-disjoint
from I and Q is defined over I ∪ J implies that Q(I) ⊆ Q(I ∪ J).

37

We show in this section that every query defined by a semicon-wILOG¬

program is domain-disjoint-monotone. Thereto, we first show that, similar
to connected SP-Datalog and con-Datalog¬ programs, connected SP-wILOG
and connected wILOG¬ programs distribute over components.

Lemma 5.6. Every connected SP-wILOG program distributes over compo-
nents.

Proof. Let P be a connected SP-wILOG program and I an instance. The
proof is analogous to the proof of Lemma 5.2. Therefore, we only show that

if f ∈ Ti
P (I) then there is a Cf ∈ co(I) such that f ∈ Ti

P (Cf). (†)

Clearly, for i = 1, (†) follows from the connectedness of P . Assume f ∈
Ti+1
P (I). Then, there is a Skolemized rule γ in the Skolemization of P

and a valuation V such that V (posγ) ⊆ Ti
P (I) and V (negγ) ∩ Ti

P (I) = ∅.
By induction, for every fact g ∈ V (posγ) there is a Cg ∈ co(I) such that

g ∈ Ti
P (Cg). As γ is connected there is a C ∈ co(I), such that Cg = Cg’ = C

for all g,g’ ∈ V (posγ). So, f ∈ Ti+1
P (C). This completes the proof. �

Lemma 5.7. Every connected wILOG¬ program distributes over compo-
nents.

Proof. The proof is analogous to the proof of Lemma 5.3. Lemma 5.6
serves as the base case, and we rely on the domain-distinct-monotonicity
for SP-wILOG programs, which is shown in [23] (albeit under the name
“semimonotone”). �

Notice that, by Lemma 5.6 and Lemma 5.7, when the output of a con-
nected SP-wILOG or wILOG¬ program is finite over I, it is finite over the
components of I, and vice versa.

We are now ready to show the following theorem:

Theorem 5.8. semicon-wILOG¬ ⊆Mdisjoint.

Proof. Let P = P2 ◦ P1 such that P1 is a connected wILOG¬ program and
P2 is a SP-wILOG program. Then, we show that P (I) ⊆ P (I ∪ J), for all
I, J where J is domain-disjoint from I and the output of P over (I ∪ J) is
defined.

From Lemma 5.7 it follows that

P1(I ∪ J) =
⋃

D∈co(I∪J)

P1(D)

=

 ⋃
D∈co(I)

P1(D)

 ∪
 ⋃
D∈co(J)

P1(D)

=P1(I) ∪ P1(J).

38

So, by finiteness of P1(I ∪ J): P1(I) and P1(J) are finite.
By definition, P2 is in SP-wILOG, so the query expressed by P2 is

domain-distinct-monotone ([23]). Now, by domain-distinctness of P1(I ∪
J) \ P1(I) from P1(I) and finiteness of P2 over P1(I ∪ J): P2 is finite over
P1(I) and P (I) ⊆ P (I ∪ J). �

Next, we show the reverse direction:

Theorem 5.9. Mdisjoint ⊆ semicon-wILOG¬.

Proof. The proof is rather tedious and can be found in Appendix A. �

Finally, we obtain the following corollary:

Corollary 5.10. Semi-connected wILOG¬ computes precisely all queries in
Mdisjoint.

6 Nullary Relations

A nullary relation is a relation having arity zero which can only serve as a
boolean flag: either the relation is empty, or it is nonempty. So far, we have
avoided a discussion of nullary relations to simplify the presentation. For
completeness, we discuss here how the results and proofs can be extended
to incorporate nullary relations. Specifically, we treat nullary facts in a way
that does not interfere with non-nullary facts. For instance, nullary facts
are never domain-disjoint from any instance and distribution policies that
are domain-guided always assign nullary facts to all nodes.

6.1 Domain-distinct-monotone and Domain-disjoint-monotone

A fact f is domain distinct from an instance I when adom(f)\adom(I) 6= ∅.
That is, f contains at least one new value not yet occurring in I. There-
fore, nullary facts are never domain distinct from any instance. However,
a non-nullary fact can still be domain-distinct from an instance containing
nullary-facts. The following Datalog program, for instance, reads a unary
input relation R and a nullary input relation S and is thus domain-distinct-
monotone:

T (x)← R(x),¬S().

Indeed, let I, J be instances with J domain-distinct from I, then either
S() ∈ I implying the output to be empty on both I and I ∪ J , or S() 6∈ I
implying that the output on I is a subset of the output on I ∪ J , because J
cannot contain S() by domain-distinct monotonicity.

Regarding domain-disjoint-monotonicity, we expand the definition of do-
main disjointness to include nullary facts by simply saying that a nullary

39

fact is never domain disjoint from any instance. Notice that now the prop-
erty of an instance J being domain disjoint from an instance I is no longer
symmetric: for example, {R(a)} is domain disjoint from {S()}, but not vice
versa.

Overall, the intuition of nullary facts is that they are present at the
beginning of the computation, and the monotonicity of a query or program
is only judged when we grow the input with non-nullary facts.

6.2 Transducers and Distribution Policies

First, note that the operational semantics of transducer networks should not
be modified to deal with nullary input relations. Indeed, automatically, for
each nullary input relation R, we expose the fact policyR() at a node x
if x is responsible for the fact R() under the distribution policy. We now
discuss the proofs of the results.

6.2.1 Regarding domain-distinct-monotone queries

The proof of Proposition 4.5 remains unaltered. Note that the instance
J considered there does not contain nullary facts by definition of domain-
distinct-monotonicity. Any nullary facts contained in I ∪ J are actually in
I, and the node x is given again I by the second transducer network Π2.

For the proof of Proposition 4.6, we should add the following rule for
each nullary input relation R, to avoid reading relation MyAdom for nullary
facts:

R missing()← ¬R known().

The discussion regarding the completeness of MyAdom uniformly encompasses
any nullary input facts.

6.2.2 Regarding domain-disjoint-monotone queries

We redefine when a distribution policy is domain-guided. Formally, we say
that a distribution policy P over a schema σ and network N is domain-
guided if there is a domain assignment α for N such that (i) P (f) = N
for each nullary fact f ∈ facts(σ) and (ii) P (f) =

⋃
a∈adom(f)α(a) for each

non-nullary fact f ∈ facts(σ). So, all nullary input facts are always assigned
to all nodes.

In the proof of Proposition 4.7, the considered instance J contains no
nullary facts under the new definition of domain disjointness. Where we
argue that node x is given instance I by transducer network Π2 on input
I ∪ J , we now additionally incorporate the following reasoning steps for
nullary facts:

• Let g ∈ I be a nullary fact given to x by Π1 on input I. Under the
new definition of domain-guided distribution policy, the constructed

40

distribution policy P 2 always satisfies x ∈ P 2(g). So, g is given to x
by Π2 on input I ∪ J .

• Let g ∈ I ∪ J be a nullary fact given to x by Π2 on input I ∪ J .
Because J contains no nullary facts, we concretely know g ∈ I. Again,
the new definition of domain-guided distribution policy implies that
always x ∈ P 1(g). So, g is given to x by Π1 on input I.

The proof of Proposition 4.8 works as is for nullary facts: the new def-
inition of domain-guided distribution policy assigns all nullary facts to all
nodes, so the transducer should not be equipped with additional rules to
collect all nullary facts.

6.3 Datalog Results

We first generalize the notion of component. In the presence of nullary facts,
a component must always contain all the nullary facts of the instance. For
example, I = {R(a), R(b), S(), T ()} has two components, namely {R(a), S(), T ()}
and {R(b), S(), T ()}. Further, an instance J containing only nullary facts
can be a component of I only if I = J .

Definition 5 generalizes the syntactic restrictions on con-Datalog¬ and
semicon-Datalog¬ programs to incorporate nullary relations. For this, we
borrow from [17] the following terminology. We say that nullary relations of
edb(P) are global (for all components) if the nullary input facts are given to
all components by definition. Similarly, we say a nullary relation of idb(P)
is global if all its rules, and the rules of the idb-relations it depends on, do
not use variables. So, the term “global” means that these nullary relations
will have the same contents on every component.

Definition 5. Let P be a program in Datalog¬. Then P is a connected
stratified datalog program, when all rules in P are connected and the only
nullary-relations in the body of a rule are global. We say that P is semi-
connected when P has a stratification such that all strata except possibly the
last one are connected SP-Datalog programs with only global nullary rela-
tions.

Particularly notice that the definition of connected-datalog allows to
derive non-global nullary-relations for output purposes (i.e., relations that
do not occur in the body of any rule), while the definition of semi-connected
datalog forbids non-global nullary relations as a whole in all but the last
stratum. Nevertheless, every connected-datalog program is a semi-connected
datalog program according to these definitions, as all the none-global nullary
relations can be accumulated in the last stratum.

Before arguing the correctness of Lemmas 5.2, 5.3 and Theorem 5.4, over
these generalized definitions, we make the following observation: Denote by
glob(P) the set of global relations in σ(P). For a connected datalog program

41

P , it follows that P (I)|glob(P) = P (C)|glob(P) for every C ∈ co(I). Indeed,
every component of an instance I contains all the global relations in I; and
consequently P computes the same global relations on each component.

By the above observation, Lemma 5.2 and Lemma 5.3 now generalize
immediately. Particularly notice that to show “f ∈ Ti+1

P (I) implies f ∈
Ti+1
P (C), for some C ∈ Ti+1

P (I)”, the choice of C depends on non-nullary
facts only. Indeed, by the above observation, global facts are in Ti+1

P (C) by
construction of P . When V (posϕ) contains only nullary-facts, C is chosen
arbitrarily.

In the proof for Lemma 5.3 we choose a stratification for P where every
rule deriving a non-global, nullary relation is placed in the last stratum.
Notice that such a stratification exists, as these relations cannot occur in the
body of any rule (by definition of con-Datalog¬). Now, the proof proceeds
as before.

Finally, the proof of Theorem 5.4 needs no adjustments, as it follows
straightforwardly from the updated Lemmas 5.2 and 5.3; and the new defi-
nition of semi-connected datalog.

Remark 6.1. We recall from [17] the notion of ‘value-detecting’ relations:
A nullary relation S(0) ∈ idb(P) is called value-detecting when (i) for each
non-nullary relation R(k) ∈ edb(P), program P contains a rule isomorphic
to ‘S()← R(u1, ..., uk)’, using pairwise distinct variables; and, (ii) there are
no other rules for S in P . In [17] the following result is shown:

Theorem 6.2. Every query in Datalog¬ that distributes over components
can be expressed with connected datalog with value-detecting relations.

Intuitively, a value-detecting relation allows to detect whether there is at
least one non-nullary fact in the input; or, negated, that the input contains
only nullary-facts. So, value-detecting relations are just a special type of
global relations. Indeed, for an instance I, either every component of I has
at least one non-nullary relation; or none of them have, indicating that only
one component exists (namely, I itself). By the above intuition together with
Lemma 5.3 the following result follows immediately:

Theorem 6.3. Every query expressible with connected datalog with value-
detecting relations distributes over components.

Corollary 6.4. A query is in Datalog¬ and distributes over components if,
and only if, it can be expressed with connected datalog with value-detecting
relations.

7 Related work

The present article expands upon the conference version [16] by providing
all proofs; only proof sketches were present in [16]. We also added Section 6
that explains how to incorporate nullary relations.

42

Declarative networking & CALM. The approach in this paper is moti-
vated by the work on the CALM-conjecture. Hellerstein [31] formulated the
CALM-principle which suggests a link between logical monotonicity and dis-
tributed consistency without the need for coordination. The latter principle
is, for instance, embedded in BLOOM, a declarative language for distributed
programming, for which practical program analysis techniques have been
developed for detecting potential consistency anomalies [12, 13, 25]. Heller-
stein [31] furthermore argues that the theory of declarative database query
languages can provide a foundation for the next generation of parallel and
distributed programming languages and formulates a number of related con-
jectures for the PODS community. Datalog has previously been considered
for distributed systems, see e.g. [33, 1, 37].

Ameloot et al. [18] have introduced the framework of relational trans-
ducer networks to formalize and prove the CALM-conjecture. The formalism
was then parameterized by Zinn et al. [42] to allow for specific data distribu-
tion strategies. These authors showed that the classes of coordination-free
queries in the original transducer network model (F0), in the policy-aware
transducer network model (F1), and in the domain-guided transducer net-
work model (F2) form a strict hierarchy. In particular, they showed that
the non-monotone win-move query is in F2. Some further work on rela-
tional transducer networks was done by Ameloot and Van den Bussche who
studied decidability of confluence [19] and consistency [15]. The CRON-
conjecture, which relates the causal delivery of messages to the nature of
the computations that those messages participate in (like monotone versus
non-monotone) is treated by Ameloot and Van den Bussche [20].

Zinn introduced in [41] the idea of domain-distinct- and domain-disjoint-
monotone queries (albeit under a different name) and related these query
classes to the coordination-free queries. However, by wrongly assuming that
M1

distinct and M1
disjoint equal Mdistinctand Mdisjoint, respectively, the cor-

responding versions of Theorem 4.3 and Theorem 4.4 in [41] are incorrect18.
Although the proof and statements of the results are incorrect, the proposed
approach did already contain the ideas on which the proofs presented in this
paper are based. In fact, it was the enthusiasm of the first three authors
over the approach in [41] that in a collaborative effort with the fourth au-
thor led to the present paper. In this way, Section 4.3 of the present paper
can be seen as an extension and correction of [41]. The results in Section 3,
Section 4.4, and Section 5 are not discussed in [41].

The networked relational transducer model is just one paradigm for
studying distributed query evaluation. The main intuition of the results
and the proofs can likely be transferred to other languages for describing
distributed programs. When the classes of queries would be restricted to

18The definitions for domain-distinct- and domain-disjoint-monotone query classes in
[41] were restricted to M1

distinct and M1
disjoint.

43

the fixpoint or “while” queries [4], it suffices to consider operational mod-
els that provide computing nodes with first-order logic as their local query
language, combined with some state relations to which facts can be added
or from which facts can be deleted (as in transducers); the intuition is that
repeated transitions involving a node can simulate the iterations of an im-
plicit while loop [18]. These features are provided by some other models
studied in the literature. For example, another notable model (or language)
is WebdamLog [3], which is a Datalog-variant for declarative networking.
This language additionally supports delegation, where a node can send rules
to another node instead of just facts; transmitted rules can then be locally
evaluated at the addressee. In general, the distributed computations ex-
pressed by WebdamLog do not assume a fixed set of nodes, but they allow
previously unseen nodes to participate. Other rule-based languages are, e.g.,
Netlog [30] and Dedalus [14].

The evaluation of queries has been considered in the MapReduce frame-
work. Afrati and Ullman [10] study the evaluation of join queries and take
the amount of communication, calculated as the sum of the sizes of the input
to reducers, as a complexity measure. Evaluation of transitive closure and
datalog queries in MapReduce has been investigated in [8, 11].

Another model, called the massively parallel (MP) model, is introduced
by Koutris and Suciu [36]. Here, computation proceeds in a sequence of
parallel steps, each followed by global synchronization of all servers. In this
model, evaluation of conjunctive queries [36, 22] as well as skyline queries [9]
have been considered.

Lastly, in Active XML [2], a distributed system is represented as a col-
lection of XML documents in which some vertices contain calls to remote
webservices. Any data returned by the calls is incorporated into the calling
document.

Finite model theory. The expressiveness of (extensions of) Datalog and
its relation to monotonicity have been previously investigated. We discuss
some of the results relevant to the present paper. It is known that Datalog
and Datalog(6=) are strictly included in H and M, respectively (c.f., e.g.,
[7, 35]). As mentioned before, Afrati et al. [7] obtained that SP-Datalog ⊆
E . Feder and Vardi [29] showed that all queries in SP-Datalog that are
preserved under homomorphisms can already be expressed in Datalog. That
is, SP-Datalog ∩ H = Datalog. Dawar and Kreutzer [26] showed that the
latter result can not be extended to least fixed-point logic (LFP): LFP∩H 6⊆
Datalog. The status of SP-Datalog w.r.t. E is less clear. It is, for instance,
not known whether SP-Datalog = E ∩ Datalog¬. A related result here is
the one by Rosen [38], who showed that FO[∃∗∀∃]∩ E ⊆ SP-Datalog, where
FO[∃∗∀∃] denotes first-order logic formulas of the form ∃x̄∀y∃z ψ where ψ is
quantifier-free. We note that Tait’s counterexample [40] separating FO[∃]
from E ∩ FO is definable in SP-Datalog [38]. Atserias et al. [21] study E in

44

Datalog(6=) (wILOG(6=)
(2)
= M (1)

= F0
(1)
= A0

((f) (((3)

SP-Datalog (SP-wILOG
(2)
= Mdistinct F1 A1

((3)

semicon-Datalog¬ semicon-wILOG¬ Mdisjoint F2 A2

bold this work, (1) [18], (2) [23], (3) [42].

Figure 2: Main results of this work: query classes introduced and relation-
ships obtained in this paper are shown in bold-face; related work is given
with annotations. Non-bold-face relationships without annotation are part
of database folklore.

relation to FO over restricted classes of structures.

8 Conclusion

Figure 2 summarizes the main findings of this paper. At the same time
the figure formulates a more fine-grained answer to the CALM-conjecture
which stipulates that a program has a coordination-free execution strategy
if and only if the program is monotone. In particular, our results equate
increasingly larger classes of coordination-free computations with increas-
ingly weaker forms of monotonicity. We also present explicit Datalog vari-
ants for each of these classes. Furthermore, the last two columns, as al-
ready explained in Section 4.2 and Section 4.4, confirm that the notion of
coordination-freeness as proposed in [18] is a sensible one. Indeed, the notion
corresponds to the intended semantics in that coordination-freeness avoids
global synchronization barriers through the absence of knowledge about all
the nodes in the network. That said, we do not claim that our notion is the
only possible one. Indeed, one could argue that, especially within F1 and
F2, even though there is no global synchronization barrier, computing nodes
are still prone to wait until complete subsets of the input data have been
accumulated (cf. Section 4.3). Of course, the semantic characterizations
in terms of weaker forms of monotonicity make precise that this waiting is
determined by the way data is distributed. The query evaluation algorithms
in the proofs in Section 4.3 are inefficient in that they require all data to be
sent to all nodes, it remains to investigate how the insights obtained in this
paper can lead to more practical algorithms.

45

In particular, as an initial step, [34] investigate more economical broad-
casting strategies for full conjunctive queries without self-joins that only
transmit a part of the local data necessary to evaluate the query at hand.

Another contribution of this paper is the identification of (semi-)connected
Datalog variants which to the best of our knowledge have not been consid-
ered before. It is shown in [17] that the connected variant of Datalog under
the well-founded semantics, making use of the well-known “doubled pro-
gram” approach, remains within Mdisjoint. The latter implies a simpler
proof of the fact that win-move is in Mdisjoint (one of the main results in
[42]). In addition it is shown in [17] that semi-connected Datalog under the
well-founded semantics is in Mdisjoint.

As is to be expected, deciding whether a query belongs to one of the
monotonicity classes quickly turns undecidable. Still, it would be interest-
ing to find decidable subclasses or identify sufficient conditions as this would
provide insight on the way queries can be distributedly computed. In Sec-
tion 3, we introduced the bounded classes Mi

distinct and Mi
disjoint mainly

because of the mismatch with [41] as explained in Section 7. It remains to
investigate their relationship with distributed evaluation of queries.

Acknowledgements We thank Georg Gottlob, Thomas Eiter, and Phokion
Kolaitis for answering our questions on Datalog. We also thank Phokion Ko-
laitis for bringing [38] to our attention.

References

[1] S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of asyn-
chronous discrete event systems: Datalog to the rescue! In PODS,
pages 358–367. ACM, 2005.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. The active xml project: An
overview. The VLDB Journal, 17(5):1019–1040, 2008.

[3] S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A rule-based
language for Web data management. In PODS, pages 293–304. ACM
Press, 2011.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[5] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational trans-
ducers for electronic commerce. In PODS, pages 179–187. ACM, 1998.

[6] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational trans-
ducers for electronic commerce. J. Comput. Syst. Sci., 61(2):236–269,
2000.

46

[7] F. Afrati, S. S. Cosmadakis, and M. Yannakakis. On Datalog vs poly-
nomial time. Journal of computer and system sciences, 51:177–196,
1995.

[8] F. N. Afrati, V. R. Borkar, M. J. Carey, N. Polyzotis, and J. D. Ullman.
Map-reduce extensions and recursive queries. In ICDE, pages 1–8, 2011.

[9] F. N. Afrati, P. Koutris, D. Suciu, and J. D. Ullman. Parallel skyline
queries. In ICDT, pages 274–284, 2012.

[10] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce envi-
ronment. In EDBT, pages 99–110, 2010.

[11] F. N. Afrati and J. D. Ullman. Transitive closure and recursive Datalog
implemented on clusters. In EDBT, pages 132–143, 2012.

[12] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak. Consistency
analysis in bloom: a calm and collected approach. In CIDR, pages
249–260, 2011.

[13] P. Alvaro, N. Conway, J. M. Hellerstein, and D. Maier. Blazes: Coordi-
nation analysis for distributed programs. In International Conference
on Data Engineering (ICDE), pages 52–63. IEEE, 2014.

[14] P. Alvaro, W. Marczak, et al. Dedalus: Datalog in time and space.
Technical Report UCB/EECS-2009-173, EECS Department, University
of California, Berkeley, Dec 2009.

[15] T. J. Ameloot. Deciding correctness with fairness for simple transducer
networks. In ICDT, 2014.

[16] T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Weaker forms of
monotonicity for declarative networking: a more fine-grained answer to
the calm-conjecture. In PODS, pages 64–75. ACM, 2014.

[17] T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Datalog queries
distributing over components. In Proceedings of the 18th International
Conference on Database Theory (ICDT), pages 308–323, 2015.

[18] T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational trans-
ducers for declarative networking. J. ACM, 60(2):15, 2013.

[19] T. J. Ameloot and J. Van den Bussche. Deciding eventual consistency
for a simple class of relational transducer networks. In ICDT, pages
86–98, 2012.

[20] T. J. Ameloot and J. Van den Bussche. On the CRON conjecture. In
Datalog, pages 44–55, 2012.

47

[21] A. Atserias, A. Dawar, and M. Grohe. Preservation under extensions
on well-behaved finite structures. SIAM J. Comput., 38(4):1364–1381,
2008.

[22] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel
query processing. In PODS, pages 273–284, 2013.

[23] L. Cabibbo. The expressive power of stratified logic programs with
value invention. Information and Computation, 147(1):22–56, 1998.

[24] K. Compton. Some useful preservation theorems. Journal of Symbolic
Logic, 48:427–440, 1983.

[25] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier.
Logic and lattices for distributed programming. In Symposium on Cloud
Computing (SoCC), page 1. ACM, 2012.

[26] A. Dawar and S. Kreutzer. On Datalog vs. LFP. In ICALP, pages
160–171, 2008.

[27] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of
data-driven Web applications. J. Comput. Syst. Sci., 73(3):442–474,
2007.

[28] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communi-
cating data-driven Web services. In PODS, pages 90–99. ACM Press,
2006.

[29] T. Feder and M. Y. Vardi. Homomorphism closed vs. existential posi-
tive. In LICS, pages 311–320, 2003.

[30] S. Grumbach and F. Wang. Netlog, a rule-based language for dis-
tributed programming. In Proceedings of the 12th International Con-
ference on Practical Aspects of Declarative Languages, pages 88–103.
Springer-Verlag, 2010.

[31] J. M. Hellerstein. The declarative imperative: experiences and conjec-
tures in distributed logic. SIGMOD Record, 39(1):5–19, 2010.

[32] R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipula-
tion of object identifiers. In VLDB, pages 455–468, 1990.

[33] T. Jim and D. Suciu. Dynamically distributed query evaluation. In
PODS, pages 28–39. ACM, 2001.

[34] B. Ketsman and F. Neven. Optimal broadcasting strategies for con-
junctive queries over distributed data. In Proceedings of the 18th In-
ternational Conference on Database Theory (ICDT), pages 291–307,
2015.

48

[35] P. G. Kolaitis and M. Y. Vardi. On the expressive power of Datalog:
Tools and a case study. In PODS, pages 61–71, 1990.

[36] P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In
PODS, pages 223–234, 2011.

[37] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: Language, execution and optimization. In Proceedings of
the 2006 ACM SIGMOD International Conference on Management of
Data, pages 97–108. ACM, 2006.

[38] E. Rosen. Finite Model Theory and finite Variable Logics. PhD thesis,
University of Pennsylvania, 1995.

[39] O. Shmueli. Equivalence of Datalog queries is undecidable. The Journal
of Logic Programming, 15(3):231 – 241, 1993.

[40] W. W. Tait. A counterexample to a conjecture of Scott and Suppes.
The journal of Symbolic Logic, 24(1):15–16, 1959.

[41] D. Zinn. Weak forms of monotonicity and coordination-freeness. CoRR,
abs/1202.0242, 2012.

[42] D. Zinn, T. J. Green, and B. Ludäscher. Win-move is coordination-free
(sometimes). In ICDT, pages 99–113, 2012.

APPENDIX

A Proof of Theorem 5.9

Cabibbo [23] showed that wILOG¬ captures the class of all computable
queries. In particular, he showed that for every computable query Q there
is a two-stratum wILOG¬ program P for which Q(J) = P (J) for every
instance J . We provide a sketch of the construction, as it forms the basis
for the construction that shows Mdisjoint ⊆ semicon-wILOG¬.

But, we first introduce the notion of enumeration, which plays a cru-
cial role throughout the construction. Let σ be a database schema and
I an instance over σ. By R(I) we denote the set of tuples representing
facts in I with relation symbol R. An enumeration of R(I) is simply a
sequence of all the tuples in R(I) encapsulated between square brackets,
where tuples are represented as sequences of values between parentheses.
By enumR(I) we denote the set of all enumerations for R(I). For exam-
ple, enumR(I) = {[(ab)(bc)], [(bc)(ab)]} for R(I) = {(a, b), (b, c)}. Assuming
a total ordering over σ, by an enumeration of I we mean a concatenation

49

of enumR(I) for each R ∈ σ following the assumed ordering. For exam-
ple, [(ab)(bc)][(a)] is an enumeration for I = {R(a, b), R(b, c), S(a)} over
σ = {R,S}, where R precedes S in the considered ordering over σ. By
enum(I) we denote the set of all enumerations for I. To highlight the differ-
ence between enumerations in enumR(I) and enum(I) we sometimes refer
to these as relation-enumerations and instance-enumerations, respectively.
Further, we refer to “[”, “]”, “(”, and “)” as delimiters, which are special
values outside dom.

A.1 C ⊆ wILOG¬

We are now ready to sketch P . [23] Intuitively, P can be divided in three
functional parts:

1. Encoding: A two-stratum wILOG¬ program Pencode that encodes the
input instance as a set of input enumerations;

2. Simulation: A positive wILOG¬ program PM that simulates Q over
the generated input enumerations by means of a domain Turing ma-
chine M (as defined later), resulting in a set of output enumerations;
and

3. Decoding: A positive wILOG¬ program Pdecode that decodes the
generated output enumerations into an output instance.

Next, we explain these parts in more detail. Let Q be a query over input
schema σ = {R1, . . . , Rn} and output schema σ′. Henceforth, we assume
the natural ordering R1, . . . , Rn on σ.

A.1.1 Encoding

Program Pencode can be seen as a two-stratum wILOG¬ program defined
over input schema σ and output schema σinenum,

σinenum
def
= {ENC(1), ENCcons(3), ENCnil(1)},

which generates for a given input instance I, in parallel, all enumerations
in enum(I). Here, the relation ENCcons represents the consecutive values of
the enumerations in enum(I), stored as facts ENCcons(s, v, t), where s is an
id for the given fact, v is a value from adom(I) or a working symbol, and t
is an id referring to the next fact in the enumeration, if there is such a fact.
Relation ENCnil identifies a special invented value used to denote the end of
an enumeration. Furthermore, the relation ENC contains exactly those ids
referring to facts in ENCcons forming the initial element in an enumeration.

50

Example A.1. Recall our running example, i.e., I = {R(a, b), R(b, c), S(a)},
with enum(I) = {[(ab)(bc)][(a)], [(bc)(ab)][(a)]}. Then,

Pencode(I) = {
ENC(v1), ENCcons(v1, ‘[’, v2), ENCcons(v2, ‘(’, v3), ENCcons(v3, a, v4), . . . ,

ENCcons(v15, ‘]’, vnil), ENC
nil(vnil),

ENC(v16), ENCcons(v16, ‘[’, v17), ENCcons(v17, ‘(’, v18), . . . ,

ENCcons(v30, ‘]’, vnil)},

where each vi represents an invented value and thus represents an id. Notice
that, ENC = {v1, v14} as these values refer to the initial elements of the two
enumerations.

Program Pencode generates enumerations by performing the following
tasks:

1. Generation of Relation-Enumerations: For every relation name
R ∈ σ, every enumeration in enumR(I) is generated; and

2. Concatenation of Relation-Enumerations: The enumerations in
enumR(I) are generated by concatenating every sequence of relation-
enumerations e1e2 . . . en, where e1 ∈ enumR1(I), . . . , en ∈ enumRn(I).

We recall the constructions for (1) and (2) in more detail below.

Generation of Relation-Enumerations Enumerations in enumRi(I)
are generated and stored in auxiliary relations ENCi, ENCconsi , and ENCnili .
These have a similar meaning as their instance-enumeration equivalents ENC,
ENCcons, and ENCnil which we described earlier. The only difference is that
ENCi is a ternary relation containing facts of the form ENCi(t, “[”, s) where t
is the id of the initial element in the enumeration.

Enumerations are constructed starting from the end value, and build up
by adding values in front of it. For the construction, ENCconsi is divided in
multiple relations, each with its own meaning: ENC∗i contains facts referring
to a partial enumeration for Ri without opening bracket, whereas ENC)i , ENC

1
i ,

and ENC2
i contain facts referring to a partial enumeration with an incomplete

tuple in front. Further, the relation missesi associates partial enumerations
with tuples from Ri that are not yet in the enumeration.

The construction is given for a binary relation Ri, but can be easily
extended for a relation with arity k. To reduce clutter, variables that oc-
cur only once are replaced by anonymous variables, which are denoted by
underscores. Constants are always between double quotes:

51

ENCnili (∗) ←
ENC∗i (∗, “]”, nil) ← ENCnili (nil)
missesi(s, x1, x2) ← ENC∗i (s, “]”, nil), ENCnili (nil), Ri(x1, x2)

ENC)i (∗, “)”, s) ← ENC∗i (s, ,), missesi(s, ,)

ENC2
i (∗, x2, s1) ← ENC)i (s1, “)”, s0), ENC∗i (s0, ,), missesi(s0, , x2)

ENC1
i (∗, x1, s2) ← ENC2

i (s2, x2, s1), ENC)i (s1, “)”, s0),
ENC∗i (s0, ,), missesi(s0, x1, x2)

ENC∗i (∗, “(”, s3) ← ENC1
i (s3, x1, s2), ENC2

i (s2, x2, s1),

ENC)i (s1, “)”, s0), ENC∗i (s0, ,), missesi(s0, x1, x2)
missesi(s4, y1, y2) ← ENC∗i (s4, “(”, s3), ENC1

i (s3, x1, s2),

ENC2
i (s2, , s1), ENC)i (s1, “)”, s0)

ENC∗i (s0, ,), missesi(s0, y1, y2), x1 6= y1

missesi(s4, y1, y2) ← ENC∗i (s4, “(”, s3), ENC1
i (s3, , s2),

ENC2
i (s2, x2, s1), ENC)i (s1, “)”, s0)

ENC∗i (s0, ,), missesi(s0, y1, y2), x2 6= y2

misses
proj
i (s) ← missesi(s, ,)

ENCi(∗, “[”, s) ← ENC∗i (s, ,),¬missesproji (s)

Notice in particular the use of negation in the last rule above to separates
completeenumerations from partial enumerations for Ri, by checking that
no more facts aremissing in the enumeration. This is the only place in the
construction where negation is used (except for negation over equalities).

Eventually, the relation ENCconsi is constructed to provide a uniform in-
terface to the generated enumerations, which can be used in the consecutive
parts of the construction:

ENCconsi (s, v, t) ← ENCi(s, v, t)

ENCconsi (s, v, t) ← ENC)i (s, v, t)
ENCconsi (s, v, t) ← ENC∗i (s, v, t)
ENCconsi (s, v, t) ← ENC1

i (s, v, t)
ENCconsi (s, v, t) ← ENC2

i (s, v, t)

Concatenation of Relation-Enumerations Enumerations for the in-
put instance are build by transcribing complete enumerations for the re-
lations in σ by following the order on σ, i.e., new enumerations are cre-
ated by first starting from an enumeration e1 ∈ enumR1(I), followed by an
enumeration e2 ∈ enumR2(I), and so on. More specifically, the enumera-
tions in enum(I) are generated by concatenating every sequence of relation-
enumerations e1e2 . . . en, where e1 ∈ enumR1(I), . . . , en ∈ enumRn(I).

52

Below, the relation representsi associates the id of every fact of a newly
created enumeration for I with its current position in a complete enumera-
tion of one of its relations:

ENCnil(∗) ←
represents(nil, nil′) ← ENCnil(nil), ENCniln (nil′)
ENCcons(∗, v, s1) ← ENCconsn (, v, s0), represents(s1, s0)
represents(s1, s0) ← ENCcons(s1, v, t1), ENCconsn (s0, v, t0), represents(t1, t0)
represents(s1, nil) ← ENCniln−1(nil), ENCn(s0, ,), represents(s1, s0)
ENCcons(∗, v, s1) ← ENCconsn−1 (l, v, s0), represents(s1, s0)
represents(s1, s0) ← ENCcons(s1, v, t1), ENCconsn−1 (s0, v, t0), represents(t1, t0)

. . .
ENC(s1) ← ENCcons(s1, ,), ENC1(s0, ,), represents(s1, s0)

A.1.2 Simulation

It is a result by Hull and Su [?] that every computable query can be rep-
resented by an order independent domain Turing machine (TM). A domain
TM (as introduced in [?]) is an adjusted TM designed for generic computa-
tions, which especially differs from traditional TMs in that it works directly
over an infinite alphabet instead of a finite alphabet thereby eliminating the
need to introduce (possibly complex) encodings. A domain TM M is said
to be order independent if for every instance I, either for every enumeration
of I TM M does not halt, or there is an instance J such that for every enu-
meration of I, M halts and its output tape contains only an enumeration of
J .

Cabibbo showed that every order independent domain TM can be simu-
lated with a positive wILOG¬ program with inequalities. In particular, for
a set of enumerations, PM computes M over all these enumerations by mate-
rializing the consecutive instantaneous descriptions (ID) of M , by following
the transitions of M , running over each enumeration separately.

Notice that order independence ensure that, even though Pencode may
generates several distinct enumerations for the given input instance, imply-
ing simulated runs of M over all these enumerations, either none of the runs
halt, or all of them halt and result in (possibly multiple distinct) enumera-
tions of the same output instance.

Program PM can be seen as defined over input schema σinenum and output
schema σoutenum,

σoutenum
def
= {ENCout(1)

, ENCcons(3), ENCnil
(1)}.

The output instance is encoded in the same way as the input instance. Here,
ENCout contains facts that represent the start of an output enumeration.

53

A.1.3 Decoding

Finally, a positive wILOG¬ program Pdecode is constructed that transforms
the output enumerations generated by PM into an output instance by elimi-
nating the delimiters and projecting the values into the desired output rela-
tions. Program Pdecode expects enumerations over input schema σoutenum and
results in an instance over output schema σ′ containing only active domain
values from instance I.

A.1.4 M⊆ pos-wILOG and Mdistinct ⊆ SP-wILOG

Cabibbo adapted the above technique to show that M ⊆ pos-wILOG and
E ⊆ SP-wILOG. [23] The only change in the construction concerns the
encoding phase which requires a major modification: stratified negation can
no longer be used to detect whether a partial enumeration is complete.

Let p-enum(I)
def
=
⋃
J⊆I enum(J), i.e., p-enum(I) is the set of all partial

enumerations for I. Obviously, if we only consider monotonic queries, and
because I is a subset of itself, Q(I) =

⋃
J⊆I Q(J) for all I. Therefore,

to show M ⊆ pos-wILOG it suffices to generate p-enum(I) rather than
enum(I), which can be achieved without using negation. Indeed, we only
need to replace the rule ENCi(∗, “[”, s) ← ENC∗i (s, ,),¬missesproji (s) by
ENCi(∗, “[”, s)← ENC∗i (s, ,). in the construction of Pencode.

To obtain a proof for Mdistinct ⊆ SP-wILOG, a solution is to construct
in parallel all enumerations of every induced subinstance of I. These subin-
stances can be obtained by considering for every subset D of adom(I) the
instance I|D = {f ∈ I | adom(f) ⊆ D}. Indeed, as only queries Q are
considered which are domain-distinct-monotone (or, equivalently, preserved
under extensions):

Q(I) =
⋃

D⊆adom(I)

Q(I|D).

The difficult part of the proof then is to construct a SP-wILOG program
that can generate all enumerations of every ID.

A.2 Mdisjoint ⊆ semicon-wILOG¬

We now explain how to generalize the above ideas to prove that semi-
connected wILOG¬ captures Mdisjoint. Again, the difficult part of the
proof is to construct a semicon-wILOG¬ program that generates enumer-
ations which allow to compute queries in Mdisjoint. Intuitively, the desired
property for enumerations is to be complete with respect to the components
that they contain. More formally, we say that D is a full-component subset
of I, denoted D ⊆c I, when for all C ∈ co(I) and f ∈ C, we have that f ∈ D
implies C ⊆ D. So, D contains either all facts of a component or none of

54

them. Indeed, as only queries Q are considered which are domain-disjoint-
monotone and every instance is a full-component subset of itself:

Q(I) =
⋃
D⊆cI

Q(D), (†)

for all I.
Towards a semicon-wILOG¬ construction for P , we define p-enumcseq(I)

as the set containing all (partial) enumerations of I that have the form
e = e1e2 . . . em (recall that there are m relations), where ei = [c1

i c
2
i . . . c

k
i]

is a component wise enumeration of Ri. That is, there are distinct compo-
nents C1, . . . , Ck ∈ co(I) such that [cji] ∈ enumRi(Cj). Further, we denote
enumcseq(I) as the subset of p-enumcseq(I), where k = |co(I)|. We some-
times refer to enumerations in enumRi(Cj) as full-component enumerations.

Now, we are ready to sketch the construction:

1. Encoding: A semi-connected wILOG¬ program P cseq
encode that gener-

ates p-enumcseq(I);

2. Simulation: A positive wILOG¬ program PM that simulates Q over
the generated input enumerations by means of a domain Turing ma-
chine M , resulting in a set of output enumerations; and

3. Decoding: A positive wILOG¬ program Pdecode that decodes the
generated output enumerations into an output instance.

Now, P
def
= P cseq

encode∪PM∪Pdecode is the desired semicon-wILOG¬ program.
Indeed, as for every domain-disjoint-monotonic query Q there is an order in-
dependent domain TM M that computes Q and a positive wILOG¬ program
PM that simulates M on enumerations; there is a semicon-wILOG¬program
P cseq

encode which encodes the given input instance as a set of enumerations
seeding M ; and there is a positive wILOG¬ program Pdecode that decodes
the output of M .

In particular, for a domain-disjoint-monotone query Q and an order in-
dependent domain TM M that computes Q, we have,

P (I) =
⋃

e∈p-enumcseq(I)

Pdecode(PM (e))

=
⋃
D⊆cI

⋃
e∈enumcseq(D)

Pdecode(PM (e))

=
⋃
D⊆cI

Q(D)

= Q(I).

The third equality follows from order-independence of M . In particular,
notice that enumcseq(D) is nonempty for every D ⊆c I. The fourth equality
follows from (†).

55

As the expressibility of both the simulation (2) and decoding (3) follow
directly from [23], we focus on the construction of P cseq

encode.

Remark A.2. Notice that (analogous to [23]) we use constants in the con-
struction, like “[”, “]”, “(”, and “)”. However, these are only for encoding
purposes and are (by construction) removed from the output by Pdecode. Only
in connected fragments we cannot use constants, as these could introduce
unwanted interference between components. Therefore, we use invented val-
ues rather than constants where connectedness takes priority. For example,
rather than writing:

B(a, “[”) ← A(a),

we write:

OpenBracket(∗, a) ← A(a).
B(a, b) ← A(a), OpenBracket(b, a).

where OpenBracket then encodes alternatives for the constant “[”.

A.2.1 Construction of P cseq
encode

For ease of readability, we subdivide the construction of P cseq
encode in the fol-

lowing functional parts:

1. Generation of Component-Enumerations: For every relation sym-
bol R ∈ σ and every component C of the input, enumR(C) is gener-
ated;

2. Generation of Partial-Enumerations: For every relation symbol
R ∈ σ, p-enumR(I) is generated;

3. Selection of Full-Component Enumerations: Partial enumera-
tions e1, . . . , en, where e1 ∈ p-enumR1

(I), . . . , en ∈ p-enumRn
(I), are

selected for which e1 . . . en ∈ p-enumcseq(I);

4. Generation of Full-Component Enumerations: p-enumcseq(I) is
generated;

Next, we illustrate the above mentioned constructions in more detail.

Generation of Component-Enumerations First, a relation C is con-
structed, which represents the reflexive transitive closure of the Gaifman
graph for the input, i.e., the graph having as nodes the active domain values
for the input, and where two nodes a and b are connected by an edge iff
a = b or there is a fact having both values in the input. We use relation C

56

mainly to connect the subsequent rules. The construction is illustrated for
relation Ri with arity k:

C(x1, x1) ← Ri(x1, . . . , xk)
C(x1, x2) ← Ri(x1, . . . , xk)

. . .
C(xk−1, xk) ← Ri(x1, . . . , xk)
C(x, y) ← C(y, x)
C(x, y) ← C(x, z), C(z, y)

Obviously C can be computed with a positive connected wILOG¬ program.
The following construction computes enumR(D) for every D ∈ co(I)

and every Ri ∈ σ. The construction is essentially the enumeration program
given in Section A.1.1. But, instead of using a single, neutral, invented-value
that serves as the end value for every enumeration, we create multiple end-
values; one for every active domain value. The domain value then captures
for which component the enumerations can be extended.

Delimiter constants are replaced by invented values obtained via the
following rules:

WS](∗, c) ← C(c, c)
WS[(∗, c) ← C(c, c)
WS)(∗, c) ← C(c, c)
WS((∗, c) ← C(c, c)

For simplicity, the program in Figure 3 illustrates the construction where
Ri is a binary relation. This can easily be extended to k-ary relations. Notice
that [,], (, and) here now variables.

Notice the use of negation in the last rule in Figure 3 to separates com-
plete component-enumerations from partial component-enumerations for Ri,
by checking that no more facts are missing in the enumeration. This is the
only place in the construction where negation is used (except for negation
over equalities). Particularly notice that unlike for the construction in Sec-
tion A.1.1, the negation is over a connected fragment. Further, notice that
the construction up to this point (excluding the last rule in Figure 3) yields
a connected stratum. As the remaining construction is positive and can
be viewed as the last stratum of the constructed program, the definition of
semi-connected wILOG¬ allows the remaining rules to be unconnected. It
is also for this reason that we can safely use constants beyond this point.

We finish the construction by replacing the invented values by their
constant representations “[”, “]”, “(”, and“)”. Hence, obtaining the desired

57

cENCnili (∗, c) ← C(c, c)

cENC]i (∗, c,], nil) ← cENCnili (nil, c), WS](], c)

cENC∗i (s, c, v, t) ← cENC]i (s, c, v, t)
cmissesi(s, c, x1, x2) ← cENC∗i (s, c,], nil), cENC

nil
i (nil, c), Ri(x1, x2),

C(c, x1), WS](], c).

cENC)i (∗, c,), s) ← cENC∗i (s, c, ,), cmissesi(s, c, ,), WS)(), c)

cENC2
i (∗, c, x2, s

′) ← cENC)i (s
′, c,), s), cENC∗i (s, c, ,)

cmissesi(s, c, , x2), WS)(), c)

cENC1
i (∗, c, x1, s2) ← cENC2

i (s2, c, x2, s1), cENC)i (s1, c,), s0),
cENC∗i (s0, c, ,), cmissesi(s0, c, x1, x2),
WS)(), c)

cENC(i (∗, c, (, s3) ← cENC1
i (s3, c, x1, s2), cENC2

i (s2, c, x2, s1),

cENC)i (s1, c,), s0), cENC∗i (s0, c, ,), WS(((, c),
WS)(), c), cmissesi(s0, c, x1, x2)

cENC∗i (s, c, v, t) ← cENC(i (s, c, v, t)
cmissesi(s4, c, y1, y2) ← cENC∗i (s4, c, (, s3), cENC1

i (s3, c, x1, s2),

cENC2
i (s2, c, , s1), cENC)i (s1, c,), s0)

cENC∗i (s0, c, ,), cmissesi(s0, c, y1, y2),
WS(((, c), WS)(), c), x1 6= y1

cmissesi(s4, c, y1, y2) ← cENC∗i (s4, c, (, s3), cENC1
i (s3, c, , s2),

cENC2
i (s2, c, x2, s1), cENC)i (s1, c,), s0)

cENC∗i (s0, c, ,), cmissesi(s0, c, y1, y2),
WS(((, c), WS)(), c), x2 6= y2

cmisses
proj
i (s, c) ← cmissesi(s, c, ,)

cENC
tmp
i (∗, [, s) ← cENC∗i (s, c, ,),¬cmissesproji (s, c), WS[([, c)

Figure 3: Construction of component-enumerations for relation Ri.

58

component-enumerations, which are now encoded in the usual way:

cENCi(s, “[”, t) ← cENC
tmp
i (s, , t)

cENCconsi (s, v, t) ← cENCi(s, v, t)

cENCconsi (s, “]”, nil) ← cENC]i (s, c, ,), cENCnili (nil, c)

cENCconsi (s, “)”, t) ← cENC)i (s, , , t)

cENCconsi (s, “(”, t) ← cENC(i (s, , , t)
cENCconsi (s, v, t) ← cENC1

i (s, , v, t)
cENCconsi (s, v, t) ← cENC2

i (s, , v, t)

Generation of Partial-Enumerations For the generation of partial enu-
merations for I, i.e. p-enum(I), we recall the construction in Section A.1.1,
where ENCi(∗, “[”, s)← ENC∗i (s, ,),¬missesproji (s) is replaced by ENCi(∗, “[”, s)←
ENC∗i (s, ,).

Selection of Full-component Enumerations We construct a program
that recursively checks for every combination of the partial enumerations
(from Section A.2.1) (one for each relation in edb(Q)) if they match a con-
catenation of full-component enumerations (from Section A.2.1) for the same
components. This way we are able to collect enumerations e1, . . . , en, for
which e = e1e2 . . . en ∈ p-enumcseq(I), where n = |σ|.

In the construction, the relation COMP stores facts COMP(e1, . . . , en, c1, . . . , cn),
where ei refers to a position in a partial-enumeration for relation Ri, and ci
refers to a position in a complete-component enumeration for relation Ri,
such that the tail of ei has a prefix of values that matches exactly with ci
(except maybe for the closing bracket). Relation COMPnil denotes the initial-
isation for COMP, where every reference is to an end-value. Relation COMP∗

is the subset of COMP containing only those facts for which the component-
enumerations c1, . . . , cn are complete, i.e., they have the “[” working symbol
on their first position. Notice that COMP∗ thus contains only facts, where
e1, . . . , en refer to full-component enumerations. Finally, COMPf is the sub-
set of COMP∗ where every partial-enumerations e1, . . . , en is also complete,
and the component-enumerations are projected out:

COMPnil(nil1, . . . , niln, nil
′
1, . . . , nil

′
n) ← ENCnil1 (nil1), . . . , ENCniln (niln),

cENCnil1 (nil′1, c), . . . , cENC
nil
n (nil′n, c),

COMP(e1, . . . , en, c1, . . . , cn) ← COMPnil(e1, . . . , en, c1 . . . , cn)

Add for every i ∈ [n] the following rule:

COMP(e1, . . . , en, c1, . . . , cn) ← COMP(e1, . . . , ei−i, e
′
i, ei+1, . . . , en, c1, . . . , ci−1, c

′
i, ci+1, . . . , cn),

ENCconsi (ei, v, e
′
i), cENC

cons
i (ci, v, c

′
i)

59

Further,

COMP∗(e1, . . . , en) ← COMP(e1, . . . , en, c1, . . . , cn),
cENC1(, “[”, c1), . . . , cENCn(, “[”, cn)

COMP(e1, . . . , en, c1, . . . , cn) ← COMP∗(e1, . . . , en),
ENCnil1 (nil1, d), . . . , ENCniln (niln, d),
cENCcons1 (c1, “]”, nil1), . . . , cENCconsn (cn, “]”, niln)

COMPf (e1, . . . , en) ← COMP∗(e
′
1, . . . , e

′
n)

ENC1(e1, , e
′
1), . . . , ENCn(en, , e

′
n)

Generation of Full-Component Enumerations The construction is
based on the concatenation program in Section A.1.1. However, instead
of relating every part of the partial concatenation only with the current in-
process enumeration sequentially, we keep track of all the partial-enumerations
involved in the concatenation. Then, at the end, we use the relation COMPf

to determine which of the concatenations of relation specific enumerations
are in fact enumerations of full-component subsets of the input, resulting in
the desired enumerations from p-enumcseq(I):

ENCnil(∗) ←
represents(nil, nil1, . . . , niln) ← ENCnil(nil), ENCnil1 (nil1), . . . , ENCniln (niln)
ENCcons(∗, v, s) ← ENCconsn (, v, sn), represents(s, , . . . , , sn)
represents(s, s1, . . . , sn) ← ENCcons(s, v, t), ENCconsn (sn, v, tn),

represents(t, s1, . . . , sn−1, tn)
represents(s, s1, . . . , sn−2, nil, sn) ← ENCniln−1(nil), ENCn(sn, v, t), represents(s, s1, . . . , sn)
ENCcons(∗, v, s) ← ENCconsn−1 (l, v, sn−1), represents(s, s1, . . . , sn),

ENCn(sn, ,)
represents(s, s1, . . . , sn) ← ENCcons(s, v, t), ENCconsn−1 (sn−1, v, tn−1),

represents(t, s1, . . . , sn−2, tn−1, sn),
ENCn(sn, ,)

. . .
ENC(s) ← ENCcons(s, v, t), represents(s, s1, . . . , sn),

COMPf (s1, . . . , sn)

60

